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Abstract. Two approaches addressing response surface approximation errors due to model inad-

equacy (bias error) are presented, and a design of experiments minimizing the maximal bias error

is proposed. Both approaches assume that the functional form of the true model is known and

seek, at each point in design space, worst case bounds on the absolute error. The first approach is

implemented prior to data generation. This data independent error bound can identify locations in

the design space where the accuracy of the approximation fitted on a given design of experiments

may be poor. The data independent error bound can easily be implemented in a search for a

design of experiments that minimize the bias error bound as it requires very little computation.

The second approach is to be used posterior to the data generation and provides tightened error

bound consistent with the data. This data dependent error bound requires the solution of two

linear programming problems at each point. The paper demonstrates the data independent error

bound for design of experiments of two-variable examples. Randomly generated polynomials in

two variables are then used to validate the data dependent bias-error bound distribution.
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Nomenclature

A Alias matrix

b Vector of estimated coefficients of basis functions

bj Estimated coefficients of basis functions

c(2) Vector of bounds for coefficients of the basis functions

Eb Vector of true prediction errors due to bias at the data points

eb(x) True bias error at design point x

|eDb (x)| Data dependent worst case bias error bound at design point x

|eIb(x)| Data independent worst case bias error bound at design point x
∣∣eIb
∣∣
av

Average of data independent bias error bounds over the

design domain
∣∣eIb
∣∣
max

Data independent maximum absolute bias error bound over the

design domain

ees(x) Estimated standard error at design point x

[ēes]max Maximum of normalized estimated standard error over the

design domain

F (x), F (1)(x), F (2)(x) Vectors of basis functions at x

fj(x) Basis functions

N Number of data points

n1 Number of basis functions in the regression model

n2 Number of missing basis functions in the regression model

s2 Error mean square

x Design point

X,X(1), X(2) Gramian (design) matrices

x1, x2, . . . , xn Design variables

x
(i)
1 , x

(i)
2 , . . . , x

(i)
n Design variables for ith design point

y Vector of observed responses

ŷ(x) Response surface approximation at a design point x

α1, α2, . . . , αm Design of experiment parameter

β, β(1), β(2) Vectors of basis function coefficients

βj , β
(1)
j , β

(2)
j Coefficients of basis functions

η(x) True mean response at x

σ2 Noise variance
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Background

Response surface approximation (RSA) techniques have become popular in engineering op-

timization based on computer simulations. Kaufman et al. (1996), for instance, fitted quadratic

polynomial RSAs to the structural weight of the high speed civil transport (HSCT), obtained

with multiple structural optimizations via the commercial code GENESIS. Balabanov et al. (1996,

1999) investigated RSA construction for the wing bending material weight of the HSCT based on

structural optimization results of a number of different configurations, and use of the RSA in the

configuration optimization problem. Papila and Haftka (1999, 2000) also constructed RSAs for

weight equations based on structural optimizations. Shyy et al. (2001) employed RSA methodol-

ogy for rocket engine injector design optimization. Papila et al. (2001) constructed RSAs based on

CFD simulations for supersonic turbine blade design optimization. Redhe et al. (2000) determined

an efficient number of data points when using the RSA methodology in crashworthiness problems,

where numerical simulations were carried out using LS-DYNA.

This popularity has brought attention to ways of increasing the accuracy of RSA and protecting

designers from misleading predictions. The accuracy of RSA is mainly affected by the following

three factors: (i) limitations on the number of data points due to the cost of data generation, (ii)

noise in the data, and (iii) inadequacy of the fitting model (bias errors).

The prediction error of an RSA varies from point to point. There is an established statistical

tool for characterizing noise-related prediction errors: prediction variance (Myers and Montgomery

1995, and Khuri and Cornell 1996). However, in many computer simulations, numerical noise is

not a major problem, and RSA accuracy suffers mostly due to bias errors. There has been a

fair amount of work on design of experiments for minimizing the mean squared error averaged

over the design domain that combines variance and bias errors (Box and Draper, 1963, Draper

and Lawrence, 1965, Kupper and Meydrech, 1973, and Welch, 1983). The bias component of

the averaged or integrated mean squared error was also minimized to obtain so-called minimum

bias designs. The fundamentals of minimizing integrated mean squared error and its components

can be found in Myers and Montgomery (1995) and Khuri and Cornell (1996). Venter and Haftka

(1997) developed an algorithm implementing a minimum-bias criterion, necessary for an irregularly

shaped domain where no closed form solution exists for minimum-bias experimental design. They

compared minimum-bias and D-optimal experimental designs for two problems with two and three

variables. The minimum-bias experimental design was found to be more accurate than D-optimal

for the two problems for the average error, but not for the maximum error. Montepiedra and

Fedorov (1997) investigated experimental designs minimizing the bias component of the integrated

3



mean square error subject to a constraint on the variance component or vice versa. Federov et

al. (1999) studied later design of experiments via weighted regression prioritizing regions where

the approximation is desired to predict the response. Their approach considered both the variance

and bias components of the estimation error. Palmer and Tsui (2001) studied minimum-bias Latin

hypercube experimental design for sampling from deterministic process simulators. Recently Qu

et al. (2004) have implemented Gaussian quadrature based minimum bias design. They have also

presented minimum bias central composite designs for up to six variables.

