
POLSYS GLP: A Parallel General Linear
Product Homotopy Code for Solving
Polynomial Systems of Equations

HAI-JUN SU, J. MICHAEL MCCARTHY

University of California, Irvine

MASHA SOSONKINA

Ames Laboratory

and

LAYNE T. WATSON

Virginia Polytechnic Institute and State University

Globally convergent, probability-one homotopy methods have proven to be very effective for find-
ing all the isolated solutions to polynomial systems of equations. After many years of development,
homotopy path trackers based on probability-one homotopy methods are reliable and fast. Now,
theoretical advances reducing the number of homotopy paths that must be tracked, and in the
handling of singular solutions, have made probability-one homotopy methods even more practical.
POLSYS GLP consists of Fortran 95 modules for finding all isolated solutions of a complex coeffi-
cient polynomial system of equations. The package is intended to be used on a distributed memory
multiprocessor in conjunction with HOMPACK90 (Algorithm 777), and makes extensive use of
Fortran 95 derived data types and MPI to support a general linear product (GLP) polynomial
system structure. GLP structure is intermediate between the partitioned linear product structure
used by POLSYS PLP (Algorithm 801) and the BKK-based structure used by PHCPACK. The
code requires a GLP structure as input, and although finding the optimal GLP structure is a
difficult combinatorial problem, generally physical or engineering intuition about a problem yields
a very good GLP structure. POLSYS GLP employs a sophisticated power series end game for
handling singular solutions, and provides support for problem definition both at a high level and
via hand-crafted code. Different GLP structures and their corresponding Bezout numbers can be
systematically explored before committing to root finding.

This work was supported in part by the Minnesota Supercomputing Institute, Air Force Office
of Scientific Research grant F49620-02-1-0090, National Science Foundation grant DMI-0218285,
and Air Force Research Laboratory grant F30602-01-2-0572.
Authors’ addresses: H.-J. Su, J. M. McCarthy, Robotics and Automation Laboratory, University
of California, Irvine, Irvine, CA 92697, suh@eng.uci.edu; M. Sosonkina, Ames Laboratory, Iowa
State University, Ames, IA 50011, masha@scl.ameslab.gov; L. T. Watson, Departments of Com-
puter Science and Mathematics, Virginia Polytechnic Institute & State University, Blacksburg,
VA 24061-0106, ltw@cs.vt.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires specific permission and/or fee.
c© 2004 by the Association for Computing Machinery, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 • H.-J. Su et al.
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1. INTRODUCTION

Polynomial systems of equations arise in many applications: robotics, computer

vision, kinematics, chemical kinetics, truss design, geometric modeling, and many

others (see [Morgan 1987] and [Verschelde 1996]). In applications where all the

solutions, or a significant number of solutions, must be found, or when locally

convergent methods fail, globally convergent, probability-one homotopy methods

are preferred. Homotopy methods for polynomial systems were first proposed by

Garcia and Zangwill [1977] and Drexler [1979]. While the method in [Garcia and

Zangwill 1977] was easily demonstrated by topological techniques and the start

system was easily solved, the homotopy produced many more paths than the total

degree of the system. Drexler used the powerful results of algebraic geometry to

prove his method. Two years later, using differential geometry, Chow, Mallet-

Paret, and Yorke [1979] improved on the results of Garcia and Zangwill with a

general homotopy which produced the same number of paths as the number of

solutions (provided there are a finite number of them), counting multiplicities and

solutions at infinity. The start system of this homotopy was difficult to solve.

Morgan [1983] solved this problem with a much simpler start system, which had

trivially obtained roots, and could be used in a general homotopy. The suggestion

by Wright [1985] and Morgan [1986a], [1986b] to track the homotopy zero curves in

complex projective space, rather than in Euclidean space, was another fundamental

breakthrough—in complex projective space certain paths would no longer diverge

to infinity (have infinite arc length), and paths in general were made shorter. Other

notable publications, which appear around the end of the first decade of research,

are by Meintjes and Morgan [1985], Tsai and Morgan [1985], and Watson, Billups,

and Morgan [1987].

In roughly the past decade, since the development of robust, efficient homo-

topy path tracking algorithms, work has shifted towards lowering the number of

paths that must be tracked. In essence, all the methods try to construct a start

system for the homotopy map that better models the structure of the given poly-

nomial system, the target system for the homotopy map. Early work includes m-

homogeneous theory by Morgan and Sommese [1987a]. In m-homogeneous theory

the powerful connection of probability-one homotopy methods for polynomials with

the field of algebraic geometry is reestablished (see [Drexler 1979]) with the gen-

eralization of the classical theorem of Bezout. Generalizations of m-homogeneous

theory appeared in [Verschelde and Haegemans 1993] with the GBQ method, and
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in [Verschelde and Cools 1993] with set-structure analysis. The methods in both

[Verschelde and Haegemans 1993] and [Verschelde and Cools 1993] are derived by

modifying slightly the main theorem in [Morgan and Sommese 1987a], but are

nonetheless important. The most recent definitive theoretical work is that of Mor-

gan, Sommese, and Wampler [1995]. Though the theorems of [Morgan, Sommese,

and Wampler 1995] are very powerful, used in their full generality, they suggest

more an approach for exploiting structure than an algorithm. The method used

here in POLSYS GLP for constructing the start system is essentially the same as

that in POLSYS PLP [Wise, Sommese, and Watson 2000], which was based on the

results of [Verschelde and Haegemans 1993] and [Morgan, Sommese, and Wampler

1995].

