
Integration of Heterogeneous Digital Libraries with
Semi-automatic Mapping and Browsing: From
Formalization to Specification to Visualization

Rao Shen1, Naga Srinivas Vemuri1, Ananth Raghavan1, Marcos André Gonçalves2, Divya
Rangarajan1, Weiguo Fan1, Edward A. Fox1

1Digital Library Research Laboratory
Virginia Tech

 Blacksburg, Virginia USA 24061

2Department of Computer Science
Federal University of Minas Gerais

Belo Horizonte – MB Brazil 31270-901

{rshen, nvemuri, ananthr, mgoncalv, divyar, wfan, fox}@vt.edu

ABSTRACT
In this paper, we formalize the digital library (DL) integration
problem and propose an overall approach based on the 5S
framework. We apply 5S to domain-specific (archaeological)
DLs, illustrating our solutions for key problems in DL integration.
We use ETANA-DL as a case study to describe the process of
semi-automatically generating a union catalog and a unified
browsing service in an archaeological DL. A visual schema
mapping tool is developed for union catalog creation. A pilot user
study aids tool evaluation. Our approach is further validated
through application of a general browsing component to two
integrated DLs.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Libraries

General Terms
Design, Theory, Experimentation

Keywords
Integration, Interoperability, 5S Theory, Schema Mapping,
Visualization, Browsing Component

1. INTRODUCTION
Digital Libraries (DLs) are transforming research, scholarship,
and education. DL research challenges exist at both the
fundamental technology level and at the large-scale integration
level. A decade of government and private funding of DL
research projects has led to important results at the fundamental
technology level. Successes with large-scale integration are
arguably less evident [17]. Even the notion of “DL integration” is
ambiguous in the sense that different approaches and proposed

solutions exist. Work on DL integration focuses mostly on three
issues [12]:

1) Distribution: e.g., geographical distribution of DL data;

2) Heterogeneity: differences at both the technical level
(e.g., hardware platform, operating system, programming
language, etc.), and the conceptual level (e.g., different
understanding and modeling of the same real-world entities);

3) Autonomy: the extent to which the components are self-
sufficient or operate as components in a larger hierarchy.

By “DL integration” we mean hiding distribution and
heterogeneity, while at the same time enabling and making visible
component autonomy (at least to some degree).

Many DLs belonging to different autonomous organizations were
developed independently without thought of open and easy
automated access to their data and functionality. The inability to
seamlessly and transparently access knowledge across DLs is a
major impediment to knowledge sharing. Hence, a goal of DL
integration is to provide unified knowledge from island-DLs.

Challenges to DL integration are a direct result of DL
characteristics. DLs are complex information systems due to their
inherently interdisciplinary nature, both with regard to application
domains and technologies involved in building the systems.
Concerning the latter, we must integrate findings from disciplines
such as hypertext, information retrieval, multimedia services,
database management, and human-computer interaction [7].
Hence, an integrative theory for DL is needed; [10] summarizes
key early work on the 5S framework and our theory for DLs.

Interoperability is the most important issue when integrating
heterogeneous DLs [1, 25, 30]. Since DL interoperability has
many dimensions [25, 26] and has been the subject of many
initiatives, the needs for DL integration are well known.
Therefore, there are many opportunities to contribute. While
numerous efforts have looked into the issues of interoperability
amongst heterogeneous DLs, most developed their own
approaches in an ad hoc and piecemeal fashion. This paper
formalizes the DL integration problem and proposes an overall
approach based on the 5S framework [10]. We then apply our
framework to integrate domain-specific (archaeological) DLs,
illustrating our solutions for key problems in DL integration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section 2 describes related work. Section 3 formalizes the DL
integration problem. Section 4 presents our overall approach.
Section 5 discusses how to generate a union catalog and
integrated browsing service using our proposed approach for an
integrated domain–specific DL in the field of archaeology.
Section 6 concludes the discussion.

2. RELATED WORK
Related work concerning DL interoperability is summarized in a
concept map (Figure 1). The two main approaches to
interoperability are the intermediary-based and the mapping-
based approach [27], which are both interrelated. The former
depends on the use of intermediary mechanisms such as
mediators, wrappers, agents, and ontologies. The mapping-based
approach attempts to construct mappings between semantically
related information sources. It is usually accomplished by
constructing a global schema and by establishing mappings
between the global schema and the local schemas. Approaches
based on intermediaries may rely on mapping knowledge,
domain-specific knowledge, or rules established by mapping-
based approaches.

Information System interoperability approach

intermediary-based mapping-based

Consists of

intermediary-based mapping-based

Consists of

mediator wrapper agent

use

mediator wrapper agentmediator wrapper agent

use

two architectures

federation union archiving

used in

Consists of

two architectures

federation union archivingfederation union archiving

used in

Consists of

hybrid mapper composite mapper

use

hybrid mapper composite mapperhybrid mapper composite mapper

use

schema mapping

use

schema mappingschema mapping

use

SemInt

has an example

SemInt

has an example

LSD

has an example

LSD

has an example

Interrelated withInterrelated with

Figure 1. A concept map for related work

Within the intermediary-based approach are two architectures to
deal with integration: federation and union archiving. Federation
involves DLs sending search criteria to multiple remote
repositories (e.g., using Z39.50 [21]). Results are gathered,
combined, and presented. Federation is a more expensive mode of
operation in terms of network and search system constraints; each
repository has to support a complex search language and fast real-
time response to queries. Union archiving involves gathering or
harvesting data from sources and loading into a centralized data
store. There are several schemes for harvesting data from
heterogeneous sites, such as Harvest [2], OAI (Open Archives
Initiative) [18], and SRU (Search/Retrieve URL Service) [22].

Other efforts that have explored interoperability amongst
heterogeneous DLs include Dienst [3], InfoBus [24], and NDLTD
[6]. Dienst, underlying the original NCSTRL (Networked
Computer Science Technical Reference Library), provides for
communications with services in a distributed DL. InfoBus is
based on a hardware bus metaphor and was implemented with
CORBA distributed object technology. It employed federation
and high-level descriptions for mapping between different
metadata standards. Humans developed mappings between
metadata attributes of these standards. NDLTD provided semantic
interoperability by adapting MARIAN [11] as mediation
middleware. The MARIAN object-oriented data model is based

on a semantic network of explicit nodes and links organized into a
hierarchy of classes. This helps to join diverse harvested data into
a single collection view for the user.