Objectives

Bias error, averaged over the domain of interest, has been studied extensively in the approxi-

mation theory and numerical analysis literature. However, very little has been done on the point

to point variation of bias errors. This variation is of interest for two reasons. First, when using an

approximation, it can be important to identify regions where the bias error may be large. Second,

when selecting a design of experiments, it may be desirable to minimize the maximal bias error

(min-max bias error) rather than the average. An approach for estimating a bound on RSA bias

errors was previously presented by Papila and Haftka (2001). The traditional decomposition of

the mean squared error into variance and the square of the bias was followed, but point to point

rather than averaged over the domain. The bound on the squared bias error does not depend on

the response data. Such an error bound may be used to identify regions in design space where the

accuracy of the RSA may be poor for a given design of experiments. Moreover, the error bound

may provide a tool for designing experiments against the bias error prior to data generation. The

first objective of this paper is to demonstrate how the error bound can be used to obtain designs

of experiments that minimize the maximal bias error.

Once data is available, the error bound can be tightened, and the second objective of the paper

is to develop a point to point error bound for a given set of data. This error bound can identify

regions of possible large errors and may be used to adaptively refine a design of experiments, or to

steer clear of such regions.

The next two sections, respectively, present the bias error expression at a given design point

and derive the bias error bounds for a given design of experiment prior to data generation (data

independent bounds). This is followed by demonstration of a min-max bias design of experiments.

Next, the data dependent error bound is derived and demonstrated. The demonstrations are based

on two-dimensional polynomial examples. The last section offers concluding remarks.
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Bias error in response surface approximations

Response surface approximations, for which the fundamentals are reviewed in Appendix A, fit

numerical or physical experimental data with an analytical model. The true function generating

the data at a given design point x or the true mean response η(x) is represented here as

η(x) = F (1)(x)Tβ(1) + F (2)(x)Tβ(2), (1)

where F (1)(x) and F (2)(x) are the vectors of basis functions fj [see Appendix A, Eq. (A2)], and β(1)

and β(2) are the coefficient vectors associated with the basis function vectors. The superscript (1)

denotes the sets of basis functions in the linear regression procedure. The superscript (2) denotes

terms on the true function Eq. (1) that are missing from the regression (often due to the cost of

a comprehensive data matrix, in particular for high dimensional problems). As the present paper

deals with the bias error due to partial characterization of the analytical model, the predicted

response at a given design point x is given as

ŷ(x) = F (1)(x)T b, (2)

where b is the estimate of the coefficient vector β(1), which is biased by the presence of the β(2) in

the true function. The true error in the approximation at a design point x is

eb(x) = η(x)− ŷ(x). (3)

In this study the true function is assumed to be a polynomial. Polynomials are popular in

RSA, and in addition, locally, assuming smoothness, all functions look like polynomials according

to Taylor’s Theorem. Since one usually does not know the functional form of the true response,

it is often assumed to be a higher order polynomial. For instance, for a quadratic fitting model in

two variables when the true function is cubic,

F (1)(x) =
(

1 x1 x2 x2
1 x1x2 x2

2

)T
,

β(1) =
(
β

(1)
1 β

(1)
2 β

(1)
3 β

(1)
4 β

(1)
5 β

(1)
6

)T
,

F (2)(x) =
(
x3

1 x2
1x2 x1x

2
2 x3

2

)T
,

β(2) =
(
β

(2)
1 β

(2)
2 β

(2)
3 β

(2)
4

)T
.

(4)

Assuming that there will be no noise in the data y, and the error is only associated with the

modelling, the true response at the data points is

η = y = X(1)β(1) + X(2)β(2), (5)
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where X(1) and X(2) are the design matrices corresponding to the basis functions in F (1) and

F (2). The coefficient vector b in Eq. (2), that is, the biased estimates of the coefficient vector β(1),

becomes (after substitution of Eq.(5) into Eq.(A7) with X = X (1))

b = β(1) +Aβ(2), (6)

where A =
[(
X(1)

)T
X(1)

]−1(
X(1)

)T
X(2) is called the alias matrix. Substitution of Eq.(6) into

Eq.(2) yields

ŷ(x) = F (1)(x)T (β(1) +Aβ(2)). (7)

Unlike some previous work [Papila and Haftka 2001 and Papila et al. 2002], used here is the

absolute bias error (rather than the squared error)

|eb(x)| = |F (1)(x)Tβ(1) + F (2)(x)Tβ(2) − F (1)(x)T (β(1) +Aβ(2))|,

|eb(x)| = |mTβ(2)|,
(8)

where

m = F (2)(x)−ATF (1)(x). (9)

Recall that one of the reasons why bias error variation is of interest is to be able to identify

points where the bias error has the potential to be large. Given β(2), Eq. (8) is the exact bias error

at a point of interest. Therefore, defining or assuming a bound on β(2), which is unknown, may

provide a tool for comparing the worst magnitude of Eq. (8) at the design points, and determine

relatively which regions may suffer the most due to an insufficient model.

Point to point bias error bound prior to data generation

The first approach dealing with the absolute bias error Eq. (8) makes use of the information

in a given design of experiment (DOE) and the assumed true function form, but does not use the

function data. That is, the error bound developed here may be used prior to data generation. For

this reason, it is called the data independent worst case bias error bound.