Attention has also been paid to the problem of calculating singular solutions

of polynomial systems using homotopy methods. Approaches have been pro-

posed based on Newton’s method (see for example [Griewank 1985]), and based

on complex analysis as in the work of Morgan, Sommese, and Wampler [1991],

[1992a], [1992b]. The most useful approach of those mentioned is found in [Mor-

gan, Sommese, and Wampler 1992b], where the foundation of a reasonable end

game is laid. Other work has come from Sosonkina, Stewart, and Watson [1996].

Their approach, which is used in the polynomial system routine POLSYS1H of

HOMPACK90 [Watson et al. 1997], is moderately successful on low, odd order sin-

gularities. To accurately compute a singular solution of order 30, say, requires a

very sophisticated end game like that in [Morgan, Sommese, and Wampler 1992b],

which POLSYS GLP incorporates.

Publically available codes for solving polynomial systems of equations using glob-

ally convergent, probability-one homotopy methods do exist: HOMPACK [Watson,

Billups, and Morgan 1987], written in FORTRAN 77, and HOMPACK90 [Watson

et al. 1997], written in Fortran 90, both have polynomial system solvers. CONSOL

in the book by Morgan [1987] is also written in FORTRAN 77. However, nei-

ther HOMPACK90 nor CONSOL has a sophisticated start system that can lower

the number of homotopy paths that must be tracked below the total degree. The

package PHCPACK by Verschelde [1997], written in Ada, allows a great variety

of choices for the start system, and uses an end game like the one proposed in

[Morgan, Sommese, and Wampler 1992b]. PHCPACK, based on BKK theory, has

a distinctly combinatorial flavor, and tends to be rather slow on large scale produc-

tion problems.

Polynomial structure is a complicated subject, attacked variously by the combi-

natorial BKK theory [Verschelde and Cools 1993] and algebraic geometry [Morgan,

Sommese, and Wampler 1995]. A design choice of POLSYS PLP [Wise, Sommese,

and Watson 2000] was to strike a balance between the most general structural

descriptions (yielding minimal numbers of paths to track, but extremely difficult

algorithmically) and no structure at all (where the total degree number of paths

must be tracked, algorithmically trivial). The trade-off is moot, because a search for

structure may very well cost more than simply tracking the paths a fancier structure

would have eliminated. Further, for many industrial problems, an m-homogeneous
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structure or the more general partitioned linear product (PLP) structure supported

by POLSYS PLP is perfectly adequate, and often even optimal. The structure sup-

ported by POLSYS GLP is called general linear product, which in generality lies

between partitioned linear product and the arbitrary set-structure supported by

PHCPACK. The motivation for this work and POLSYS GLP is a significant class

of problems [Su, McCarthy, and Watson 2004] for which the PLP structure is ap-

parently inadequate.

An excellent source on homotopy methods in general is the book by Allgower and

Georg [1990], and [Blum et al. 1998] contains many references oriented towards the

complexity aspects of polynomial root finding.

2. POLYNOMIAL SYSTEMS OF EQUATIONS

Let F (z) = 0 be a polynomial system of n equations in n unknowns. In symbols,

Fi(z) =
ni∑

j=1

[
cij

n∏

k=1

zk
dijk

]
= 0, i = 1, . . . , n, (1)

where the cij are complex (and usually assumed to be different from zero) and the

dijk are nonnegative integers. The degree of Fi(z) is

di = max
1≤j≤ni

n∑

k=1

dijk,

and the total degree of the system (1) is

d =
n∏

i=1

di.

Define F ′(w) to be the homogenization of F (z):

F ′i (w) = wn+1
di Fi(w1/wn+1, . . . , wn/wn+1), i = 1, . . . , n. (2)

Note that, if F ′(w0) = 0, then F ′(αw0) = 0 for any complex scalar α. Therefore,

“solutions” of F ′(w) = 0 are (complex) lines through the origin in Cn+1. The set

of all lines through the origin in Cn+1 is called complex projective n-space, denoted

Pn, and is a compact n-dimensional complex manifold. (Note that we are using

complex dimension: Pn is 2n-dimensional as a real manifold.) The solutions of

F ′(w) = 0 in Pn are identified with the solutions and solutions at infinity of F (z) =

0 as follows: If L ∈ Pn is a solution to F ′(w) = 0 with w = (w1, w2, . . . , wn+1) ∈ L
and wn+1 6= 0, then z = (w1/wn+1, w2/wn+1, . . . , wn/wn+1) ∈ Cn is a solution to

F (z) = 0. On the other hand, if z ∈ Cn is a solution to F (z) = 0, then the line

through w = (z, 1) is a solution to F ′(w) = 0 with wn+1 = 1 6= 0. The standard

definition of solutions to F (z) = 0 at infinity is simply solutions to F ′(w) = 0 (in

Pn) generated by w with wn+1 = 0.

A solution ŵ ∈ Pn is called geometrically isolated if there exists an open ball B ⊂
Pn, with ŵ ∈ B and no other solutions in B. If no such ball exists, then the solution

ŵ is said to exist on a positive dimensional solution set. Suppose ŵ is a geometrically
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isolated solution to (2), and suppose B is a ball that contains it. For almost all

perturbations of the coefficients of the polynomial, the perturbed polynomial has

only nonsingular solutions. For all such sufficiently small perturbations of the

coefficients, there exists a finite number m of solutions inside B to the perturbed

system of equations. This number m is the multiplicity of the solution ŵ to (2). A

solution ẑ ∈ Cn to (1) is singular if the Jacobian matrix at ẑ, DzF (ẑ), is singular,

and nonsingular otherwise. Singular solutions at infinity are defined analogously

in terms of coordinate patches [Morgan 1987]. A solution has multiplicity greater

than one precisely when it is singular [Morgan 1987].

