Technical Report CS74017-R

A NOTE ON LEDGARD'S MINILANGUAGE 2
AND

A PROPOSAL FOR AN ALTERNATIVE

John A. N. Lee*

October 1974
*Professor of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, Virginia



Abstract:

This note reviews and discusses the concepts of assignment statements

which occur within programming languages and as exemplified by Minilanguage
2 by Ledgard [3]. Observing that the description of assignment by

Ledgard depends on the existence of a nominative addressing scheme, an
alternative vignette of language is proposed which is based on type
directed addressing systems,

This report reflects research which was supported in part by the National
Science Foundation, project number 74-294-03.

Key Words: Programming Language, Minilanguages, language design,
compiler design, formal definition, semantics, assignment,
addressing systems, nominative addressing, type directed
addressing.

CR categories! 1.3, 1.52, 4,10, 4.22, 4.9




INTRODUCTION

With two exceptions, the description of 10 minilanguages by
Ledgard [3] was achieved without reference to any particular set of
machine dependent concepts or implementation schema. This is notable
when viewed in the light of how languages have been influenced by
architecture and conversely how languages can force applications imple-
mentations to be severely influenced by their underlying structure.
The two exceptions are minilanguage 8 (Data Structures) and minilanguage
2 (Generalized Assignment). In the former Ledgard prescribed an informa-
tion structure model which unfortunately severely limits the wider con-
ceptual aspects of the language. That is, to assume that the components
of any data structure are ordered leads to a lack of equivalence classes
which would be highly desirable. The topic itself is worthy of another
note.,

Minilanguaze 2 zszsumes (though does not explicitly require) a
nominative [1l] addressing structure in the underlving machine. That
ig, in the addressing cycle the attributes of the logically sequential
data element are specified in the logical predecessor rather than being
directly associated with the element itself. Thus Indirect addressing

is typically accomplished by the specification that the next logical



element contains an address which is to be used to locate the next data

element. Even compound indivection, such as typified by the ML2? statement:

PHyAr=41B,

is nominative in implementation. If the following environment exists:

associated
identifier value
A B
B C
C D
D E

then the above ML2 statement evaluates to the equivalent assignment

statement:

De='E!

Even permitting the use of ‘ndirection over literals such that

H'xt o= ox,

the nominative system of addressing is consistent.
Alternatively, we must consider an equivalent language over the
environment of a type directed storage system [2] in which each datsa

element carries a tag to indicate address or data (literal),




THE LANGUAGE

In a type directed system, a feteh cycle is to result in the
retrieval of a data element; if the tag indicates 'data' the fetch
cycle is complete and the element is passed to its destination; if
the tag indicates 'address' then the fetch cycle is repeated using that
address as a new operand.

Similarly in a &tore cycle (operating over an operand address and a
value to be stored) the determination of the address of the cell which
is to receive the specified value is completed when the operand references
a cell containing a data element.

The primitives of the minilanguage in this enviromment are:

literals ‘At, 'B', 'C, ..., 2
pointers GA, @B, @BC, ..., @7
identifiers A, B, C, ..., 7

An assignment statement ig composed of a string of the form:

where e, is a left hand side expression which is an identifier and €,
is a right hand side expression which may be a literal, a pointer, or
an identifier., The execution of an assignment statement ig expressed by

the following functions:




exrecute (ej,egf =
8tore (evaZ—Zhs(elJ, evaZ-rhs(eg))
eval-lhs(e) =
is—ZiteraZ(féteh(e)) > e
T+ eval-ihs (fetch(e))
eval-rhs(e) =
te-literal(e) » o
Le-pointer(e) + e
T » feteh(e)
fetch(e) =
te~literal(e) » ¢

Le=pointer(e) > feteh(e)

The function etope (id,v) operates over the enviromment to associate the
value v with the identifier 4.

A program in ML2.5 isg composed of g Sequence of assignment State~
ments which are to he eXecuted in sequantial order over an environment

%
which is initially empty.