It is assumed that whatever terms are missing from the fitting model are known, but there

will not be enough data (for instance due to computational or experimental cost) to calculate

the corresponding coefficients β(2). If one bounds the terms in β(2), it is possible to formulate a

maximization problem for the largest absolute bias error, Eq.(8), that may be experienced at any

given design point for the worst possible β(2) of the bound:

max
−c(2)≤β(2)≤c(2)

|eb(x)|, (10)
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where c(2) ≥ 0 is the bound on the β(2) terms. As the bias error, Eq. (8), is expressed by the scalar

product of the two vectors m [Eq. (9)] and β(2), the solution of the maximization problem is

|eIb(x)| =
n2∑

j=1

sgn(mj)mjc
(2)
j , (11)

where superscript I labels the data independent approach, mj is the jth component of the vector m

calculated at x, and n2 is the size of the vectors, i.e., the number of missing coefficients. Then the

worst possible vector is β(2) =
(
sgn(m1)c

(2)
1 , . . ., sgn(mn2

)c
(2)
n2

)T
, that characterizes the coefficients

of the missing basis functions resulting in the largest bias error when fitting only with b. The worst

β(2) and therefore the true function corresponding to the worst possible bias error vary from point

to point. The solution |eIb(x)| reflects the assumed form of the true function with the basis function

coefficients β(2) (among all the possible combinations such that −c(2) ≤ β(2) ≤ c(2)) causing the

largest error. It is viewed as a bound on the bias error given the assumptions on the true model

and a bound c(2) on the terms in β(2). If the coefficient bound is scaled, |eIb(x)| will simply scale

up in proportion without changing the locations identified as having high error potential. Here,

the bound vector is taken as c(2) = 1. Equation (11) is easy to compute, although the number

of coefficients that are variables for the optimization problem increases quadratically with the

dimension of the problem.

Use of error bound as a design of experiment criterion—min-max bias design

The data independent error measure is obtained prior to data generation for a given DOE.

That means it may easily be used to compare different choices of DOE’s. Ultimately, it can be

used to search for the DOE minimizing the maximum point to point bias error bound,
∣∣eIb
∣∣
max

using Eq. (11),
∣∣eIb
∣∣
max

= max
−1≤x1,x2,...,xn≤1

∣∣eIb(x)
∣∣ . (12)

The experimental designs derived here minimize the maximum bound given by Eq. (12) instead of

the average square error, as is done with minimum bias designs [Myers and Montgomery (1995),

Khuri and Cornell (1996) and Venter and Haftka (1997)]. The difference is analogous to H∞

control versus H2 control.

Consider a design of experiments in an n-dimensional cube, −1 ≤ x1, x2, . . ., xn ≤ 1, for which

the data points are determined by parameters 0 ≤ α1, α2, . . ., αm ≤ 1. For instance, two-level

factorial points associated with the parameter αm in the cube are 2n combinations at xi = ±αm
for i = 1, . . . , n. Figure 1 shows two examples for DOE as a function of the parameters αm in two

dimensions.
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The minimum of the maximum absolute bias error given by Eq. (12) is referred to as min-max

bias design, and can be obtained by solving

min
0≤α1,α2,...,αm≤1

∣∣eIb
∣∣
max

. (13)

The min-max bias design from Eq. (13) is compared with the standard DOE’s: minimum

variance design and minimum bias design that minimizes the average square error. The metrics or

error measures for the comparison of the experimental designs are

i) maximum absolute bias error,
∣∣eIb
∣∣
max

, as given in Eq. (12) (obtained from Eq. (11) with

c(2) = 1);

ii) average of absolute bias error,
∣∣eIb
∣∣
av

(from Eq. (11) with c(2) = 1) over the domain −1 ≤ x1,

x2, . . ., xn ≤ 1,
∣∣eIb
∣∣
av

=

∫ ∣∣eIb(x)
∣∣dx; (14)

iii) maximum normalized estimated standard error (square root of the prediction variance which

predicts sensitivity to noise), [ēes]max (see the Appendix A, maximum of Eq. (A9) normalized

by s),

[ēes]max = max
−1≤x1,x2,...,xn≤1

ees(x)/s. (15)

Two polynomial examples are presented for demonstration: first order polynomial fit for a

two-dimensional quadratic polynomial (linear-quadratic example), and quadratic fit for a two-

dimensional cubic polynomial (quadratic-cubic example).

Example I: min-max bias design of linear fit for two-dimensional quadratic polynomial

A two-variable quadratic true function fitted by a first order polynomial is considered first:

η(x) = β
(1)
1 + β

(1)
2 x1 + β

(1)
3 x2 + β

(2)
1 x2

1 + β
(2)
2 x1x2 + β

(2)
3 x2

2,

ŷ(x) = b1 + b2x1 + b3x2.
(16)

The four data points (Figure 1a) are defined by a single variable α1 that determines the experi-

mental design within the coded square domain of −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The design matrices

are given as

X(1) =




1 −α1 −α1

1 −α1 α1

1 α1 −α1

1 α1 α1


 , X(2) =



α2

1 α2
1 α2

1

α2
1 −α2

1 α2
1

α2
1 −α2

1 α2
1

α2
1 α2

1 α2
1


 . (17)

The minimum noise variance design is at the four vertices of the square domain (α1 = 1),

while the standard minimum bias design (that minimizes the average square error) is at (x1, x2) ≈
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(±0.577,±0.577) with α1 =
√