Now that the solution set has been described, the following beautiful result can

be stated [van der Waerden 1953]:

Bezout’s Theorem. There are no more than d isolated solutions to F ′(w) in

Pn. If F ′(w) = 0 has only a finite number of solutions in Pn, it has exactly d

solutions, counting multiplicity.

In practical problems, finite, nonsingular, geometrically isolated solutions are of

great importance and interest; they are also the easiest to deal with in the homo-

topy setting. However, since it is not possible a priori to separate the nonsingular

solutions from the singular solutions and solutions at infinity, homotopy algorithms

are forced to deal with the latter. Solutions that are singular or at infinity can

cause serious numerical difficulties and inefficiency—these two types of solutions

are discussed in later sections. More importantly, the problem of handling these

“bad” solutions pales in comparison to the potentially huge number of solutions

(and homotopy zero curves that must be tracked). The total degree d, called the

Bezout number or more precisely the 1-homogeneous Bezout number [Morgan and

Sommese 1987a], can be overwhelming even for tame-looking problems. For ex-

ample, 20 cubic equations would have d = 320 ≈ 3.5 × 109. Consequently, recent

research has looked for methods that shrink (in a rigorous sense) the number of so-

lutions that must be computed, while still retaining all the finite isolated solutions.

Reduction, which seeks to lower the dimension of the system, is one approach that

will work, but is not discussed here (see Chapter 7 of [Morgan 1987]). Sophisticated

mathematical approaches, generally speaking, seek to “factor out” a significant por-

tion of the nonphysical solutions (typically, including many solutions at infinity and

multiplicities). For many important practical problems this is possible, since of-

ten systems that arise from physical models have symmetries and redundancies

(which spawn solutions at infinity and multiple solutions), yet only a small num-

ber (compared to d) of finite, nonsingular solutions [Morgan and Sommese 1987b],

[Verschelde 1996], [Verschelde and Cools 1993]. The next section discusses one such

approach to reducing the number of homotopy zero curves that must be tracked:

the general linear product (GLP) homotopy.

3. HOMOTOPIES FOR POLYNOMIAL SYSTEMS

Define a homotopy map ρ : [0, 1)×Cn → Cn by

ρ(λ, z) = (1− λ)G(z) + λF (z). (3)
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λ ∈ [0, 1) is the homotopy parameter, G(z) = 0 is the start system, and F (z) = 0

is the target system. The goal is to find a start system with the same structure as

the target system, while possessing the property that G(z) = 0 is easily solved. In

this section a start system with a general linear product (GLP) structure will be

constructed.

Let P = (P1, P2, . . . , Pn) be an n-tuple of (topological) coverings Pi of the set

{z1, z2, . . . , zn}. That is, for i = 1, 2, . . . , n, Pi = {Si1, Si2, . . . , Simi}, where Sij
has cardinality nij 6= 0 and

⋃mi
j=1 Sij = {z1, z2, . . . , zn}. For clarity, P is called the

system covering, and the Pi are the component coverings. For i = 1, . . . , n, assume

that the component Fi has the representation

Fi =
ri∑

k=1

mi∏

j=1

pijk,

where each polynomial pijk only involves variables from the set Sij . For i = 1, 2,

. . . , n and j = 1, 2, . . . , mi define dij to be the maximum degree of the polynomials

pij1, . . ., pijri . Thus if F2(z1, z2, z3) = (3z1−z2)(7z2−z3)+(z1 +z2)(z2
2−z2z3 +z3),

S21 = {z1, z2}, and S22 = {z2, z3}, then d21 = 1, d22 = 2. It is convenient, though

only for the definition of the start system, to rename the variables component-by-

component. Let Sij = {zij1, zij2, . . . , zijnij}. With all this said, the start system is

represented mathematically by Gi(z) =
mi∏

j=1

Gij , where

Gij =





( nij∑

k=1

cijkzijk

)dij
− 1, if dij > 0;

1, if dij = 0,

i = 1, 2, . . . , n, (4)

where the numbers cijk ∈ C0 = C\{0} are chosen at random. The structure defined

by the system covering P and manifested in (4) is called the general linear product

structure. The degree of Gi(z) is

deg(Gi) =
mi∑

j=1

dij .

Note that di ≤ deg(Gi) always holds—this fact will be important later, when the

projective transformation of the homotopy map is defined.

This start system is modeled after the one in [Wampler 1994], and, like its model,

is desirable because it is computationally efficient and its solutions, all of which

are obtained by the solution of a complex linear system, are nonsingular. To be

precise, the linear subsystems into which G(z) = 0 decomposes, whether solvable or

unsolvable, can be uniquely characterized by two lexicographic vectors. The first,

Φ = (Φ1, Φ2, . . . , Φn), is called the factor lexicographic vector, and the second,

∆ = (∆1, ∆2, . . . , ∆n), is called the degree lexicographic vector, where (1, 1, . . . ,

1) ≤ Φ ≤ (m1, m2, . . . , mn), and where, given Φ and all djΦj 6= 0, (0, 0, . . . ,

0) ≤ ∆ ≤ (d1Φ1
− 1, d2Φ2

− 1, . . . , dnΦn − 1). For example, suppose that the
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lexicographic pair (Φ,∆) with all djΦj 6= 0 is given. Then the linear system this
pair uniquely represents is