Examples:
1) X :='ar 2) X := 'Ar
Y = @x Y o= 'B*
X := 'B! = @
Z =Y Y 1= @7
Z:=7

®
In a host System, this initjal environment may be modified to he
that of the host system,



3) X := @A 4) X = @A
Y 1= @X Y = @X
L := @Y Z := @Y
A = @7 A =0z
W= A Y = 'A'

After executing the program in example 1, cell X will contain the
literal 'B', Y will point to cell X and 7, through reference to Y, will
contain the literal 'B'.

In example 2 after the execution of the first four statements cell X
contains 'A' and 7 contains a pointer to cell X. Thus the execurion of
the assignment statement 7 := 7 will fetch the value 'A' from the cell X
by indirection through 7 and deposit that value into cell X.*

Example 3 shows that cyclic addressing is possible and that a
right hand side reference to an element of the cycle results 1in a non-
terminating fetch cycle. Similarly example 4 contains the same cycle which
is not broken by assignment of a literal to any element of the cycle. Con-
versely in the original minilanguage 2 may contain apparent cycles but
since the number of feteh cycles is explicitly specified in the language

(e.g., ++¢B) the feteh cycle terminates.

DISCUSSION

Examination of ML2.5 will reveal two disjoint sets of objects;
literals and pointers. Further, examination of the eval-rhs function
will reveal that the context of a pointer determines its influence on
the interpreter over the language; on the right hand side of an assign-

ment statement a pointer is an object to be assigned to the location

* That is, statements of the form Z:=7 are consistently "do nothing"statements.



associated with the evaluation of the left hand side. As the contents

of a cell, a pointer initiates that at least a further Feteh cycle ig
necessary in the retrieval of data from the storage system,
Wegner [4] has pointed out that the model of the association of gz

value Y;s 8 cell, a cell name n; and an identifier 44 is represented by

the diagram:
id

possesses

denotes X
cell name - =% Bcell named
" T~ "1
~ Py
~ G'fe .
s containg
\to
e
e
S~
4 @ Value
7.
'

in thisg language there exists a further

branch on thig tree

which terminates at the identifier (7d) and originates at a pointer
(ptr-id). Whilst this language assumes a unique relationship from an
identifier through the cell name and the cell, to a value, it must also

assume that there exists only one ‘points to! relationship. However the

pointer value may be contained in many cells.



ptr-id Zd
.._ T e e .
points to
possesses
cell name l denotes . ac2ll named
n. > 44'? n.
7 . 7
~
~
e
Y contains
NE&
Q
N
T
’
"Value
V.
7

This same extended relationship exists in Ledgard's Minilanguage 3
(Generalized Transfer of Control}.

Whilst the majority of implemented addressing schemes are nominative
in nature, the_IBM 1620 system had a mixed scheme. Once having specified
indirection, by the flag over the low order digit of the address field,
the fetch cycle was repeated until the selected address field c¢ontained
a direct (unflagged) address. One more feteh then completed the cycle to

obtain a data value.




Acknowledgment

The author wishes to acknowledge the constructive comments of
H. Ledgard, the author of the original paper on minilanguages, and for
his encouragement to offer this alternative to his minilanguage 2.




References
———=tences

(1] Foster, ¢. (. Architectg Sketeh Pad:

Symmetry of Addressing
Modes. Computer Architecture News, SIGARCH, ACM, Vol. 1
No. 1, January 1972,

[2] Iliffe, J. g, Basi

¢ Machine Principles,
Mbnographs,

MacDonald Computer
America Elsevier Pub. Co

-s New York, 1968,

[3] Ledgard, H, F.

Ten Minilanguages:
Programming

A Study of Topical Issues in
Languages,

Computing Surveys, Vol. 3, Sept. 19771.

[4] Wegner, P. The Vienna Definit

ion Language,
Vol. 4, No. 2, June 1977,

Computing Surveys,