3
3 [Myers and Montgomery p. 415 (1995)]. In contrast, the min-

max bias design, as the solution of Eq. (13), is found at α1 =
√

3
2 ≈ 0.866. In other words, the

maximum potential bias error in a linear model for a true quadratic response is minimized if the

experimental design is (x1, x2) ≈ (±0.866,±0.866). Table 1 compares the minimum noise variance,

minimum bias, and minimum maximum bias error (min-max bias) experimental designs in terms

of the three error measures. It shows that the maximum of the data independent bound
∣∣eIb
∣∣
max

,

Eq. (12) is highest for the minimum bias design and lowest for the design where it was minimized

in the domain. Average absolute bias error
∣∣eIb
∣∣
av

, Eq. (14) reported in Table 1 is lowest for the

minimum bias design as it minimizes the bias error in an average sense. The contour plots of the

data independent bound are presented in Figure 2. Comparisons of Figure 2b and Figure 2c shows

that the data independent error bound levels are generally lower, but the maximum error can be

high on the boundary. This is due to the data points being much farther from the boundary for

the minimum average bias design. In addition, the min-max bias design is much less sensitive to

noise variance, as measured by [ēes]max, Eq. (15), than the minimum bias design (similar to an

H∞ optimal controller)

Example II: min-max bias design of quadratic fit for two-dimensional cubic polynomial

The second two-variable problem is a cubic polynomial fitted by a quadratic polynomial:

η(x) = β
(1)
1 + β

(1)
2 x1 + β

(1)
3 x2 + β

(1)
4 x2

1 + β
(1)
5 x1x2 + β

(1)
6 x2

2

+ β
(2)
1 x3

1 + β
(2)
2 x2

1x2 + β
(2)
3 x1x

2
2 + β

(2)
4 x3

2,

ŷ(x) = b1 + b2x1 + b3x2 + b4x
2
1 + b5x1x2 + b6x

2
2.

(18)

The experimental design now includes, in addition to center point (0,0), 4 factorial and 4 axial

points determined by parameters α1, and α2, respectively (Figure 1b). The design matrices are

given as

X(1) =




1 −α1 −α1 α2
1 α2

1 α2
1

1 −α2 0 α2
2 0 0

1 −α1 α1 α2
1 −α2

1 α2
1

1 0 −α2 0 0 α2
2

1 0 0 0 0 0
1 0 α2 0 0 α2

2

1 α1 −α1 α2
1 −α2

1 α2
1

1 α2 0 α2
2 0 0

1 α1 α1 α2
1 α2

1 α2
1




, X(2) =




−α3
1 −α3

1 −α3
1 −α3

1

−α3
2 0 0 0

−α3
1 α3

1 −α3
1 α3

1

0 0 0 −α3
2

0 0 0 0
0 0 0 α3

2

α3
1 −α3

1 α3
1 −α3

1

α3
2 0 0 0
α3

1 α3
1 α3

1 α3
1




. (19)

The minimum noise variance design is achieved at α1 = α2 = 1. The standard minimum bias

design, minimizing the average square error, is with α1 = 0.700 and α2 = 0.770 [due to Qu et al.
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(2004)]. The min-max bias design is now obtained as the solution of Eq. (13) at α1 = α2 = 0.949.

Table 2 compares the minimum noise variance, minimum average bias, and minimum maximum

bias error (min-max bias) experimental designs in terms of three error measures.

As in Example I, the maximum of the data independent bound
∣∣eIb
∣∣
max

, Eq. (12) is the highest

for the minimum bias design and lowest for the design where it was minimized in the domain. The

contour plots for the data independent bound are presented in Figure 3. Comparisons of Figure

3b and Figure 3c reveal the fact that the minimum bias design minimizes the bias error in an

average sense (see Table 2 for average
∣∣eIb
∣∣
av

), and so the data independent error bound levels are

generally lower, but the maximum error can be high. The two examples demonstrate that each of

three design criteria produces a design that is optimal with respect to the criterion that produced

it. The min-max bias experimental design, however, that was found via the data independent bias

error bound appears to be a good compromise between the minimum noise variance and minimum

bias designs: it is much less sensitive to noise variance as measured by [ēes]max than the minimum

bias design.

The squared error approach of Papila and Haftka (2001) was previously integrated in a design

space windowing procedure (Papila et al. 2002) where the regions of interest were zoomed by the

prediction of a global RSA. Then, additional design points in the zoomed area were selected using

a squared error based data independent error bound. The present bias error bounds are equally

applicable for such adaptive design of experiment applications where more data is progressively

generated.

Point to point bias error bound posterior to data generation

Once data is available, the error bounds can be tightened and the data dependent worst case

bias error bounds can be obtained. That is, sharper bounds on the bias error can now be obtained

by constraining β(2) to satisfy the data. This restricts consideration to all possible polynomials

with coefficients that interpolate the given data points
(
x(i), yi

)
and result in the approximation

ŷ(x) associated with the data.