Schema mapping is typically performed manually – a tedious,
time-consuming, error-prone, and expensive process. This led to
aids to automate the process, such as Microsoft BizTalk Schema
Mapper (http://www.microsoft.com/biztalk/) and Altova
Mapforce (http://www.altova.com/products_mapforce.html).
While fully automating the mapping process, to automatically
generate wrappers, is generally infeasible, it is possible to
partially automate the process, reducing human effort. A hybrid
mapper uses multiple mapping criteria. Composite mappers are
more flexible, combining multiple mapping results produced by
different algorithms, including hybrid mappers [29]. A hybrid
mapper typically uses a hard-wired combination of particular
techniques that are executed simultaneously or in a fixed order.
However, a composite mapper allows selection from a repository
of modular mappers, and can extend the system when additional
mappers are needed. SemInt [20] uses a hybrid mapper, and LSD
[4] develops a composite mapper. In a future paper we will
describe our approach to composite mapping, based on machine
learning.

While many research projects developed semantic mediators and
wrappers to address interoperability [23, 31, 43], few tackled the
problem of (partially) automating production of these mediators
and wrappers (which contain specific domain knowledge, such as
mappings between source schema and the integrated schema). We
develop a visual schema mapping tool within a formal framework
to semi-automate schema mapping.

3. PROBLEM FORMALIZATION
Formalizing DL integration facilitates the development,
comparison, and evaluation of solutions; makes clear to users
what a solution means; and helps users evaluate the applicability
of a solution. Furthermore, it allows us to leverage special-
purpose techniques for the DL integration process. In this section,
we first define inputs to the DL integration problem based on the
5S framework [10], and then explain the meaning of the output.

Notation: Let DL1, DL2, …, DLi, …, DLn be n independent digital
libraries; let Idi be a unique identifier of DLi; let Cij be the j-th
collection of DLi; let Ci = Cm

j 1=U ij, where m is the total number of

collections of DLi; let UnionC = Cn
i 1=U i be a union collection of

the n DLs; let H be a set of universally unique handles.

Following [10] we have DLi=(Ri, DMi, Servi, Soci), where Ri is a
network accessible repository, supporting some type of harvesting
protocol to expose its metadata; DMi is a set of metadata catalogs
for Ci; Servi is a set of services, and Soci is a society.

• Definition 1: A Union Repository (UnionRep) of the n DLs
is a DL repository ([10]) with a getDL_Id function:
UnionRep = (CollSet, getDL_Id, get, store, del), where
1) CollSet 2⊆ {UnionC} ;

2) getDL_Id: UnionC {Id→ 1, Id2, …, Idi, …, Idn} maps a
digital object do to the DL it belongs to.
3) get: H UnionC maps a handle h to do=get(h); →

http://www.microsoft.com/biztalk/
http://www.altova.com/products_mapforce.html

4) store: UnionC × CollSet → CollSet maps (do,) to the

augmented collection {do} ;

~
C

U
~
C

5) del: H × CollSet Collset maps (h,) to the smaller

collection -{get(h)};

→
~
C

~
C

• Definition 2: A Union Catalog UnionCat =DMUnionC is a
metadata catalog for UnionC.

• Definition 3: Minimal Union Services (MinUnionServ) =
{harvesting, mapping} (). The harvesting
service provides a mechanism to gather metadata from DL

U i
n
i Serv1=U

i;
the mapping service supports transforming information
organized by local schema to information structured
according to the global schema. The harvesting service is
formally defined in [9]; the mapping is defined as follows
(see definitions 4-7):

• Definition 4: A schema is a structure ([10]) with a domain D
of data types (e.g., strings, numbers, dates, etc.). schema =
((V, E), L, F, D, M), where (V, E) is a graph with vertex set V
and edge set E, L is a set of label values, F is a labeling
function F: (V E) → L, and M is a function M: V →D. U

• Definition 5: Given a schema ((V, E), L, F, D, M), its
element set = {(v, F(v))} {(e, F(e))}. U

• Definition 6: 1-1 mapping
Let S and T be two element sets, of S_Schema and
T_Schema, respectively. 1-1 mapping is a function: M1-1:
S×T → Sim, where Sim, 0 ≤ sim ≤ 1. A tuple (s, t,
sim) indicates element s of S is similar to element t of T with
confidence score sim. The higher a confidence score, the
more semantically similar are s and t.

∈∀sim

• Definition 7: complex mapping
Let S and T be two element sets, of S_Schema and
T_Schema, respectively; let O be a set of operators that can
be applied to elements of S and T according to a set of rules
R to construct formulas; and let Formus and Formut be two
sets of formulas constructed from the elements of S and T,
using O. Complex mapping is a function: Mn-n: (S FormuU s)
× (TU Formut) → Sim, where ∈∀sim Sim, 0 ≤ sim ≤ 1.

• Definition 8: A Union Society UnionSoc = n
n
i Soc1=U

• Definition 9: A Minimal Union Digital Library integrated
from n DLs (see start of Section 3) is given as a four-tuple:
MinUnionDL=(Runion, DMunion, Serunion, Socunion), where
Runion, DMunion, Serunion, Socunion are Union Repository, Union
Catalog, Minimal Union Services, and Union Society. A
Union DL is a superset of a MinUnionDL. “Integrated DL”
and “Union DL” will be used interchangeably in this paper.

• Definition 10: DL Integration Problem Definition
Given n individual digital libraries (DL1, DL2, …, DLn), each
defined as described above, to integrate the n DLs is to
create a Union DL.

4. APPROACH
4.1 Architecture of Integrated DL
As above (definition 9), an integrated DL is a 4-tuple consisting
of a union repository, a union catalog, union services, and a union
society. There are three popular integration architectures to deal
with regarding the first two components of the definition, namely:
1) a centralized union catalog along with a centralized union
repository; 2) a centralized union catalog for a decentralized
union repository; and 3) a middle ground between the above two
extremes of the spectrum, i.e., a centralized union catalog with a
partially centralized union repository.

Decision on the architecture to be used to develop an integrated
DL is based on 1) what contents (metadata, digital objects, or
both) the DLs to be integrated would like to share; and 2) what
the integrated DL wants to harvest. The former relates to
copyrights and publication rights. The latter may consider issues
such as scalability, consistency, and preservation.