AΦz =




n1Φ1∑

k=1

c1Φ1kz1Φ1k

n2Φ2∑

k=1

c2Φ2kz2Φ2k

...
nnΦn∑

k=1

cnΦnkznΦnk




=




e2πi(∆1/d1Φ1)

e2πi(∆2/d2Φ2)
...

e2πi(∆n/dnΦn)


 ≡ b∆, (5)

where the zijk are as defined above. Either AΦ is generically nonsingular, that is,
nonsingular for almost all choices of the cijk from C0, or structurally singular. If
AΦ is structurally singular, then it contributes no solutions to G(z) = 0 and may
be ignored. If AΦ is generically nonsingular, then AΦz = b∆ has a unique solution
for each ∆ such that (0, 0, . . . , 0) ≤ ∆ ≤ (d1Φ1

− 1, d2Φ2
− 1, . . . , dnΦn − 1). If

some djΦj = 0, then the factor GjΦj = 1 cannot be zero and AΦ need not even be
considered.

In order to count the number of solutions of G(z) = 0, it must be determined
for each Φ whether or not AΦ is generically nonsingular. If AΦ is nonsingular then
n∏

i=1

diΦi is added to the “root count.” The final root count is the total number of

solutions BGLP to G(z) = 0 and is called the GLP Bezout number. There is a
combinatorial formula for determining whether or not AΦ is generically invertible
[Verschelde and Cools 1993]. For large problems, however, this rule is expensive.
Computational experience with the approach of POLSYS PLP, which uses numer-
ical linear algebra with random real matrices to determine the generic invertibil-
ity of AΦ, has proved that algorithm to be both efficient and reliable. Therefore
POLSYS GLP uses the same algorithm as POLSYS PLP to determine the generic
invertibility ofAΦ. The issues of how to choose the cijk for such a method, and the
likelihood of a generically invertible AΦ being numerically singular, are discussed
in detail in Wise, Sommese, and Watson [2000].

The importance of the number BGLP derives from the theory explained at length
in Wise, Sommese, and Watson [2000]. For clarity and completeness, some of the
theorems, definitions, and discussion from [Wise, Sommese, and Watson 2000] will
be recapitulated here.

Theorem 3.1 [Morgan, Sommese, and Wampler 1995]. Let f : Cn → Cn

be a system of polynomials and U ⊂ Cn be (Zariski) open. Define N(f, U) to be
the number of nonsingular solutions to f = 0 that are in U . Assume that there are
positive integers r1, . . . , rn and m1, . . . , mn and finitely generated complex vector
spaces Vij of polynomials for i = 1, . . . , n and j = 1, . . . , mi, such that

fi =
ri∑

k=1

mi∏

j=1

pijk, (6)
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where pijk ∈ Vij for i = 1, . . . , n, j = 1, . . . , mi and k = 1, . . . , ri. Let a system g

be defined by gi =
mi∏

j=1

gij, with each gij a generic choice from Vij. Then

N(f, U) ≤ N(g, U), (7)

and (7) is equality if, for each i with 1 ≤ i ≤ n, there is a positive integer ki such

that the pijki ∈ Vij are generic for j = 1, . . . , mi. Also, g(z) = 0 is a suitable

start system for the polynomial homotopy h(t, z) = (1 − t)f(z) + tg(z) to find all

nonsingular solutions to f(z) = 0.

Remark 3.1. The reader will have noted that the homotopy of Theorem 3.1 is

different from the one given in (3), but this difference is only a cosmetic change of

variables t = 1− λ. Moreover, the last line of Theorem 3.1 will be made precise in

Section 4.

Remark 3.2. The subsystems of g = 0 are the systems ĝ = (g1j1 , . . . , gnjn) = 0

with 1 ≤ ji ≤ mi and i = 1, . . . , n (see Remark 1.1 from [Morgan, Sommese, and

Wampler 1995]). In practice, one chooses g so that the subsystems ĝ = 0 are easy

to solve, e.g., so that solving ĝ = 0 reduces to solving a linear system.

Let {eijl | l = 1, . . . , `ij} denote a basis of the vector space Vij. For i = 1, . . . , n

and j = 1, . . . , mi define

Bij = {z | eijl(z) = 0 for l = 1, . . . , `ij}.
Following [Morgan, Sommese, and Wampler 1995], the bases have no pairwise in-

tersection with U if for any choice of j ′ and j ′′ with 1 ≤ j ′ < j ′′ ≤ mi,

Bij′ ∩Bij′′ ∩ U = ∅.
The next theorem relates the nonsingular solutions of g(z) = 0 with those of its

subsystems.

Theorem 3.2 [Morgan, Sommese, and Wampler 1995]. Let g and Vij be

as in Theorem 3.1. Then

1. z0 ∈ U is a nonsingular solution to g(z) = 0 if and only if z0 is a solution

to exactly one subsystem of g(z) = 0 and it is a nonsingular solution to this

subsystem.

2. Assume that the bases for the Vij have no pairwise intersection with U . Then,

if z0 ∈ U is a nonsingular solution to some subsystem of g(z) = 0, it is a

solution to exactly one subsystem of g(z) = 0.

Remark 3.3. It follows from Theorem 3.2 that

N(g, U)≤
∑

1≤j1≤m1
1≤j2≤m2

...
1≤jn≤mn

N
(
(g1j1 , g2j2 , . . . , gnjn), U

)
, (8)
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with equality if the bases have no pairwise intersection with U . (This is Remark

2.2 from [Morgan, Sommese, and Wampler 1995].)