The bias error of the approximation ŷ(x) at a design point x is given by Eq. (8). This relation

along with Eq. (9) leads to the prediction error vector due to bias at the data points x(i),

Eb = y − Ŷ = (X(2) −X(1)A)β(2), (20)

where Ŷ is the vector of predictions ŷ
(
x(i)
)

by the response surface approximation at the data

points.
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The optimization problem now is to find the maximum absolute error at a design point subject

to constraints on the magnitude of the coefficients and η(x) matching the given data. As the latter

constraint is equivalent to matching the prediction error vector at the data points, Eq. (20), the

maximization of the error may be formulated as a linear program (LP),

max
−c(2)≤β(2)≤c(2)

|eb(x)| such that
(
X(2) −X(1)A

)
β(2) = y − Ŷ . (21)

The solution of the system Eq. (21) requires solving two LP problems, one for the minimum and

one for the maximum error eb(x), and the solution is denoted as |eDb (x)| for data y (superscript

D labels the data dependent bound). Like the data independent error bound, this is also a worst

case search (and hence a bound on the bias error) |eIb(x)|. The computational effort required for

the data dependent bound may grow large as the number of coefficients β(2) that are variables for

the optimization (LP) problems increases with the dimension of the problem.

Selection of the bounds on the coefficients is an important part of the present approach.

The data independent error bound does not make use of information on the function values, and

so it makes sense to have the same coefficient bounds c(2) [Eq. (10)] on all the coefficients, and

the magnitude is immaterial in terms of a relative or qualitative comparison over the domain.

In contrast, the choice of the bounds c(2) in the data dependent error bound [Eq. (21)] must be

compatible with the data. If variables are normalized or coded so that all the data satisfy ‖x‖∞ ≤ 1,

one logical selection criterion is to use the error magnitudes at the data points as an indication of

the magnitude of the missing coefficients. This fails, however, when the errors at the data points

are all small. Another indication is the magnitude of the coefficients b. With normalized (coded)

variables, one could assume that the coefficients β(2) have magnitudes that are a fraction of the

largest coefficient of b. Finally, one could assume that the missing coefficients are a fraction of the

maximum function value minus the value of the constant coefficient b1.

Note that the LP problem with the equality constraints as given in Eq. (21) may not always

be feasible because for many standard design of experiments the rows of the matrix [X (2)−X(1)A]

may be linearly dependent and so the matrix is rank deficient. With such linear dependence, if

the data is not exactly consistent with the assumed true model (due to noise or small deviations

of the true function from the assumed true model) the equalities cannot be satisfied. This can

be resolved by relaxing the equality constraint into a pair of inequality constraints with a small

tolerance. Such rank deficient DOEs have the advantage that they provide information on the

magnitude of deviation from the assumed true model.
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The two polynomial examples of the previous section are used for demonstration along with the

min-max bias designs developed. Note, however that such experimental designs are not prerequisite

or essential for the use of data dependent error bounds. Also, recall that the data dependent error

bounds |eDb (x)| are worst case measures as they characterize the worst possible polynomials point

to point subject to available data. Therefore, effective demonstration of the usefulness of the error

bounds must consider a large number of quadratic and cubic polynomials in the first and second

examples, respectively.

For the next two example cases, five different sets of data and 100 different polynomials for

each set were randomly selected. This gives 100 randomly selected polynomials per data set to

evaluate the data dependent bound. The actual RSA error at x for the lth polynomial with the

kth data set is denoted by

|eb(x)|kl = |η(x)− ŷ(x)|kl, (22)

where the first index k denotes the data set (A, B, C, D, or E), and the second index l = 1, 2,

3, . . ., 100 denotes the polynomial. Then the worst case error at x for the kth data set and the

overall worst case error at x, respectively, are

|eb(x)|kmax = max
l

(|η(x)− ŷ(x)|kl), (23)

|eb(x)|overall = max
k

(|eb(x)|kmax). (24)

Example I: linear fit for two-dimensional quadratic polynomial using the min-max

bias design

For this example, with only bias error, substituting Eq. (17) into Eq. (20), the absolute

prediction error at the four data points depends on β
(2)
2 alone (equal to α2

1β
(2)
2 ). As a result,

selecting the data randomly is equivalent to random selection of coefficients b1, b2, b3 and β
(2)
2 .

Once the data is selected, different polynomials that interpolate this data can be obtained by

generating random β
(2)
1 and β

(2)
3 which also determine β(1) since the RSA coefficients, due to

Eq. (6), are expressed as

b1 = β
(1)
1 + α2

1(β
(2)
1 + β

(2)
3 ),

b2 = β
(1)
2 ,

b3 = β
(1)
3 .

(25)

Appendix B describes the details of the selection of data sets and associated random polynomials

and the bounds c(2) on the coefficients.
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The data dependent error bound |eDb (x)| was computed using Eq. (21) for data sets A, . . . ,

E (associated 100 random polynomials each) and compared to the actual error distribution. The

contour plots for data sets C and E presenting the actual worst case errors (over associated 100

polynomials each) and the data dependent error bound are given in Figure 4 and Figure 5, respec-

tively. They show good agreement and suggest that the error bound determines successfully the

map of the worst case errors in the design space due to the available approximation. It suggests

that the RSA may be vulnerable to prediction error at the center of the design domain. The

corresponding coefficients of correlation between the error bounds and worst errors are calculated

over a 11x11 uniform grid points and given in Table 3.

Note that the total of 500 polynomials (100 for each data set A–E) is indeed a subset of

the quadratic polynomials of the −c(2) ≤ β(2) ≤ c(2) (c(2) = 1 as described in Appendix B).

