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ABSTRACT
A unified appreoach is developed for one~dimensional GIM. The major resulr is
4 convergence theorem for interval reduction, Comparative analysis of bisection,

linear interpolation and tangential approximation reveals the relative

advantages of tangential approximation.
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INTRODUCTION

The purpose of this paper is to present a unified theorem for interval
reduction applicable to searching one multiplier in GLM. After establishing
the main result, attention is focused on bisection, linear intefpolation and
tangential approximation, The relative merit of tangentiﬁl approximation

‘is presented,

where § ig an n—dimensional, compact set and f anpd & are real-valued, contimnuous,
scalar functions on g, Each member of the family ig distinguished by the "resource
level," b, taken from the set of scalars that renders the associated program
feasible; which we denote '"B'. It should be noted that this oﬁe~constraint

problem may in fact he a subproblem embedded in a relaxation scheme for a more

general case. For example, a multiplier vector may be searched cyclically,

Or we may be solving a surrogate program.

The Generalized Lagrange Multiplier Method {GILM) considers the Lagrangian duai,
Min L*(y) + yb: y z 0, |
where
£ .
L¥(y)= Max {£(x) ~ yg(x): x in 53
To avoid lengihy review of GLM, we shall assume knowledge of the underlying

concepts. (See, for example, references 2,3,4 and 7 for an introduction and

references 1, 5, and 6 for further results.) Terms such as "gap'" and

"PR Space" are defined in Everett's (3) pioneering paper.




approximation of the Lagrangian dual leads to linear interpolation, and one
may consider variations of this scheme. We shall further consider each of thesge

methods after establishing our main result in the next sectijiomn,

We define / L N\
f%(b)= Max {}(x) *g(x) =b and x in %5,
and we note the weak duality relation (1,6):

£40) £143) 4 yb  for all vy £ 0 and b in B,

INTERVAL REDUCTION

Let us sﬁppose, at a general iteration, we have two triples, namely
(Y0, BO, F0) and (¥r, B1, FI), |
where
(1) BO<b<BT
(2) Fo= £*(B0) and FI= £%(B1)
(3) L*(v0) = Fo- BO*YO and L*(YI) = F[ - B1*Y1,
.ColleCtively, these éonditions rean that we have computed L* for y= YO and Y1 and
obtained a Lagrange-maximal policy yielding the PR points (BO, F0Q) and (B1, Fi),

respectively. The value of b distinguishes the problem we wish to solve,

Theorem (3) implies.

if b>b, then y*< y and if b<.b, then y*> y,

where y* is a minimal multiplier, (Of course, if b=b, then we terminate with no
. gap.)
We shall suppose we start with

YO > y* >YI.




If we select any multiplier in the open interval (Yr, Y0}, then the generated

PR point (b, £%(b)) satisfies

This means we can reduce the interval of Search on y at each iteration, and

we are led to the following

INTERVAL REDUCTION ALGORITEM MODEL

Given (Y0, Bo, F0) and (Y1, BIl, F1) satisfying (1)-(3) above and D=Y0~Y1, an
R [ A
update is made such that D is decreased until D = g,
I1. (select new multiplier)
Set y= M(Yo, BO, Fo, vi1, Bl, F1)
I2. (maximize Lagrangian)
Compute: (b,z) = (g(x), £(x)): L*(y) = £(x) - yg(x).

I3. (update state) _
If b>§,_set (Y1, B1, F1) = (y, b, z) and go to I4; elsg
if b&%, set (Y0, BO, Fo) = (v, b, 2) and 80 to I4; else,

set (Y0, Bo, F0) = (v1, B, F1) = (y, b, z) and sTop,
I4.  (test length)

Set D = Y0 - v1. 1f D €, grop, else, go to I1. - :

An Interval Reduction Algorithm (IRA) consists of spec1fy1ng the mult1p11er

selection rule, M. Since M is a functlonal » continuity, and other

Properties, may be described for it. We now Present the main result,

IRA Convergence Theorem:

YO > M( YO, BO, FO, v1, Bl, F1) »v1.