Suppose that P is a system covering as before. The vector spaces of polynomials

Vij will be constructed using P : consider both Sij and dij for j = 1, 2, . . . , mi

and i = 1, 2, . . . , n, and define Vij to be the complex vector space of polynomials

generated by the monomials in the variables from Sij up to degree dij and the

constant 1. For example, suppose that f(z) = 0 is a polynomial system in four

variables for which P2 = {S21, S22}, S21 = {z2, z3, z1}, S22 = {z3, z4}, d21 = 2, and

d22 = 3. Then

V21 = C
〈
z2

2 , z
2
3, z

2
1 , z2z3, z2z1, z3z1, z2, z3, z1, 1

〉
,

V22 = C
〈
z3

3 , z
3
4, z

2
3z4, z3z

2
4 , z

2
3 , z

2
4, z3z4, z3, z4, 1

〉
.

Choosing the Vij, albeit implicitly, from P , with U = Cn, ensures that the bases

have no pairwise intersection with U . Since Gij ∈ Vij is generic,

N(F,Cn) ≤ N(G,Cn) =
∑

1≤j1≤m1
1≤j2≤m2

...
1≤jn≤mn

N
(
(G1j1 , G2j2 , . . . , Gnjn),Cn

)
= BGLP . (9)

This entire discussion would be moot if BGLP were not in many cases smaller

than the total degree d. In fact, for many practical problems for well chosen Vij ,

BPLP � d, and for a class of important applications, also BGLP � BPLP � d.

The computational implications for the homotopy map (3) with the start system

G(z) = 0 are clear—only BGLP homotopy zero curves must be tracked.

Since the start system of Theorem 3.1 can result in a lower number of paths to

be tracked, while guaranteeing that paths will reach all nonsingular solutions of

f(z) = 0, the number N(g,Cn) is commonly referred to as a generalized Bezout

number. The GLP method explained here is but one way of arriving at such a

number. The name general linear product is essentially a description of the structure

of the start system G(z) = 0. There is a hierarchy of start system construction

methods and corresponding generalized Bezout numbers N(G,Cn), based on start

system complexity:

• 1-homogeneous,

• m-homogeneous,

• partitioned linear product,

• general linear product decomposition,

• general product decomposition.

The general linear product decomposition corresponds to each set Pi being a

(topological) covering of the set {z1, . . . , zn}. The special case where each Pi is

a partition (Sij1 ∩ Sij2 = ∅ for j1 6= j2) is the partitioned linear product (PLP)

decomposition. The m-homogeneous case is where all the Pi are the same partition,

and 1-homogeneous is just m-homogeneous with m = 1. The method of greatest
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generality is the general product decomposition (GPD). GPD is any method that

utilizes Theorem 3.1 in more generality than GLP, so the start system does not

reduce to a product of linear systems. GLP is exactly equivalent to the set-structure

analysis of Verschelde and Cools [1993].

Finding the lowest possible GLP Bezout number is a challenging problem. There

is no way, short of an exhaustive search through all possible system covers, of

knowing which system cover P will give the lowest value of BGLP . There are

heuristics for picking the system covering P , but usually physical or engineering

insight into the problem structure is a better guide. Even if BGLP is not minimized,

it may still be small enough so that the path tracking is computationally tractable.

4. THE PROBABILITY ONE ASPECT

Suppose that P is a system covering for (1) corresponding to the GLP Bezout

number BGLP . The following theorem demonstrates the probability-one aspect of

the homotopy method in POLSYS GLP.

Theorem 4.1. For almost all choices of cijk in the start system defined by (4),

ρ−1(0) consists of BGLP smooth curves emanating from {0} × Cn, which either

diverge to infinity as λ approaches 1 or converge to solutions of F (z) = 0. Each

nonsingular solution of F (z) = 0 will have a curve converging to it.

Theorem 4.1 is essentially a restatement of the last line of Theorem 3.1, but

deserves emphasis; its proof can be found in Section A.5 in the appendix of [Mor-

gan, Sommese, and Wampler 1995]. A noteworthy observation is that since the

homotopy map ρ is complex analytic, the homotopy parameter λ is monotonically

increasing as a function of arc length along the homotopy zero curves starting at

λ = 0 [Morgan 1987]. Thus, the homotopy zero curves never have turning points

with respect to λ.

Though BGLP may be much smaller than the total degree, the possibility of track-

ing paths of (3) that diverge to infinity still exists. These paths pose significant

computational challenges, since time is wasted on divergent paths, and large mag-

nitude solutions may not be found if a path is terminated prematurely. Tracking

paths in complex projective space, which was originally proposed in [Morgan 1986a,

1986b], eliminates these concerns. With a suitable “projective transformation” no

paths diverge to infinity as λ approaches 1. Moreover, though not guaranteed,

paths tend be shorter in projective space.

Constructing the projective transformation is straightforward [Morgan 1986a,

1986b], [Watson, Billups, and Morgan 1987]. As with the homogenization of F (z),

define the homogenization of ρ(λ, z) to be

ρ′i(λ, w) = w
deg(Gi)
n+1 ρi

(
λ,

w1

wn+1
, . . . ,

wn
wn+1

)
, i = 1, . . . , n.

Define the linear function

u(w1, . . . , wn+1) = ξ1w1 + ξ2w2 + . . .+ ξn+1wn+1,
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where the numbers ξi ∈ C0 are chosen at random. The projective transformation

of ρ(λ, z) is

ρ′′(λ, w) =




ρ′1(λ, w)
ρ′2(λ, w)

...
ρ′n(λ, w)
u(w)− 1



.