Therefore, the maximum of the errors among all 500 polynomials may be characterized by the

data independent error bound |eIb(x)| for the min-max bias experimental design (from Eq. (11) as

shown also in Figure 3c). Correlations of data independent error bounds with the worst, actual

errors for the kth individual data set |eb(x)|kmax and the worst of all 500 polynomials |eb(x)|overall,

Eq. (24), are also presented in Table 3. As expected, coefficients of correlation of |eIb(x)| with actual

error for individual data sets are lower than the correlations obtained for the data dependent bound

|eDb (x)|. The coefficient of correlation increases for the worst of all 500 polynomials, as the data

matching constraint averages out. The contour plots for |eb(x)|overall and the data independent

bound |eIb(x)| are shown in Figure 6.

Example II: quadratic fit for two-dimensional cubic polynomial using the min-max

bias design

The example of DOE at α1 = α2 = α = 0.949, with only bias error, Eq. (20), results in the

prediction error at the data points as a function of only β
(2)
2 and β

(2)
3 , and the RSA coefficients via

Eq. (6) will be

b1 = β
(1)
1 ,

b2 = β
(1)
2 + α2(β

(2)
1 +

2

3
β

(2)
3 ),

b3 = β
(1)
3 + α2(

2

3
β

(2)
2 + β

(2)
4 ),

b4 = β
(1)
4 ,

b5 = β
(1)
5 ,

b6 = β
(1)
6 .

(26)
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Similar to Example I, randomly selecting the data is equivalent to random selection of the

coefficients b1, b2, b3, b4, b5, b6, β
(2)
2 , and β

(2)
3 . The details of the selection of data sets and associated

random polynomials and the bounds c(2) on the coefficients in this example are also presented in

Appendix B.

The correlations between the data dependent error bound |eDb (x)|, Eq. (21), and the worst

actual error distribution |eb(x)|kmax, Eq. (23), on a 11 × 11 grid are given in Table 4. The data

dependent error bound and actual worst error correlated very well. Figure 7 and Figure 8 present

the contour plots for data sets B and D, respectively, presenting the actual worst errors (over

associated 100 polynomials each) and the data dependent error bound. They also suggest that the

data dependent error bound successfully determines the worst case error variation that may be

considered as map of potential high bias error locations.

The maximum of the errors among all 500 polynomials (100 for each data set A–E) may again

be characterized by the data independent error bound |eIb(x)| for the min-max bias experimental

design (from Eq. (11) as shown also in Figure 3c). Table 4 also presents the correlations for the

data independent error bound. Lower correlations with the worst actual errors |eb(x)|kmax for the

individual data sets demonstrate the benefit of taking data into account. As expected, correlation

of the data independent error bound with the actual worst errors increases when polynomials for

different data are included. It is about 0.97 for the worst of 500 polynomials |eb(x)|overall, Eq. (24).

The contour plots for |eb(x)|overall and the data independent bound |eIb(x)| are shown in Figure 9.

The benefit of data available to tighten the bounds may be observed by comparing Figures 7b,

8b and 9b. The data independent error bounds in Figure 9b suggest, for instance, design points

at (-0.5,-0.5), (-0.5,+0.5), (0.5,-0.5) and (0.5,0.5) may experience high errors. This seems to be

also true for the data set D as in Figure 8b. Figure 7b for data set B, however, shows the bounds

at points (-0.5,+0.5) and (0.5,-0.5) are tightened. That is, much less danger is predicted, as also

observed in 100 polynomials of data B.

Note that the consistency in selection of the bounds for the uniform distributions and the

bounds for coefficients used in optimization provides a quantitative assessment by the error bounds

in the present polynomial examples (see Appendix B). Their use, however, should be considered

qualitative, in general.
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Conclusions

Two error bounds were developed in order to characterize the point to point variation of error

due to an incorrect data model (bias error). A data independent error bound is computed prior

to data generation and depends only on the design of experiments, the true and least square fit

models. It seeks the worst case absolute error, which varies point to point. The data independent

bound may be used to obtain experimental designs that minimize the maximum bias error. It

appears from the examples in this paper that such a min-max bias experimental design is a good

compromise between traditional minimum noise variance and minimum bias designs.

The data dependent bound also considers the worst case absolute errors, but it is tightened by

the available data. That is, the essential difference between the two error bounds is whether the

coefficients of the permissible true functions are bounded without and with the data constraint.

Comparisons of the actual worst errors and the error bounds for randomly selected polynomial

examples showed that the data dependent error bound successfully determines the map of the worst

case prediction errors in the design space due to the available approximation. This information

may be used to adaptively refine a design of experiments, or to steer clear of the identified potential

high bias error regions in the design domain.

The examples here are limited to polynomial true functions. The tools proposed, however, are

still relevant. Even if the true function is not a polynomial, it is very well approximated locally by

a cubic function, for instance, that is a better approximation than a quadratic to the true function.