PROCF:

The state sequence (YOk , BOk . FOk R Ylk R Blk . Flk ) is: monotone, satisfying

(vo* , prk | gk ) 26, b, 5 0)) > 11k | ok | pok ).

[



K be a subsequence for which the update (step I3) satisfies

Yok = w(yok gk Fo*, v1¥, B1%, F15 ) for k in K;
and let Kl pe the complementary sequence where

M(¥0*, BOK, mok, 11k, Blk

It

y1ktl , mFk ) for k in Kl

Since M ig continuous, it follows that YO M( YO Boaa, deo, Yloo' Bl

2 s

«:ch o]

F1 ) =v1° » 80 the common limir ig y - This completes the proof.

A word of caution is in order. Note that we need not have B0 = B1~ In fact, if
PR . . 20 of o oo
b is in a duality gap, then, we know BI > BO® Actually, we can have Bl > BO even

when b is not in a duality gap. This is the case if f* jg concave, affine over

(b0, bl), where b0« bl, and f* is differentiabie at b0 and at bl. In this case

the multiplier converges to its correct value, namely
£* (bl) - £* (b0)
bl - b0

y*:

]

. o
However, a rule which would not finitely terminate for € = 0 results in B = bo

y* would generate all

i

and Bld3= bl. To see this, note that setting y

*

A

PR points of the form (b, £* (b)), where b0 = b = bl, Therefore, yk y

k s b0. Since f*

would generate bkﬂg bl and yk > y* would generate b
dlfferentlable b0 and bl have one multiplier apiece to generate them.
Therefore, if y generates b0 and bl, it must be the case that bk »>pB1 for

yk < y' and bk < b0 for yk > y*,

BISECTION, INTERPOLATION ARD TANGENTIAL APPROXIMATION

Let us now consider three particular multiplier selection ruies:
BISECTION: M = (Y0 + Y1)/2

LINFAR INTERPOLATION: M = a¥0 + (1-a) YL, where aB® + (1-a) BL = p (note: O<a<l)

TANGENTIAL APPROXIMATION: M= (F1 - F0)/ (Bl ~ BO)

BISECTION conservatively produces a constant rate of interval reduction, namely

pk+l - Dk/2, no matter where y* is located. The only state values used are

the two multipliers, YO and YI.



LINEAR INTERPOLATION is motivated by supposing that L* is quadratic over the

interval. TIts rate structure is then linear affine, so we pretend
b(¥)=py+q,

where b(y) is the resource level generated in step I2., Estimates of p and q may

be deduceq from knowing the associate subgradients, B0 aﬁd Bl. This pro~

duces the specified value of a.

TANGENTTAL APPROXIMATION exploits generated functional infqrmation in PR space.
The selection rule is an estimate of the slope, v%*, at E-by the ratic of change
in payoff to change in resource level. It is important to note that the PR values,
(BO, FO) and (Bl, Fl),are constructed to lie on the same Lagrangian contour for the
gelected multiplier - i.e,, FO - yBO = ¥1 - yBl. Therefore, either L¥*(y)>»F0 - yBO,
in which case the interval, (B0, Bl),is also reduced,ror else y = y* and we stop

with the gap interval, (BO, Bl).

It is clear that bisection and linear interpolétion need not converge
finitely for € = 0. (See example below.) However, tangential approximation ‘
must converge finitely if the decision space is finite. This follows from the
fact that continuation occurs only when the interval (Be, Bl) is

reduced. If the PR space is finite, we must eventually arrive at the gap

fegion (b0, bl) or generate b (if there is ﬁo gap}. Further, let us show a |
case where the decision space is not finite, yet tangential approximation
must still converge finitely, Specifically, consider b in the gap region
(b0, bl), and suppose f* is not differentiable at the end points, b0 and bl.
Then, since we have dual converence, we must eventually generéte b0 (with Y0

r

sufficiently close to y*) and bl (with Y1 sufficiently close to y*). Once

. . , . %
the end points are ‘generated, tangential approximation chooses ¥y at the
next iteration. Once this happens, b0 {or bl) is re—-generated, and the
Process terminates. A case where f* isg not differentiable at the end

points of a gap region is where there are adjacent gap regions., 1In this



sense, tangential approximation is "typically" finitely convergent for £=0,

while the other two methods are not.