Having both a centralized union catalog and a centralized union
repository in an integrated DL can guarantee adequate
performance at information seeking time. No burden is placed on
the remote DLs to retrieve results. Storing digital objects in the
integrated DL redundantly can help preservation. However,
delivery of the most current information to users cannot always be
guaranteed. Changes to the metadata and digital objects by the
individual DLs need to be propagated to the integrated DL.

Assumed for a decentralized union repository is that the metadata
contains links for concrete realization of digital objects. Its main
disadvantage is that retrieval of digital objects relies on remote
DLs. CITIDEL [28] is a DL that has a centralized catalog and
decentralized repository; sustainability of the centralized portion
of such a system also can be a challenge.

A partially decentralized union repository may store the digital
objects that will not be changed frequently. The architecture of
ETANA-DL [32-34] consists of a centralized catalog and partially
decentralized repository.

Repository1

DL1

Repository2

Union
Catalog

Union
Repository

Catalog1 Catalog2

Searching

Union DL DL2

/ ☺
archaeologists

Society
/ ☺

archaeologists
/ ☺/ ☺

archaeologists

Society
☺ /

General Public

Society
☺ /

General Public
☺ /☺ /

General Public

Society
☺ ☺ ☺ ☺

Archaeologists
General Public

Union Society

☺ ☺ ☺ ☺
Archaeologists
General Public

Union Society

Service
Browsing
Service

Union Services

Harvesting, Mapping,
Searching, Browsing,

Clustering, Visualization

Figure 2. Architecture of a Union DL

Figure 2 shows the architecture of a union DL (with centralized
catalog and repository) integrated from two DLs. To create a
centralized catalog, the union DL must provide a harvesting
service and a mapping service. Beside these two, the integrated
union DL must provide all the services supported by the two DLs
(i.e., searching and browsing), and other services (i.e., clustering

and visualization). The visualization service integrates searching,
browsing, and clustering. CitiViz [14] is an example of such an
integrated service. It provides a visual interface to CITIDEL.
Search results can be either clustered according to inter-document
similarity or classified by predefined classes. Grouped documents
are displayed in several ways to help browsing.

The union services illustrated in Figure 2 satisfy users of the two
DLs, i.e., archaeologists and the general public. The user society
in the integrated DL is a union of the users of the two DLs.

5SGraph
5S Archaeology

MetaModel
ArchDL Expert ArchDL Designer

VN Metadata Format

ETANA-DL Metadata Format

Mapping Tool

Wrapper4VN Wrapper4HD

HD Metadata Format

Inverted Files

Services DB

Index

In
dex

Browse
Service

Search
Service

Browse DB

Other
ETANA-DL

Services
W

eb Interface

XOAI

XOAI

VN
Catalog

VN
Catalog

Union
Catalog

Structure
Sub-modelScenario

Sub-model

Harvesting
description

Mapping
description

Browsing
description

…

5SGen
Component

Pool

Figure 3. Generation of an Integrated Archaeological DL

5. UNION DL GENERATION CASE STUDY
With a better understanding of Union DLs (integrated DLs), we
may use DL models based on the 5S framework to facilitate the
process of building high quality integrated DLs.

We use a union Archaeological DL (ArchDL), ETANA-DL [32-
34], as a case study. Figure 3 shows the process diagram for the
generation of an integrated archaeological DL. At the bottom of
Figure 3, a box with a dashed border describes the architecture of
ETANA-DL. The centralized union catalog is indexed in two
formats: as inverted files to provide Information Retrieval (IR)
services, and as relational database to provide DB-supported
services. The searching service uses the inverted files, whereas
the browse service uses the relational DB to provide the dynamic,
multidimensional browsing service. Future browsing and
searching services may use both IR and DB support infrastructure.
Other services may rely on geographic information system
solutions, custom DBs, and the indexed archaeological data in the
relational DB. Some of the services in the current ETANA-DL are
pre-existing ODL [37] components, which communicate with
each other and the web-interface using XOAI [36].

Though the current ETANA-DL prototype makes our ideas
understandable, our objective for next generation implementation
is to use the 5S framework and tools to cover the process of union
ArchDL generation, including requirements gathering, conceptual
modeling, rapid prototyping, and code generation. The 5SSuite
tool we are developing consists of 5SGraph [41, 42], 5SGen [15,
16], and the visual mapping tool described in Section 5.1.1. It

helps develop an integrated DL prototype as a proof-of-concept to
justify and evaluate our DL integration approach.

An ArchDL metamodel encoded in 5SL [8] is developed based on
its formal definition [35]. This metamodel is fed to the 5SGraph
modeling tool (Figure 3). The ArchDL designer interacts with the
5SGraph tool to model the ArchDLs to be integrated (Virtual
Nimirin (http://www.cwru.edu/affil/nimrin/menu/nimrin.htm) [5,
39], Halif DigMaster (http://www.cobb.msstate.edu/dig/lahav/)
[13]], etc.), and the union DL (i.e., ETANA-DL). Each resulting
ArchDL model contains a structure sub-model and a scenario sub-
model as well as the other three sub-models (i.e., stream, space,
and society sub-models). Metadata format is described in the
structure sub-model, whereas services are described in the
scenario sub-model. The mapping tool then semi-automatically
creates a wrapper for each individual ArchDL. Each wrapper
transforms the metadata catalog of its ArchDL to one conforming
to the union metadata format. The results are stored in the union
catalog. Section 5.1 describes the process to semi-automatically
generate a union catalog; Section 5.2 shows how to produce an
integrated browsing service.

5.1 Union Catalog Generation
Figure 4 shows how the metadata catalogs from two
archaeological DLs, Virtual Nimrin [5, 39] and Halif DigMaster
[13], are integrated into a union catalog.
Metadata catalogs from the two DLs are harvested by the Union
DL. Each DL catalog conforms to its own metadata format (local
schema), which is fed into the mapping tool together with the
global schema. Two wrappers are automatically generated to
transform the two catalogs conform to the global schema, for
storage in the union catalog.
Figures 3 and 4 show the mapping tool playing a key role in
catalog integration. Our visual schema mapping tool helps further
automate the mapping process, so users interact with the system
and provide feedback. It helps users find semantic relationships
between schemas, exploiting human vision and spatial cognition.