That the projective transformation can be applied to the homotopy map ρ, with-

out changing the essence of Theorem 4.1, follows from Remark 1.4 of [Morgan,

Sommese, and Wampler 1995]. The precise statement follows.

Theorem 4.2. For almost all choices of the cijk in the start system defined by

(4) and almost all choices of the ξ in the linear function u(w), (ρ′′)−1(0) consists

of BGLP smooth curves emanating from {0} ×Cn+1, which converge to solutions

of F ′(w) = 0. Each nonsingular solution of F ′(w) = 0 will have a curve converging

to it.

Henceforth, Theorem 4.2 will tacitly be the operative theorem, and references to

ρ tacitly assume that the computer implementation actually works with ρ′′.

5. HOMOTOPY PATH TRACKING AND THE END GAME

Theorem 4.1 says that in order to reach the nonsingular solutions of F (z) = 0,

“smooth” (nonintersecting, nonbifurcating) paths in ρ−1(0) must be tracked. There

are fast, reliable ways of doing this numerically. Three different path tracking al-

gorithms (ordinary differential equation based, normal flow, and augmented Jaco-

bian matrix) are described in [Watson, Billups, and Morgan 1987] and [Watson

et al. 1997]. Simple linear-predictor, Newton-corrector methods are described in

[Morgan 1987]and [Verschelde 1997]. There is compelling evidence favoring higher

order methods and the normal flow algorithm over simpler schemes [Lundberg and

Poore 1991], [Morgan, Sommese, and Watson 1989], [Watson, Billups, and Morgan

1987], [Watson et al. 1997]. As does POLSYS PLP, POLSYS GLP uses the so-

phisticated homotopy zero curve tracking routine STEPNX from HOMPACK90. The

curve tracking details are identical to those of POLSYS PLP [Wise, Sommese, and

Watson 2000], and thus need not be repeated here.

The projective transformation eliminates diverging paths, but in doing so may

give paths leading to highly singular solutions at infinity. When the curve being

tracked converges to a multiple solution or a positive dimensional solution set of

F (z) = 0 at λ = 1, necessarily rank Dρ(λ, z) < n, which affects both numerical

stability and the rate of convergence of the corrector iteration (11). Newton-type

algorithms may do very well with nonsingular solutions, but incur a significant

expense at singular solutions, an order of magnitude worse than at nonsingular so-

lutions. The end game (that phase of the algorithm when λ ≈ 1) in POLSYS GLP

is based on theory in [Morgan, Sommese, and Wampler 1992b], and is identical

to the end game in POLSYS PLP. It provides reasonably accurate estimates of
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a singular solution at a fairly low computational cost (compared to Newton-type

algorithms). The supporting theory and complete algorithmic details are provided

in the POLSYS PLP paper [Wise, Sommese, and Watson 2000]. The end game

for singular solutions in POLSYS PLP represents a major advance over the algo-

rithms available in POLSYS1H (HOMPACK90) and PHCPACK, and is a major

contributor to the empirically observed efficiency of POLSYS PLP.

6. PARALLEL IMPLEMENTATION

It is common for applications to have thousands or millions of paths to be tracked,

and thus using parallel computation is natural. POLSYS GLP is based on MPI-2,

and is designed to run on massively parallel distributed memory multiprocessors.

(If a problem is small enough that a serial version of POLSYS GLP would be prac-

tical, then simply use the serial code POLSYS PLP instead. Only for very large

problems is the difference between BGLP and BPLP significant.) Although the

homotopy paths are independent of each other, the path tracking times can vary

enormously between paths, and the most efficient use of parallel resources is not

immediately apparent. Some early work in parallel homotopy algorithms [Allison

et al. 1989a], [Allison et al. 1989b], [Chakraborty et al. 1991], [Chakraborty et

al. 1993], [Morgan and Watson 1989], [Pelz and Watson 1989] systematically com-

pared shared memory and distributed memory implementations, and various coarse

grained and fine grained ways of decomposing the path tracking computations. The

conclusion from all that work, at least for the special case of polynomial systems,

was that a message passing, master/slave paradigm with one complete path track-

ing task per slave was the best paradigm. Thus this is the parallel paradigm used

by POLSYS GLP.

The master computes all the start points, sending them one by one to idle slaves.

The master also accumulates all the zeros and path information (error flags, arc

length, number of function evaluations, projective coordinates) from the slaves. A

slave waits for a start point, then tracks a complete path to λ = 1 or until an error

condition occurs, then returns the zero and path information to the master, and

waits for the next start point. Because of the variability in the path tracking times,

the master is not a bottleneck even for hundreds of slave processors. Should the

master become a bottleneck, the start point computation can be distributed, so a

tree of masters could be used to spread the work of interacting with the slaves.

7. ORGANIZATION AND USAGE

The package POLSYS GLP consists of two Fortran 95 modules (GLOBAL GLP,

POLSYS2—the latter name is chosen to avoid a conflict with the POLSYS PLP

module POLSYS). GLOBAL GLP contains Fortran 95 derived data types to define the

target system, the start system, and the system covering. As its name suggests,

GLOBAL GLP provides data globally to the routines in POLSYS GLP. The module

POLSYS2 contains three subroutines: POLSYS GLP, BEZOUT GLP, and SINGSYS GLP.

POLSYS GLP finds the root count (the Bezout number BGLP for a given system cover-

ing P ) and the roots of a polynomial system, BEZOUT GLP finds only the root count.
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SINGSYS GLP checks the singularity of a given start subsystem, and is of interest only

to expert users. The package uses the HOMPACK90 modules REAL PRECISION,

HOMPACK90 GLOBAL, and HOMOTOPY [Watson et al. 1997], the HOMPACK90 subrou-

tine STEPNX, and numerous LAPACK and BLAS subroutines [Anderson et al. 1995].