Let us now show that using linear programming to search Lagrange multipliers

(2,6) reduces to tangential approximation in the case of one constraint.

Let us suppose the PR points,{(bt, ft-)}k ,have been generated, Re-index, if
t= )

t ; —
necessary, so that (b , ft) < (bt+1, fHHy . Note that bl<b<bk. The linear

programming method chooses yk+1 to be a dual solution of:

k
Maximize § .  ftC H
- t
=1
k
(1) w> gand ¢ v, =1
- t=1
k
@ 5 w, bt 2 b.
t=1

The dual {ig:

Minimize z + yh:

0

v

1) ¥y

@ z+yt 2 fort=1, ...,k

Define r such that

Then, we shall show the dual solution is
fr+l _ fr .
br+l _

y:
br

which is the tangential approximation rule.

Choosing

z = Max {f° - ybt}k
1



makes (y,z) feasible in the dual,

Define
W r+l

=b - b
r = — H

' = b - bt
“%+1 -
'br'l‘l " br

Wt =0 fo; tér,r+l.

Clearly, w is feasible in the primal. Now we shall show that the primal

and dual objective values are equal.

We have

and

br"'l_ br
Therefore, our task is to show

e R Y pTEL L (fTH L pnyg

Equivalently, we must show
z (br+l_ bT) = glprtl | prl BE.
Suppose
z = P - ypP,
Then, we must show
G by P (L ey P vl IRALIN
It suffices to show P=Troryr +1, since then the above equation holds.

(Note that z represents the Lagrangian contour value.)



Since (br,fr) and (br+1, fr+l) were generated PR points, there are multiplier
values, say yr and y'?+{ such that

>
THL ol or = fF o gyt

>
£ -yt bt = gt LTt -y

for all t=1,,...,k. Therefore,

- bt S T (o) o - by,

£
Since y » yr, and since bt < pT for t < r, it follows that
ft - ybt < fF - ybr for £ < r.
Similarly, for t » r+l’we have

t t < _r+l +1 ' it
gbogpt £ ¢ —ybr _ (Yr+1“y) (br+l__ %)

Hence, z = fr--ybr = fr+l-yb » which completes the proof.

Now let us compare these three methods, each of which satisfies the conditions

¢ in the IRA Convergence Theorem. First, let us analyze the following

o 2
exampie: Maximize 2 Xq + X, + Xq

it
~

<
(1) X +x 4+ x
1 2 3
2) =x=0,1
x=10,1, 2, 3

3
Tables I, II, and ITI below list the state sequences generated for each of

the three methods.



TABLE TI: State Sequence for BISECTION

Multipliers Resources . Payoffs GLM

Y1 Y0 Bl 30 Fl___FO Bound
0 10 6 0 33 0 | 33
0 5 6 3 33 27 32
0 2.5 6 3 33 27 29.5
1.25 2,5 6 3 33 27 29.5
1.875 2.5 6 3 33 27 29.5

. v * *
»

TABLE II: State Sequence for LINEAR INTERPOLATION

Multipliers Resources Payoffs ' GLM

YI YO Bl BO L Fo Bound

0 10 6 0 33 0 33

0  6.667 6 3 _ 33 27 33

0 4.444 6 3 33 27 33

0 2.96 6 3 33 27 32,92
1.9734 2,96 6 3 33 27 29.0532

. °

TABLE III: State Sequence for TANGENTIAL APPROXIMATION

Multipliers " Resources Payoffs GLM
Y1 Y0 BL B0 FL__ 0 Bound
0 10 6 0 33 0 33

0 5.5 . 6 3 33 27 32.5

2 2 5,6 3,4 27,28 31,33 29

We note that Tangential Approximation converges finitely fore = 0, while the other
* .
two do not. This affects the CIM bound (L"(y) + yb) since it is strongest at the

minimal multiplier. (It happens, in this example, that there is no gap, and an
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optimal policy is x" = (1,0,3), corresponding to the PR point, (4,33).)