VN Metadata
Format

Global Metadata
Format

VN
Catalog

HD
Catalog

Union
Catalog
Union
Catalog

Mapping
Tool

Wrapper

Mapping
Tool

Wrapper

Mapping
Tool

Wrapper

Mapping
Tool

Wrapper

HD Metadata
Format

Virtual Nimrin
(VN)

Halif DigMaster
(HD)

Union ArchDL

Figure 4. Union metadata catalog generation

5.1.1 Visual Mapping Tool
The ETANA-DL combines data from excavation projects like
Nimrin, Umayri, and Lahav, about artifacts like Bones, Seeds,
and Figurines. It merges the data into a global repository. As these
archaeological collections may be stored in different formats,
merging them involves mapping diverse structures of data to form
a global representation encompassing all collections.

http://www.cwru.edu/affil/nimrin/menu/nimrin.htm
http://www.cobb.msstate.edu/dig/lahav/

The process of schema mapping in the first ETANA-DL
prototype was through code specific to each local schema, based
on writing a specific mapping component for every new
archaeological database to be integrated. Efficiency and
reusability were low. Visual schema mapping can be of great help
in such situations.
Schema mapping, so far, has been approached either from an
algorithmic point of view or a visualization point of view for
which commercial tools like MapForce
(http://altova.com/products_mapforce.html) and BizTalk Mapper
(http://microsoft.com/biztalk) are available. Clio [40] is another
tool that uses reasoning about queries to suggest mappings
between heterogeneous data sources and a target schema.
However, most of these tools use a cumbersome outline view to
display the hierarchical schemas. Through our visual mapping
tool Schema Mapper, we solve key problems associated with the
process of schema mapping by means of effective visualization of
the schemas as hyperbolic trees and by using visual feedback to
establish mapping relationships.
Hyperbolic trees provide context by laying out the hierarchy in a
uniform way on a hyperbolic plane and mapping this plane onto a
circular display region. The “fish eye” focus + context technique
supports visualizing and manipulating large hierarchies [19]. In
terms of navigation, studies have shown that hyperbolic trees help
people to locate information 62% faster as compared to standard
navigation methods [40]. Hyperbolic trees can be better by an
order of magnitude as compared to traditional tree representation
techniques, in terms of number of nodes displayed [41].

5.1.1.1 Visualization System Overview
The Graphical User Interface (GUI) serves as the main point of
interaction between the users and our tool. Figure 5 shows a
screenshot of the Schema Mapper GUI. The local and global
schemas are visualized as hyperbolic trees, respectively, on the
left and right. The hyperbolic tree representation has more
nodes on the screen than a linear tree representation used in
tools such as MapForce™. As each node in the hyperbolic tree
representation is quite small and cannot show the entire name
of the schema node it represents, the schema node name is
available as a tool tip on each node.
Mapped nodes are shown in purple to distinguish them from
unmapped ones. Further we use color to distinguish the root
node (yellow), the non-leaf nodes (orange), and the leaf nodes
(green). The color legend is shown in the bottom right hand
corner of the screen. Only the leaf nodes in an XML schema
contain data, hence only they can be mapped directly.
Therefore, we do not allow mapping of non-leaf nodes. Non-
leaf nodes can only be added as children of other nodes. The
nodes which are selected or recommended appear red in color.
The GUI contains a recommendation table, with a list of all the
recommended nodes for a selected local schema node. It also
contains a mapping table which contains a summary of all the
mappings in the current mapping session.
Through the GUI one can edit the global schema. This includes
deleting or renaming a node, or adding a sub-tree of the local
schema as a child of a node in the global schema. The user also
is given the capability to undo mappings between nodes. The
local schema is only to be mapped to the global schema, and so
cannot be edited. After mapping all the nodes, a user can save

the mappings through the Save menu option. This generates a
style sheet with the mappings made in the current session.

Figure 5: Screenshot of Schema Mapper

5.1.1.2 Architecture and Implementation
A key design consideration, for future scalability and
maintainability, was for the tool to be as componentized as
possible. Figure 6 illustrates Schema Mapper’s architecture.
The Visualization Component contains logic for generating
hyperbolic trees and the different coloring representations to
depict root, leaf, non-leaf, mapped, recommended, and
unmapped nodes. Currently, the component displays schemas
as hyperbolic trees. This representation scheme is extensible;
other visualization techniques can support customization.

The Recommendation Component helps during mapping by
recommending global schema nodes which are potential
matches for a particular local schema node. When the user
clicks on the local schema node to be mapped, the Component
applies a name-based matching algorithm to find a set of
potential matches (nodes) from the global schema. It returns
these nodes to the Visualization Component to show in an
appropriate manner. The Visualization Component highlights
these recommended nodes in a different color (red) and also
updates the recommendation table located in the middle of the
bottom panel to display all the recommended nodes. This
ensures that the user is aware of all the recommendations.
The user might choose one of these recommendations or a
totally different node to map to. Once the user selects a global
node, the two mapped nodes will change to purple, and the
names of the nodes just mapped will be added to the mapping
table located in the far left side of the bottom panel.
Mappings selected by a user are stored temporarily in a data
structure by the Mapping Component. After the user decides
to commit the mappings, the XML Generation Component is
called to generate the mapping style sheet. There are two main
generator parts:
1. XSLT Style Sheet Generator: When the user decides to
save the mappings, the XSLT Style Sheet Generator gets the

temporary data structure with the mappings. It parses through
the local and global schemas, and generates XSLT code that
indicates the mapping of the local schema nodes to the
appropriate global schema nodes. Once the style sheet has been
generated, this component calls the XML File Generation
Component to generate the output XML files.
2. XML File Generator: This takes in the Style Sheet and
local XML file and creates an Output XML file with data from
the local XML file, in the global XML format.
Schema Mapper is coded in Java. The hyperbolic tree library
source code is available for free academic use at sourceforge.net.