The physical organization of POLSYS GLP into files is described in a README

file that comes with the distribution.

Arguments to POLSYS GLP include an input tracking tolerance TRACKTOL, an in-

put final solution error tolerance FINALTOL, an input singularity tolerance SINGTOL

for the root counting algorithm, input parameters for curve tracking, various out-

put solution statistics, and four Fortran 95 optional arguments: NUMRR, RECALL,

NO SCALING, and USER F DF. The integer NUMRR specifies the number of iterations

times 1000 that the path tracker is allowed; the default value is 1. The logical

variable RECALL should be included if, after the first call, POLSYS GLP is being

called again to retrack a selected set of curves. The presence of the logical variable

NO SCALING (regardless of value) causes POLSYS GLP not to scale the target poly-

nomial system. The logical optional argument USER F DF specifies that the user

is supplying hand-crafted code for function and Jacobian matrix evaluation—this

option is recommended if efficiency is a concern, or if the original formulation of

the system is other than a linear combination of monomials.

POLSYS GLP takes full advantage of Fortran 95 features. For example, all real

and complex type declarations use the KIND specification; derived data types are

used for storage flexibility and simplicity; array sections, automatic arrays, and

allocatable arrays are fully utilized; interface blocks are used consistently; where

appropriate, modules, rather than subroutine argument lists, are used for data

association; low-level linear algebra is done with Fortran 95 syntax rather than

with BLAS routines; internal subroutines are used extensively with most argu-

ments available via host association. POLSYS GLP is easy to use, with a short

argument list, and the target system F (z) defined with a simple tableau format

(unless the optional argument USER F DF is present). The calling program requires

the statement

USE POLSYS2

The typical use of POLSYS GLP is either to call BEZOUT GLP to obtain the root

count BGLP of a polynomial system of equations for a specified system covering

P , or to call POLSYS GLP to obtain all the roots of the polynomial (and the root

count as a byproduct). It is advisable to explore several system coverings with

BEZOUT GLP before committing to one and calling POLSYS GLP. A sample main pro-

gram MAIN TEMPLATE demonstrates how to use POLSYS GLP as just described.

MAIN TEMPLATE uses NAMELIST input for the target system and covering defini-

tions, and allows the user to solve multiple polynomial systems in a single run.

The template TARGET SYSTEM USER (an external subroutine) is also provided.

This subroutine would contain hand-crafted code for function and Jacobian matrix

evaluation if the optional argument USER F DF to POLSYS GLP were used.
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The system covering must be defined by the user in the module GLOBAL GLP.

Heuristics, as in PHCPACK, exist for estimating an optimal system covering (GLP

structure), but are no substitute for physical insight into the problem at hand. In

practice, polynomial systems typically arise as sums of products with physical vari-

ables naturally grouped. Matching the GLP structure to the problem’s “physical”

structure usually yields a near optimal Bezout number BGLP . Intuitively, the idea

is to get all the degrees dij as low as possible (see the example below). For real

problems, an m-homogeneous or PLP partition almost always suffices, and for the

remainder a GLP structure is adequate. Of course GPD Bezout numbers can be

lower than BGLP , but no class of applications has yet emerged for which BGPD is

significantly lower than BGLP .

7.1 INPUT SANITY CHECKING

The target system F (z) = 0 is defined by simple tableau input (coefficients and

variables’ exponents) and the GLP structure is also input; these are stored in the

module GLOBAL GLP. Whether the specified GLP structure is consistent with the

definition of F (z) is something that must be explicitly verified by the code. For

the PLP structure (where the covers Pi are partitions), this consistency check was

not hard, since the set degrees dij for each term in each component of F could be

computed, and compared to the purported PLP structure degrees, in one pass of

the data. Verifying the GLP structure is nontrivial.

Essentially each monomial zα1
1 · · ·zαnn in Fi must have the form

∏mi
j=1 (pij)

dij ,

where pij is a polynomial of degree one in only the variables in the set Sij , or

pij ≡ 1. That is, each factor zk in the monomial must be accounted for by some

linear factor pij . Construct a table with r =
∑n
j=1 αj rows labelled by the factors

zk in the monomial, and with
∑mi
j=1 dij columns labelled by the sets Sij , where

Sij appears dij times. A mark in row za and column Sbc is legal if za ∈ Sbc. The

monomial is consistent with the GLP structure if and only if there exists a legal

marking of the table with exactly one mark in each row and at most one mark in

each column.

The existence of such a table marking can be found by a depth first tree search

with backtracking of all the legal table markings
(
c1, c2, . . ., cr

)
in lexicographic

order, where cj is the ordinal index of the column marked in row j.

7.2 AN EXAMPLE

The kinematic synthesis of an RPS serial chain [Su, McCarthy, and Watson 2004]

illustrates the value of exploiting a GLP structure by using POLSYS GLP. The

design equations for this chain form a polynomial system of nine quartic equations

and one linear equation in 10 unknowns, that is, F : C10 → C10 given by

F (z) =




k0(P2 ·P2 −P1 ·P1) + 2K · (P2 −P1)− (P2 ·G)2 + (P1 ·G)2

...
k0(P10 ·P10 −P1 ·P1) + 2K · (P10 − P1)− (P10 ·G)2 + (P1 ·G)2

G ·m− e


 .
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Each Pi is affine in the unknown parameters (p1, p2, p3), thus Pi = [Ti]p for a

constant 3× 4 matrix [Ti] and p = (p1, p2, p3, 1)t. Furthermore, the terms Pi ·Pi−
P1 ·P1 are affine in (p1, p2, p3) due to cancellation of the quadratic terms, so this

term is [Bi]p for a constant 1× 4 matrix [Bi]. The vector G = (g1, g2, g3) provides

three unknowns, and m and e are a known vector and constant, respectively. The

remaining unknowns are the vector K = (k1, k2, k3) and the scalar k0.