Therefore, these bias error bounds, locally in particular, may be a valuable source of information

about the true bias, even when the correct form of the true function is unknown.
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Appendix A: response surface methodology

A scalar function η(x), x ∈ En (En is real n-dimensional Euclidean space) is observed at N

points x(i), i = 1, . . ., N , and the observations yi are contaminated by random variations εi such

as measurement error, so

yi = η(x(i)) + εi. (A1)

The random errors ε at different points x ∈ En are assumed to be uncorrelated and normally

distributed random variables with zero mean and variance σ2 that is the same at all points. The true
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mean response is assumed to be given in terms of basis functions fj(x) and associated coefficients

βj as

η(x) =
n1∑

j=1

βjfj(x) = F (x)T β, (A2)

where F (x)T =
(
f1(x), f2(x), . . ., fn1

(x)
)

and βT =
(
β1, β2,. . ., βn1

)
. The n1 basis functions fj

are often monomials. The least squares approximation based on N > n1 observations is

ŷ(x) =

n1∑

j=1

bjfj(x) = F (x)T b, (A3)

where the expected value of bj (vector b) is the βj (vector β ). The difference (residual) between

the data y and the estimate ŷ(x) defined in Eq.(A3) at point x(i) is

ei = yi − ŷ
(
x(i)
)
. (A4)

For N observations yi, i = 1, . . ., N , the residuals can be written in matrix form

e = y −Xb, (A5)

where eT =
(
e1, . . ., eN

)
, and X is the Gramian matrix with terms Xi,j = fj

(
x(i)
)
. For instance,

for a quadratic model in two variables x1, x2 with N data points
(
x

(1)
1 , x

(1)
2

)
, . . .,

(
x

(N)
1 , x

(N)
2

)
,

X =




1 x
(1)
1 x

(1)
2

(
x

(1)
1

)2
x

(1)
1 x

(1)
2

(
x

(1)
2

)2

1 x
(2)
1 x

(2)
2

(
x

(2)
1

)2
x

(2)
1 x

(2)
2

(
x

(1)
2

)2
...

...
...

...
...

...
1 x

(i)
1 x

(i)
2

(
x

(i)
1

)2
x

(i)
1 x

(i)
2

(
x

(i)
2

)2
...

...
...

...
...

...
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(N)
1 x

(N)
2

(
x

(N)
1

)2
x

(N)
1 x

(N)
2

(
x

(N)
2

)2




. (A6)

The coefficient vector b in Eq.(A5) that minimizes ‖e‖22 is (assuming X has full rank)

b = (XTX)−1XT y. (A7)

When the fitting model Eqs.(A1–A2) is valid (no bias error), an unbiased estimator s2 (error mean

square) for variance σ2 of the noise is given as

s2 = MSE =
yT y − bTXT y

N − n1
. (A8)

The positive square root of the prediction variance is usually used as an estimate of the

prediction error at a design point x, also called estimated standard error, and is defined by (Myers

and Montgomery, 1995)

ees(x) = s
√
F (x)T (XTX)−1F (x), (A9)

where the estimator s [Eq. (A8)] is often called in the engineering literature the root-mean-square-

error (RMSE) predictor. The estimated standard error depends on the location of the design point.

Furthermore, as Eq.(A2) is, in general, only an assumption about the true function η(x), s will

contain not only noise error, but also modeling (bias) error.

17



Appendix B: selection of random polynomials and coefficient bounds for the ex-

amples

In Example I, selecting the data randomly is equivalent to random selection of coefficients b1,

b2, b3, and β
(2)
2 . Consider a uniform distribution U(−1,+1) for coefficients b2, b3, and β(2). For the

intercept or constant coefficient b1, the U(5, 10) distribution is selected in order to obtain reasonable

relative errors at the data points. The coefficients and associated distributions corresponding to

the linear-quadratic example are summarized in Table B1. The randomly selected coefficients for

data sets A to E are presented in Table B2. It is seen that the maximum absolute error at the

data points |e(i)|max is equal to the absolute value of α2
1β

(2)
2 (α1 = 0.866). The coefficients β(2)

are bounded conservatively at ±1 (c(2) = 1) by considering |e(i)|max from Table B2.

In Example II, randomly selecting the data is equivalent to random selection of the coefficients

b1, b2, b3, b4, b5, b6, β
(2)
2 , and β

(2)
3 . Uniform distributions used in this example are also given in

Table B1. The data sets A to E characterized by b, β
(2)
2 , and β

(2)
3 are presented in Table B3. The

maximum absolute errors at the data points |e(i)|max are also shown in the last column of the

table. Then selecting β
(2)
1 and β

(2)
4 randomly provides 100 polynomials for each data set satisfying

the data. The coefficients β(2) are bounded conservatively at ±1 (c(2) = 1) by considering |e(i)|max
from Table B3.
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Table 1: Design of experiments, Example I: linear-quadratic example (Figure 1a), maximum

normalized standard error [ēes]max [from Eq. (15)], average of absolute bias errors
∣∣eIb
∣∣
av

(from

Eq. (14) for c = 1), and maximum absolute bias error (from Eq.(11) with c = 1) in −1 ≤ x1 ≤ 1,

−1 ≤ x2 ≤ 1. First order polynomial fit at four data points (−α1,−α1), (−α1,+α1), (+α1,−α1)

and (+α1,+α1).

Design of
experiment

α1 [ēes]max
∣∣eIb
∣∣
av

for c = 1

∣∣eIb
∣∣
max

for c = 1

Minimum
noise variance

1.000 0.866 1.550 2.000

Minimum
average bias

0.577 1.323 0.811 2.333

Minimum
maximum bias

0.866 0.957 1.163 1.500

Table 2: Design of experiments, Example II: quadratic-cubic example (Figure 1b), Maximum

normalized standard error [ēes]max [from Eq. (15))], average of absolute bias errors
∣∣eIb
∣∣
av

(from

Eq.(14) for c = 1), and maximum absolute bias error (from Eq. (11) with c = 1) in −1 ≤ x1 ≤ 1,

−1 ≤ x2 ≤ 1.