Visualization Component

Recommendation Component

Mapping Component

Database

XML Generation Component

Figure 6: Schema Mapper Architecture

5.1.1.3 Evaluation
A pilot study was conducted to test the usefulness of the tool,
especially with respect to visualization of the schemas as
hyperbolic trees. We designed tasks to test the usefulness of the
visual editing capabilities of Schema Mapper. Accordingly, the
pilot tester was assigned two tasks, and was asked to repeat the
same tasks on MapForce™, a commercial tool by Altova.
Task 1 required the user to map six nodes from a local schema to
the global schema. Task 2 required the user to add a sub-tree from
the local schema to the global schema and then do the mapping of
the same six nodes as in Task 1.

Quantitative Results: For comparison, we measured the time
taken to complete Task 1 using MapForce and using Schema
Mapper. Table 1 shows actual times. SchemaMapper consistently
outperformed MapForce in terms of task completion time. Also
the users found that using lines to join nodes for mapping in
MapForce was harder than clicking in Schema Mapper.
Another quantitative measure was the number of times users had
to scroll to find nodes in MapForce versus the number of times
they had to reorient the hyperbolic trees in Schema Mapper. Table
2 shows the comparison of counts required using MapForce and
Schema Mapper, respectively.

Table 1: Times for Benchmark Task 1 using MapForce and
Schema Mapper

User Time using
MapForce (seconds)

Time using Schema
Mapper (seconds)

1 4.22 1.53

2 3.13 1.25

3 1.38 1.25

4 3.48 2.00

5 1.45 1.22

Table 2: Comparison of number of scrolls and number of
reorient actions between MapForce and Schema Mapper

User Number of scrolls
using MapForce

Number of reorient actions
using Schema Mapper

1 16 5

2 0 3

3 12 2

4 10 3

5 10 2

Every user scrolled many more times in MapForce than they
reoriented the hyperbolic trees in Schema Mapper except for one
user (User 2). However, this user was not able to complete the
task and hence did not scroll at all in MapForce. This user
declared the task as complete after mapping only three out of the
six nodes required for Task 1 in both tools. Overall, the mapping
process took more time in MapForce than in Schema Mapper.
Thus, these quantitative results for Schema Mapper were positive.
Qualitative Results: All users strongly preferred the ability of
Schema Mapper to allow editing from within the same tool.
MapForce requires them to edit the schema using a different tool
and then come back and reopen the schema again to continue
mapping. Also, most users found the amount of scrolling involved
in finding nodes in MapForce annoying and preferred to use the
hyperbolic tree navigation technique offered by Schema Mapper.
Providing recommendations to the user proved to be very useful
and strongly preferred. Users saved time looking for nodes in the
global schema to map to by using the recommendations.
However, the quality of the recommendations themselves and the
mappings that result have yet to be evaluated.
A surprising result was that although until now hyperbolic trees
have never been used for the purpose of schema mapping, users
were not confused by the representation, perhaps because of the
color scheme used to distinguish between the various nodes.
One negative comment provided by some users was that although
the full name of a node in the hyperbolic tree was provided as a
tool tip, the truncated names displayed as node labels proved to be
a little confusing, which led to some mapping errors.
Some of the users suggested that we include the data type of the
schema nodes as tool tip information. One of the users also
suggested showing the reasoning behind the recommendation of
the nodes. This would lead to the user accepting the
recommendation with more confidence than otherwise. Other
suggestions included: being able to re-align the hyperbolic tree in
such a way that the maximum number of recommended nodes
could be seen in the global schema, and the ability to move nodes
within the global schema.
Overall, all of the users were very enthusiastic about Schema
Mapper and preferred Schema Mapper over MapForce for simple
one-to-one schema mapping purposes.

5.2 Union Service Generation
ETANA-DL supports many integrated DL services, though some
are not componentized, e.g., the multi-dimensional browsing
service. We are automating the generation of browsing services
by developing a component for our component pool. When a
browsing description specified in the scenario sub-model is fed
into 5SGen (Figure 3), using this powerful component we can
automatically generate a suitable browsing service.

5.2.1 Browsing Service
Open Digital Libraries (ODLs) [36] are built based on principles
and philosophies derived directly from the Open Archives
Initiative (OAI) [18]. Services for annotating, browsing,
recommending, and searching were developed as ODL
components, which could be plugged into open digital libraries.
Integrated digital libraries such as ETANA-DL [32-34] and
NDLTD [6] have been developed using these components.
Besides the ODL Browse component, related work that closely
resembles our approach in principle is Bainbridge et al.’s
metadata based classification browsing service for GreenStone
[2]. They developed an extensible and dynamically configurable
DL architecture which consists of a Receptionist module, and a
Browse service similar in spirit to that of the browse interface
module and the browsing engine in our browsing component.
Similarly, Sumner et al. [38] developed a programmatic interface
that uses dynamically generated components in constructing the
conceptual browsing interfaces for digital libraries.
Digital objects in ETANA-DL are various archaeological data,
e.g., figurine images, bone records, locus sheets, and site plans.
They are organized by different hierarchical structures (e.g.,
animal bone records are organized based on: sites where they
were excavated, temporal sequences, and animal names). By
navigational dimension, we mean a hierarchical structure used to
browse digital objects. Navigational dimensions of ETANA-DL
can be built from taxonomies existing in botany and zoology, or
from classification and description of artifacts by archaeologists.

The prior ODL browsing component doesn’t provide the
capability to navigate within a collection of digital objects
through multiple navigation dimensions such as topic,
geographical space, temporal sequence, etc. The prior browsing
implementation for ETANA-DL also does not support
incremental updates, i.e., whenever new digital objects are
harvested into the Union Catalog it needs to re-index all records.
Finally, that implementation is not extensible, i.e., it needs to be
modified whenever a new navigational dimension or hierarchical
structure is introduced. This is troublesome when integrating
multiple DLs, since each of them may support its own browsing
service and navigational dimensions, all of which need to be
supported in the integrated DL. To address these issues, we
designed a new automatic, extensible, and flexible browsing
component.

5.2.1.1 Architecture of the Browsing Component
Figure 7 illustrates the architecture of the new browsing
component. Its three main sub-components are the browsing
database maintenance module (for creation and updating of the
browsing database), the browsing engine, and the browsing
interface module. These last two support browsing interaction.

Browsing Database
Maintenance Module

Browsing Engine

Browsing Interface
Module

Union
Catalog

Browsing
Database

Taxonomies Browsing
Metamodel

Figure 7. Architecture of the Browsing component.

