
 
Problem Identification and Decomposition  

within the Requirements Generation Process 
 

Ahmed S. Sidky, Rajat R. Sud, Shishir Bhatia and James D. Arthur 
Department of Computer Science, Virginia Tech 

Blacksburg, VA   24060, USA 
 

{asidky, rsud, shbhatia, arthur}@vt.edu 
 
 
 
 

ABSTRACT 

Only recently has the real importance of the requirements 
generation process and its requisite activities been recognized.  
That importance is underscored by the evolving partitions and 
refinements of the once all-encompassing (and somewhat miss-
named) Requirements Analysis phase of the software 
development lifecycle.  Continuing along that evolutionary line, 
we propose an additional refinement to the requirements 
generation model that focuses on problem identification and its 
decomposition into an associated set of user needs that drive the 
requirements generation process.  Problem identification 
stresses the importance of recognizing and identifying the 
difference between a perceived state of the system and the 
desired one. We mention pre- and post-conditions that help 
identify and bound the “problem,” and then present some 
methods and techniques that assist in refining that boundary and 
also in recognizing essential characteristics of the problem.  We 
continue by presenting a process by which the identified 
problem and its characteristics are decomposed and translated 
into a set of user needs that provide the basis for the solution 
description, i.e, the set of requirements.  Finally, to place 
problem identification and decomposition in perspective, we 
present them within the framework of the Requirements 
Generation Model. 
 
Keywords: Requirements Engineering, Problem Analysis, 
Problem Identification, Problem Decomposition 
 
 

1. INTRODUCTION 

A system is only as good as the requirements from which it is 
developed.  It is crucial, therefore, to gain a firm understanding 
of the customer’s stated as well as implied requirements.  While 
significant strides have been made in developing tools and 
techniques, in acquiring such an understanding, the formal 
concepts, frameworks and processes underpinning the use of 
those tools and techniques are often ill-defined, or simply 
lacking.  For example, we tout the need for Requirements 
Validation – but what do we validate the requirements against?  
Problem Analysis is a second example.  More specifically, we 
would ask: What constitutes Problem analysis?  Where does it 
fall within the requirements generation process?  What are the 
activities supporting it?  In this paper we focus on answering 
the above questions because we are convinced that effective 
Problem Analysis is crucial to the evolution of requirements 

that meet both the stated as well as the intended needs of the 
customer.  
 
Gause and Weinberg [6] characterize a “problem” as “the 
difference between things as perceived and things as desired.”  
Problem Analysis, therefore, can be viewed as the process of 
understanding the customer’s real problem, and then translating 
that understanding into a set of needs.  Reflecting this view, we 
have identified two principal activities within Problem Analysis 
– Problem Identification and Problem Decomposition. Problem 
Identification focuses on gaining an understanding of the 
customer’s problem domain and identifying the root cause(s) of 
the symptoms being observed by the customer.  That root 
cause(s) is the problem.  Problem Decomposition, on the other 
hand, is the process of translating our understanding of that 
problem into a “statement of needs” that provides the basis for 
solution specification, i.e., requirements. 
 
The remainder of this paper elaborates on what we have 
outlined above.  In Section 2 we provide a more comprehensive 
discussion motivating the concepts behind and the need for 
Problem Analysis.  In Section 3 we provide an in-depth 
examination of the issues and activities associated with both 
Problem Identification and Problem Decomposition.  Section 4 
provides a description of specific tools and methods that assist 
the analyst in Problem Analysis activities. We conclude by 
outlining where Problem Analysis fits within the Requirements 
Generation Model developed at Virginia Tech [1].   
 