Design of
experiment

α1, α2 [ēes]max
∣∣eIb
∣∣
av

for c = 1

∣∣eIb
∣∣
max

for c = 1

Minimum
noise variance

1.000,1000 0.898 0.860 1.147

Minimum
average bias

0.700,0.770 1.944 0.656 2.331

Minimum
maximum bias

0.949,0.949 0.994 0.793 1.000

Table 3: Linear-quadratic example: coefficients of correlation between error bounds and the actual

worst errors calculated on a uniform 11× 11 grid.

|eb(x)|Amax |eb(x)|Bmax |eb(x)|Cmax eb(x)|Dmax |eb(x)|Emax |eb(x)|overall

|eDb (x)| 0.9953 0.9374 0.9206 0.9744 0.9966 N/A

|eIb(x)| 0.7365 0.9417 0.9537 0.8877 0.5959 0.9650
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Table 4: Quadratic-cubic example: coefficients of correlation between error bounds and the actual

worst errors calculated on a 11× 11 grid.

|eb(x)|Amax |eb(x)|Bmax |eb(x)|Cmax eb(x)|Dmax |eb(x)|Emax |eb(x)|overall

|eDb (x)| 0.9786 0.9639 0.9869 0.9932 0.9826 N/A
|eIb(x)| 0.7152 0.6743 0.7258 0.6403 0.7289 0.9701

Table B1: Description of uniformly distributed random coefficients for the example problems.

Uniform Examples
distribution Linear-quadratic example Quadratic-cubic example

U(5, 10) b1 b1
U(−1,+1) b2, b3 b2, b3, b4, b5, b6
U(−1,+1) β

(2)
1 , β

(2)
2 , β

(2)
3 β

(2)
1 , β

(2)
2 , β

(2)
3 , β

(2)
4

Table B2: Linear-quadratic example: randomly selected coefficients for the data sets and the

maximum absolute error at the data points.

Data Set b1 b2 b3 β
(2)
2 |e(i)|max

A 5.11 −0.40 0.79 0.37 0.28
B 8.57 0.53 0.89 0.94 0.71
C 5.10 −0.90 0.80 −0.84 0.63
D 9.88 −0.93 −0.84 −0.66 0.50
E 6.80 0.88 −0.08 −0.07 0.05

Table B3: Quadratic-cubic example: randomly selected coefficients for the data sets and the

maximum absolute error at the data points.

Data Set b1 b2 b3 b4 b5 b6 β
(2)
2 β

(2)
3 |e(i)|max

A 7.99 −0.45 −0.62 0.90 0.03 0.61 −0.96 0.64 0.54
B 7.72 0.64 −0.05 −0.78 −0.01 0.69 0.68 0.79 0.45
C 8.34 0.59 −0.81 0.62 0.38 0.67 −0.48 0.81 0.46
D 8.67 −0.83 −0.40 0.47 0.50 −0.22 0.13 0.88 0.50
E 6.78 −0.07 0.66 −0.18 −0.47 −0.01 −0.33 0.51 0.29
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Figure 1: Design of experiment in coded square domain −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. (a) Example

1: linear-quadratic example; (b) Example 2: quadratic-cubic example.
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Figure 2: Data independent error bound in −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 for linear-quadratic

example (Figure 1a): (a) minimum noise variance design (α1 = 1.0), (b) minimum average bias

design (α1 = 0.577), (c) minimum maximum bias design (α1 = 0.866).
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Figure 3: Data independent error bound in −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 for quadratic-cubic example

(Figure 1b): (a) minimum noise variance design (α1 = α2 = 1.0), (b) minimum average bias design

(α1 = 0.700, α2 = 0.770), (c) minimum maximum bias design (α1 = α2 = 0.949).
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Figure 4: Comparison of absolute worst case errors for data set C in Example I: (a)worst of 100

polynomials, (b) data dependent bound, |eDb (x)|.

x1

x 2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

|eb(x)|Emax

1.500
1.394
1.288
1.182
1.077
0.971
0.865
0.759
0.653
0.547
0.442
0.336
0.230

x1

x 2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

|eD
b(x)|E

1.500
1.394
1.288
1.182
1.077
0.971
0.865
0.759
0.653
0.547
0.442
0.336
0.230

(a) (b)

Figure 5: Comparison of absolute worst case errors for data set E in Example I: (a)worst of 100

polynomials, (b) data dependent bound, |eDb (x)|.
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Figure 6: Comparison of absolute worst case errors for polynomials of data sets A through E in

Example I: (a)worst of 500 polynomials, (b) data independent bound, |eIb(x)|.
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Figure 7: Comparison of absolute worst case errors for data set B in Example II: (a)worst of 100

polynomials, (b) data dependent bound, |eDb (x)|.
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Figure 8: Comparison of absolute worst case errors for data set D in Example II: a)worst of 100

polynomials, b) data dependent bound, |eDb (x)|.
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Figure 9: Comparison of absolute worst case errors for polynomials of data sets A through E in

Example II: (a)worst of 500 polynomials, (b) data independent bound, |eIb(x)|.
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