All the three processing modules work based on the input
provided by the browsing meta-model – an XML document that
encodes the details of all navigational dimensions. The browsing
meta-model of ETANA-DL can be viewed at
http://feathers.dlib.vt.edu/~etana/browse/etanabrowse.xml.. In this
case all hierarchical dimensions correspond to attributes of the
ETANA-DL objects.

5.2.1.2 Implementation
The browsing component automates the browsing service for any
integrated DL by using specific tailored meta-models, thus being
able to be reused by any DL. The browsing database maintenance
module is developed using Java, while the browsing engine and
the browsing interface module are developed using Java Servlets.
The browsing database is supported by a MySQL DBMS.
The browsing engine and the browsing interface module support
the browsing interaction task. From the digital library perspective,
in a browsing scenario, the end user makes two types of requests:
a navigational request and a display results request. The browsing
engine receives HTTP requests from the browsing interface
module and responds to those requests with XML results
corresponding to a navigational response or a display results
response. The navigational response gives a description of the
current navigation context, while the display results response
gives identifiers of all digital objects that can be reached from the
current navigation state, limited to the number of digital object
records that can be displayed in a results page. Either the
navigational request or the display results request received by the
browsing engine is automatically converted into a corresponding
SQL query and is queried on the browsing database. Each request
is associated with a parameter that encodes the type of request
being received. The rest of the parameters encode those values
selected by the user for each hierarchical level while navigating
through dimensions. These parameters are used to restrict the
selection of next lower level values for each dimension. If it is a
display results request, an additional parameter that encodes
number of records per page is used.
The browsing interface module uses an XSLT style sheet to
render the XML-based responses returned by the browsing engine
and presents that to the user. In the case of a display results
response, it provides a brief description of the DL object records
based on the identifiers returned by the browsing engine. If the

http://feathers.dlib.vt.edu/~etana/browse/etanabrowse.xml

returned records are of different object types, appropriate style-
sheets corresponding to those objects will be selected and applied
while displaying the results of the browsing.

temporalsequenceidobjectidspaceidetanaunionid temporalsequenceidobjectidspaceidetanaunionid

nameobjecttypeobjectid nameobjecttypeobjectid

chronologyperiodtemporalsequenceid chronologyperiodtemporalsequenceid

spacetable

idtable

objecttable

temporalsequencetable

locussubpartition containerpartitionsitespaceid locussubpartition containerpartitionsitespaceid

Figure 8. Browsing Database Relational Schema for the

ETANA-DL Generated by the Browsing Component

The browsing database maintenance module creates a browsing
database based on the browsing meta-model. It is responsible for
populating and updating the database. The ID table in the
database has a union ID that uniquely identifies a DL object as its
primary key, and a foreign key referencing the primary key of
each dimension from remaining attributes of the union table
(Figure 8). We introduced some redundancy into the database to
speed up the working of the browsing service. The populating and
updating tasks are performed with the help of XPath expressions
specified for each dimension present in the meta-model. Figure 8
gives the relational schema of the browsing database for ETANA-
DL as generated by the browsing database maintenance module.
There is a corresponding table for each of the dimensions: space,
object, and temporal sequence. Finally, there is an ID table
referencing the primary key of each dimension.

5.2.1.3 Testing, Experimentation, and Evaluation
To test the reusability and capability of the browsing component
to support browsing services for multiple integrated DLs, we
tested the component with two integrated DLs: ETANA-DL and
NDLTD. Browsing services for these two DLs are available at
http://feathers.dlib.vt.edu:8080/ETANA/servlet/BrowseInterface
and http://feathers.dlib.vt.edu:8080/ndltd/servlet/BrowseInterface.
The tables listed below illustrate the extent of the re-usability
achieved in current browsing component versions of ETANA-DL
and NDLTD. We use the software metric Lines of Code (LOC) in
analyzing the reusability of our browsing component. The row
Tailoring corresponds to the number of lines of (XML) code for
the metamodel. The row Non-componentized corresponds to the
number of lines used to implement the browsing interface module,
since it is currently not completely automated.

Table 1. Analysis of the reuse of the browsing component to
implement browsing services for ETANA-DL and NDLTD

using LOC metric

 ETANA-DL
(LOC)

NDLTD
(LOC)

Tailoring (Metamodel) 54 28

Non-Componentized (Interface) 156 159

Reused from Component 995 995

Total 1205 1182

% to reuse to implement service 82 84

With the help of the browsing component, we are able to
minimize the effort associated with building a multi-dimensional
browsing service. If a new dimension is introduced, or changes
are made regarding hierarchical levels of a dimension, only the
browsing meta-model has to edited, and the browsing database
maintenance module has to be re-run. Currently, incremental
updates are possible by calling an appropriate method in the
browsing database maintenance module. In our future work, the
database maintenance module will be extended, so it can
automatically perform the task of updating whenever there is a
modification in the union catalog; we are making efforts to
completely automate the browsing interface module. Also, the
scalability of the architecture in the presence of a large union
collection will be studied. Further, we plan to develop other
services, such as comparing DL objects in a domain independent
manner, with the help of similar meta-models.

5.2.1.4 Quality of Browsing
We propose “knowledge-gain” as an indicator for the quality
measurements of the integrated browsing service as follows.
Let BrowseS(DLi) be a local schema of a digital library DLi; let
BrowseS(UnionDL) be a global schema of a union digital library
UnionDL; let Path(DLi) and Path(UnionDL) be the number of all
possible navigation paths provided by DLi and UnionDL,
respectively. Then

knowledge-gainbrowse =

∑

∑

=

=

−

n

i
i

n

i
i

DLPath

DLPathUnionDLPath

1

1

)(

)()(

Example: Let DL1 and DL2 be two DLs supporting browsing of
representations of excavated animal bones (Figure 9). DL1 allows
browsing bones by site organization; DL2 allows browsing by
bone names. DLUnion, the integrated DL built from these two DLs,
supports browsing both by site organization and bone name. A
navigation path denoted as “AÆBÆC” means a user navigates
starting from A, through B, and ending with C.
The possible navigation paths for DL1 (by site organization) are:
• Site1;

• Site1ÆPartition;

• Site1ÆPartitionÆSub-partition;

• Site1ÆPartitionÆSub-partitionÆLocus;

• Site1ÆPartitionÆSub-partitionÆLocusÆContainer;