To further analyze the relative behavior of these three methods let us simplify
the program to where

g(x) =EE;.

and S= {x: 0

e

b, x integer } . Then, we start with

(13 L
8

X

YO= YMAX, BO = 0, FO = 0
Yl= 0, Bl = nb, F1 = L*(0) = FMAX ,

where YMAX is sufficiently large to produce x* = 0 as the Lagrangian maximum.

At the first iteration we have
BISECTION: y, = YMAX/2
LINEAR INTERPOLATION: y;, = YMAX (1 - 1/n)
TANGENTIAL APPROXIMATION: Yy = FMAX/n b.
Note these satisfy
Y€ yp< v »

and Figure 1 illustrates these choices.



8Uaa'ra,'ffc )Ca"t

S{ape :‘z(l'h} w"“) ) . P : :
O S . S
o' :137 B 9 \HMAX MUH)‘IP ew
' (\J
3

%
[}

FIGURE 1: GRAPHICAL SKETCH OF FIRST ITERATION
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It seems clear that ] inear interpolation is slow, at least in the beginning.
Moreover, finite problems produce a piece-wise linear Lagrangian, so quadratic

approximation does seem inappropriate.

7 Normally, tangentential approximation captures the structure to produce rapid
convergence, which is finite for finite decision spaces, and it is typically finite
for nonfinite decision spaces when gaps are present. (To see this last point refer
to the previous discussion whem £* is not differentiable at the end polnts of the
gap region,) However, if £* has a "long tail/" then bisection can be helpful,
particularly to overcome computed errors due to small multlpller values, i.e.,

small changes in payoff to large changes in resource values.

To further justify the relative merit of tangential approximation, and to
indicate speed of convergence, a collection of problems were run {on an IBM

370/158), using the number of variables as a parameter, and problems of

the following form:

n
Maximize % : fj(x_) :

i=1 J

Ji

<

21 X =10 % n ;
j=17

x eéo, 1, ...,20} for §=1, ..., n,

where fj (0) = 0 and fj (x+l)>'fj (x) for all j, x.

Running 20 monte carlos per case, the objective function was generated as follows.
Given fj(x), (starting with fj(O) = 0), fj(x+l) is computed by
fj (x+1) = £ (x) + 100*R,
J

where R is a uniform random number (between 0 and 1).

Each of the three multiplier rules were run simultaneously until tangential

approximation terminated with the final state values. The average and maximum

number of iterations for the 20 monte carlo runs are given in the table below for thef
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four cases, n=100,200,300,400. To measure relative effectiveness of tangential

approximation two averages are tabulated, namely

(1) gap size, B1-BO, where
BI = Min {b: »'
BO = Max {bt: bt £

I

ol ol

It

where t is iteration number, and bt is the associated

generated resource level;

(2) relative muitiplier error, (YO-Y1)/y*, where YO corresponds
to BO, Y1 corresponds to Bl and y* is the minimal multiplier

(found by tangential approximation).

yﬁ and the least gap range, BI1-BO (as well as the strongest GIM bound).

We sée that for linear interpolation and bisection the multiplier value tends
to be within 10% of the optimumﬁwithin 1% for larger problemql Therefore, all
three procedures appear nearly equal in effectiveness 1f only the multiplier
value is needed. However, the gap size is markedly greater for linear inter-
polation and bisection compared to the actual gap size found by tangential
approximation! This would affect the ability to obtain a "good" feasible
solution,as for example by starting at the feasible policy associated with BO
and heuristically increasing some of the activity levels to increase the ob-

jective value towards the QIM bound. (See (5) or (6) for more on gap closing.)

In summary, a general interval reduction algorithm has been Presented with a
convergence proof that only assumesg continuity and a bound on the nonexpansive‘
range of the selection rule, Three procedures which satisfy these assumptions
are bisection, linear interpolation and tangential appréximation. For finite

decision spaces tangential approximation converges finitely, while the other
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two procedures do not (in general). Further, an empirical study revealed
that, although the multiplier value may be sufficiently close to its optimal
value, the generated resource levels do not converge as quickly to bounding
points (for example, end points of the gap region). This results in a

less effective policy from which branch and search may be used to resolve the

gap, or at least obtain a "good" solution.

3
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