This system can be simplified by eliminating g3 using the linear equation. The

result is

F̄ (z) =




k0[B2]p + 2K · [T2 − T1]p− (G · [T2]p)2 + (G · [T1]p)2

...
k0[B10]p + 2K · ([T10 − T1]p− (G · [T10]p)2 + (G · [T1]p)2


 ,

where the [Ti] and [Bi] are constant matrices. This is a system of nine quartic

polynomials in the nine unknowns

z = (g1, g2, p1, p2, p3, k0, k1, k2, k3).

The 1-homogeneous Bezout number of the system is the total degree of F̄ (z) given

by d = 49 = 262, 144.

The polynomial system F̄ (z) has the covering

P =
{
{g1, g2}, {p1, p2, p3}, {p1, p2, p3, k0, k1, k2, k3}

}9
,

consisting of the three sets

Si1 = {g1, g2}, Si2 = {p1, p2, p3}, Si3 = {p1, p2, p3, k0, k1, k2, k3},
with the associated degrees

di1 = 2, di2 = 1, di3 = 1; i = 1, . . . , 9.

This data yields a GLP Bezout number BGLP = 9, 216 computed by POLSYS GLP.

For comparison, the 2-homogeneous Bezout number derived from the partition

P =
{
{g1, g2}, {p1, p2, p3, k0, k1, k2, k3}

}9

with the degree structure

di1 = 2, di2 = 2; i = 1, . . . , 9

yields BPLP = 18, 432, which is twice that of BGLP .

Solving a range of problems with random data using POLSYS GLP reveals 1024

generic (real) roots obtained by tracking 9, 216 homotopy zero curves.

8. PERFORMANCE

Root counting is done in the subroutines BEZOUT GLP and SINGSYS GLP, the former

calling the latter. The end game is housed in an internal subroutine ROOT GLP. A

careful performance evaluation of the root counting and end game algorithms was

done in [Wise, Sommese, and Watson 2000] for POLSYS PLP, and the performance
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of the HOMPACK90 core algorithms is also well documented. Perhaps of most in-

terest is the parallel performance of POLSYS GLP, so some large scale parallel

results are given here. For the example in Section 7.2, POLSYS GLP has been

tested on several parallel architectures, namely, the IBM Power4 computer (called

DataStar) located at the San Diego Supercomputing Center, a Linux cluster of com-

puters (called MPC) with AMD Opteron processors located at the University of

California at Irvine, and the IBM Power3 computer (denoted MSI SP) at the Min-

nesota Supercomputing Institute. Table I shows the maximum execution times in

seconds (first number in columns 2–4) and speedups (second number in columns 2–

4) on these parallel computing platforms for 4, 8, 16, 24, and 32 processors. Note

that, for consistency across all the computers, the speedups are computed relative

to a four processor execution time, since on the MSI SP, any run on fewer than four

processors took more than six hours to complete and did not fit the site’s queue

policy. Also, due to access constraints on the MPC, a 32 processor run was not

possible on this system, which accounts for the asterisk in the last row of the MPC

column.

Table I. Parallel Performance of POLSYS GLP on Three Different Architectures

Proc. DataStar MPC MSI SP

4 4.253E+03, 1.00 3.872E+03, 1.00 1.564E+04, 1.00
8 1.826E+03, 2.33 1.661E+03, 2.33 6.714E+03, 2.33

16 8.531E+02, 4.98 7.765E+02, 4.99 3.134E+03, 4.99
24 5.552E+02, 7.66 4.963E+02, 7.80 2.055E+03, 7.61
32 4.130E+02, 10.30 * 1.521E+03, 10.28

The speedups are exactly what one would expect with a master/slave paradigm

where the master processor is not also a slave. For instance, in going from four

to eight processors, the number of slaves goes from three to seven, and 7/3 is ex-

actly the speedup observed. Timings on MPC are problematic, because of varying

switch configurations for different numbers of processors. This accounts for the

inconsistent speedups for MPC in Table I. The master overhead is negligible, since

the speedup is nearly perfect through 32 processors, indicating consistently good

performance of POLSYS GPL on large scale problems and parallel architectures

of varying power. It is noticeable, for example, that DataStar and MPC execu-

tion times are an order of magnitude better than those on MSI SP. This may be

explained by the difference in processor speeds—for DataStar and MPC, they are

1.7 GHz and 1.4 GHz, respectively, whereas the MSI SP Power3 processors run at

only 222 MHz (on NightHawk nodes). The amount of memory was not a limit-

ing factor for the test problem—all the computers had about the same amount of

memory available to POLSYS GLP (1 GB/processor). Communications were per-

formed over high speed interconnection networks. In particular, communications

utilize the proprietary IBM Switch2 across the 4-way SMP nodes of the MSI SP

and the IBM Federation switch across the 8-way SMP nodes of the DataStar, while
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shared memory is used within each node. For the MPC system, Gigabit Ethernet is

used across dual processor nodes along with shared memory for intranode commu-

nications. It was observed that the master processor did not present a bottleneck

for these experiments, since none of the processors incurred significant idle time.
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