• Site1ÆPartitionÆSub-partitionÆLocusÆContainerÆArtifact;

Hence, Path(DL1) =6;
The possible navigation paths for DL2 (by bone name) are:

http://feathers.dlib.vt.edu:8080/ETANA/servlet/BrowseInterface
http://feathers.dlib.vt.edu:8080/ndltd/servlet/BrowseInterface

• Bone;

• BoneÆBoneName;

Hence, Path(DL2) =2.
The possible navigation paths for DLUnion are:

• All the possible navigation paths of browsing animal bones
excavated from Site1 and Site2 by site organization;

• All the possible navigation paths of browsing by bone name;

• All the possible navigation paths of browsing by both site
organization and bone name, e.g.,
Site1ÆBoneName; Site1ÆPartition ÆBoneName; …

Hence, Path(DLUnion)=(6+6+2)+4*6*2=62, therefore,
knowledge-gainbrowse = (62-(6+2))/(6+2) = 6.75

Path(DL1)=6

Site1 *Sub-partition *Container *Artifact*Locus*PartitionSite1 *Sub-partition *Container *Artifact*Locus*Partition

Path(DL2)=2

Bone *BoneNameBone *BoneName

Site1 *Sub-partition *Container *Artifact*Locus*Partition

Bone *BoneName

Site2 *Sub-partition *Container *Artifact*Locus*Partition

Path(DLunion)
= (6+6+2) + 4*6*2=62

Figure 9. Example of calculating knowledge-gain by browsing

6. CONCLUSION AND FUTURE WORK
We formalize the DL integration problem and propose an overall
approach based on the 5S framework. We then apply our
framework to integrate domain-specific (archaeological) DLs,
illustrating our solutions for key problems in DL integration. An
integrated Archaeological DL, ETNA-DL is used as a case study
to justify and evaluate our DL integration approach. To generate a
union catalog and integrated browsing service in ETANA-DL, we
model it based on the 5S framework, develop a visual schema
mapping tool evaluated by a pilot user study, and implement a
general browsing component validated through application to
another integrated DL (NDTLTD).

The visual schema mapping tool and the browsing component are
available at http://feathers.dlib.vt.edu/~etana/integration for
testing and sharing. Future work will include improving them for
more applications, and developing assessment measurements for
domain specific integrated DLs, such as archaeological DLs.

7. ACKNOWLEDGMENTS
This work is funded in part by the National Science
Foundation (ITR-0325579). Marcos Gonçalves was supported by

an AOL fellowship and has support from CNPq. We thank
Douglas Clark, Joanne Eustis, James W. Flanagan, Paul Gherman,
Andrew Graham, Larry Herr, Paul Jacobs, Douglas Knight,
Oystein LaBianca, David McCreery, and Randall Younker for
their support. We also thank all the colleagues in the Digital
Library Research Laboratory at Virginia Tech.

8. REFERENCES
[1] Adam, N.R., Atluri, V. and Adiwijaya, I. SI in digital

libraries. Communications of the ACM, 43 (6): 64-72.
[2] Bowman, C.M., Danzig, P.B., Hardy, D.R., Manber, U. and

Schwartz, M.F. The Harvest information discovery and
access system. Computer Networks and ISDN Systems, 28
(1-2): 119 - 125.

[3] Davis, J.R. and Lagoze, C. NCSTRL: Design and
deployment of a globally distributed digital library. JASIS,
51 (3): 273-280.

[4] Doan, A., Domingos, P. and Halevy, A.Y., Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach. In Proc. SIGMOD Conference (2001), 509-820.

[5] Flanagan, J.W., McCreery, D.W. and N.Yassine, K. Tell
Nimrin: preliminary report on the 1995 excavation and
geological survey, department of antiquities of Jordan,
Amman, 1996.

[6] Fox, E.A., France, R.K., Gonçalves, M.A. and Suleman:, H.,
Building Interoperable Digital Library Services: MARIAN,
Open Archives and NDLTD. In Proc. SIGIR (2001), 451-
451.

[7] Fox, E.A. and Marchionini, G. Toward a Worldwide Digital
Library - Introduction. Commun. ACM, 41 (4): 28-32.

[8] Gonçalves, M.A. and Fox, E.A., 5SL: a language for
declarative specification and generation of digital libraries.
In Proc. JCDL (2002), 263-272.

[9] Gonçalves, M.A. Stream, Structure, Space, Scenarios, and
Societies (5S): A Formal Digital Library Framework and Its
Applications, Ph.D. Dissertation, Dept. Comp. Sci., Virginia
Tech, 2002, http://scholar.lib.vt.edu/theses/available/etd-
12052004-135923

[10] Gonçalves, M.A., Fox, E.A., Watson, L.T. and Kipp, N.A.
Streams, structures, spaces, scenarios, societies (5s): A
formal model for digital libraries. ACM Transactions on
Information Systems (TOIS), 22 (2): 270 - 312.

[11] Gonçalves, M.A., Mather, P., Wang, J., Zhou, Y., Luo, M.,
Richardson, R., Shen, R., Xu, L. and Fox, E.A., Java
MARIAN: From an OPAC to a Modern Digital Library
System. In Proc. SPIRE, 2002, 194-209.

[12] Hasselbring, W. Information System Integration:
Introduction Commun. ACM, 43(6): 32-38.

[13] Jacobs, P.F. Ancient World, Digital World: Excavation at
Halif. ejournal Ariadne (27), 2001.

[14] Kampanya, N., Rao Shen, S.K., North, C. and Fox, E.A.,
Citiviz: A Visual User Interface to the CITIDEL System. In
Proc. ECDL, 2004, 122-133.

[15] Kelapure, R., Gonçalves, M.A. and Fox:, E.A., Scenario-
Based Generation of Digital Library Services. In Proc.
ECDL 2003, 263-275.

http://feathers.dlib.vt.edu/~etana/integration

[16] Kelapure, R.D. Scenario-Base Generation of Digital Library
Service, Masters Thesis. Dept. Comp. Sci., Virginia Tech,
2003.

[17] Lagoze, C., Arms, W.Y., Gan, S., Hillmann, D., Ingram, C.,
Krafft, D.B., Marisa, R.J., Phipps, J., Saylor, J., Terrizzi, C.,
Hoehn, W., Millman, D., Allan, J., Guzman-Lara, S. and
Kalt:, T., Core services in the architecture of the national
science digital library (NSDL). In Proc. JCDL, 2002, 201-
209.

[18] Lagoze, C. and Sompel, H.V.d., The open archives initiative:
building a low-barrier interoperability framework. In Proc.
JCDL, 2001, 54-62.

[19] Lamping, J., Rao, R. and Pirolli, P. A Focus+Context
Technique Based on Hyperbolic Geometry for Visualizing
Large Hierarchies. In Proc. SIGCHI, 1995, 401-408

[20] Li, W.-S. and Clifton, C. SEMINT: a tool for identifying
attribute correspondences in heterogeneous databases using
neural networks. Data & Knowledge Engineering, 33 (1): 49
- 84.

[21] Lynch, C.A. The Z39.50 Information Retrieval Standard D-
Lib Magazine, 3(4), 1997,
http://www.dlib.org/dlib/april97/04lynch.html

[22] Morgan, E.L. An Introduction to the Search/Retrieve URL
Service (SRU) Ariadne Magazine, 2004,
http://www.ariadne.ac.uk/issue40/morgan/

[23] Nelson, M.L., Maly, K. and Zubair, M. Interoperable
Heterogeneous Digital Libraries, Old Dominion University
Dept. Comp. Sci., technical report TR-98-07 1998,
http://www.cs.odu.edu/~techrep/techreports/TR_98_07.ps.Z

[24] Paepcke, A., Baldonado, M., Chang, C.-C.K., Cousins, S.
and Garcia-Molina, H. Building the InfoBus: A Review of
Technical Choices in the Stanford Digital Library Project.
IEEE Computer, 32 (2): 80-87.

[25] Paepcke, A., Chang, K.C.-C., Garcia-Molina, H. and
Winograd, T. Interoperability for Digital Libraries
Worldwide. Commun. ACM, 41 (4): 33-43.

[26] Paepcke, A., Chang, K.C.-C., Garcia-Molina, H. and
Winograd, T. Search Middleware and the Simple Digital
Library Interoperability Protocol D-Lib Magazine, 6(3),
2000,
http://www.dlib.org/dlib/march00/paepcke/03paepcke.html

[27] Park, J. and Ram, S. Information systems interoperability:
What lies beneath? ACM Transactions on Information
Systems (TOIS), 22 (4): 595 - 632.

[28] Perugini, S., McDevitt, K., Richardson, R., Pérez-Quiñones,
M.A., Shen, R., Ramakrishnan, N., Williams, C. and Fox,
E.A., Enhancing usability in CITIDEL: multimodal,
multilingual, and interactive visualization interfaces. In Proc.
JCDL, 2004, 315-324.

[29] Rahm, E. and Bernstein, P.A. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 10 (4): 334-
350.

[30] Ram, S., Park, J. and Lee, D. Digital Libraries for the Next
Millennium: Challenges and Research Directions.
Information Systems Frontiers, 1 (2): 75-94.

[31] Ram, S. and Ramesh, V. Information Sharing among
Multiple Heterogeneous Data Sources Distributed across the
Internet. In Proc. HICSS 1998, 504.

[32] Ravindranathan, U. Prototyping Digital Libraries Handling
Heterogeneous Data Sources - An ETANA-DL Case Study,
Masters Thesis. Dept. Comp. Sci., Virginia Tech, 2004,
http://scholar.lib.vt.edu/theses/available/etd-04262004-
153555

[33] Ravindranathan, U., Shen, R., Gonçalves, M.A., Weiguo
Fan, E.A.F. and Flanagan, J.W. ETANA-DL: a digital library
for integrated handling of heterogeneous archaeological data.
In Proc. JCDL, 2004. 76-77.

[34] Ravindranathan, U., Shen, R., Gonçalves, M.A., Weiguo
Fan, E.A.F. and Flanagan, J.W., Prototyping Digital
Libraries Handling Heterogeneous Data Sources - The
ETANA-DL Case Study. In Proc. ECDL, 2004, 186-197.

[35] Shen, R. Apply the 5S Framework in Integrating Digital
Libraries. Dissertation Proposal, Virginia Tech, 2004

[36] Suleman, H. Open Digital Libraries, Ph.D. Dissertation,
Dept. Comp. Sci., Virginia Tech, 2002,
http://scholar.lib.vt.edu/theses/available/etd-11222002-
155624

[37] Suleman, H. and Fox, E.A., Designing Protocols in Support
of Digital Library Componentization. In Proc. ECDL, 2002,
568-582.

[38] Sumner, T., Bhushan, S., Ahmad, F. and Gu, Q. Designing a
language for creating conceptual browsing interfaces for
digital libraries. In Proc. JCDL, 2003. 258--260.

[39] West, D., Finnegan, M., Lane, R.W. and Kysar, D.A.
Analysis of Faunal Remains Recovered from Tell Nimrin,
Dead Sea Valley, Jordan, final report, 1996.

[40] Yuan, L.L., Miller, R.J., Haas, L.M. and Fagin, R. Data-
Driven Understanding and Refinement of Schema Mappings.
In Proc. SIGMOD, 2001. 485-496.

[41] Zhu, Q. 5SGraph: A Modeling Tool for Digital Libraries,
Masters Thesis. Dept. Comp. Sci., Virginia Tech, 2002,
http://scholar.lib.vt.edu/theses/available/etd-11272002-
210531

[42] Zhu, Q., Gonçalves, M.A., Shen, R., Cassel, L. and Fox,
E.A., Visual Semantic Modeling of Digital Libraries. In
Proc. ECDL, 2003, 325-337.

[43] Zubair, M., Maly, K., Ameerally, I. and Nelson, M.L.,
Dynamic Construction of Federated Digital Libraries. In
Proc. WWW9 Conference, 2000, 56-57.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

	INTRODUCTION
	RELATED WORK
	PROBLEM FORMALIZATION
	APPROACH
	Architecture of Integrated DL

	UNION DL GENERATION CASE STUDY
	Union Catalog Generation
	Visual Mapping Tool
	Visualization System Overview
	Architecture and Implementation
	Evaluation

	Union Service Generation
	Browsing Service
	Architecture of the Browsing Component
	Implementation
	Testing, Experimentation, and Evaluation

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