2. BACKGROUND AND MOTIVATION 

The importance of a well-defined, effective set of requirements 
engineering activities is constantly being reinforced as we begin 
to recognize the manifold relationships between the quality of a 
product and the quality of requirements from which it is 
developed.  The success rates for our development efforts, 
however, have been abysmal.  According to the Standish Group, 
five of the top eight reasons why projects fail are related to the 
requirement generation process – incomplete and/or erroneous 
requirements, lack of user involvement, unrealistic customer 
expectations, and requirements volatility [12].  If requirements 
are so important then, why are we only now beginning to define 
(or refine) processes and activities that support their synthesis?  
An examination of how requirements generation has evolved 
over time, and how it has been repressed helps us answer this 
vital question.   
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Historical Perspective 
The original Waterfall Model introduced by Royce [11] outlines 
a sequence of activities that are still found in most of today’s 
software development processes.   Leading the development 
process is the Requirements Analysis activity, followed by 
Design, Coding, and Integration & Testing.  This conceptual 
“framework” provided significant insights as to how software 
should be developed.  Furthermore, it paved the way for the 
definition of many similar models and paradigms that are 
composed of essentially the same basic set of activities (or 
phases), e.g. The Object Oriented [3] and Spiral Models [2].  A 
closer examination of existing software development models 
reveals a common thread:  they all contain a Requirements 
Analysis phase, it is usually one of the first phases in the model, 
and it is composed of a series of activities that relate to the 
gathering and analysis of requirements from the customer.  
Although “first” in the sequence of phases, Requirements 
Analysis has been last in line for re-examination and 
refinement.  In fact, the redefinition and refinement of the 
original phases defined by Royce proceeded in a backward 
fashion starting with Integration & Testing.  We attribute this to 
the fact that as we move from Requirements Analysis toward 
the Integration & Testing phase, conceptualizing and addressing 
indigenous issues become relatively easier.  Moreover, when the 
software engineering community did begin examining and 
refining the Requirement Analysis phase, its somewhat 
inappropriate name contributed to the perception that activities 
therein, like Problem Analysis and Requirements Elicitation, 
were only minor ones [4].  Subsequently, only within the last 
few years have we seen a meaningful refinement of 
“Requirements Analysis” that recognizes the major activities 
that underlie requirements generation.  Because it is the 
opinions of the authors that Requirements Generation is a better 
characterization of those activities performed in the 
requirements phase, we will use it in lieu of Requirements 
Analysis. 

Concept 
Definition 

Problem  
Analysis   

Requirements 
Elicitation 

Time   
 Figure 1   

Distinguishing Between the Problem and Solution Spaces 
Before going further, it is important to recognize one additional 
distinction implied by Figure 1 – the difference between 
formulating a description of the customer’s problem and 
formulating a description of a solution to that problem.  As 
stated earlier, a problem is the difference between things as 
perceived versus things as desired.  According to Gause, the 
most common starting point for requirements generation is to 
start thinking in terms of a solution before identifying the 
problem that the solution is going to solve [7].  Such thinking, 
however, can lead to solutions to the wrong problem, or to a 
solution that is unnecessarily constraining.  Problem 
Identification, the first activity within Problem Analysis, 
focuses on confirming that the problem being conveyed is, in 
fact, the root cause of the observed (and often undesirable) 
symptoms.  Once identified (and confirmed), the problem is 
then recorded as a single descriptive unit that includes all 
necessary clarification and qualification information, i.e., a 
problem statement.  A set of customer needs is then determined 
by decomposing the problem statement into a set of smaller, 
refined problem components.  The problem statement and set of 
derived needs define the problem space.  That is, they define 
what the customer needs. 
 
The set of customer needs are used as input to the requirements 
elicitation activity.  It is here that each need is translated into 
one or more (software) system requirement, which when 
implemented, will solve the customer’s problem.  In effect, the 
set of elicited requirements define the solution space – that is, 
they define what the system shall do.  

Refining the Requirements Generation Process  The Software Engineering Community now recognizes five 
major activities with the Requirements Generation process: 
Requirements Elicitation, Requirements Verification & 
Validation, Requirements Specification, Requirements Analysis 
and Requirements Management [13, 14].  Within this set we 
once again find the phrase “Requirements Analysis.”  In this 
new context, however, it is defined to be “the process of 
analyzing the customer and user needs to arrive at a definition 
of software requirements” [13].  And once again we believe this 
phase is being ill-defined because, by definition, it could also 
include verification and validation activities – clearly this was 
not intended.  When considered relative to the other four major 
requirements generation activities, however, we can infer that 
Requirements Analysis is composed of those activities that deal 
with problem analysis, feasibility assessment, and risk analysis 
and assessment.      

3. PROBLEM IDENTIFICATION AND 
DECOMPOSITION 

 
In Section 2 we have provided a historical view of 
Requirements Generation and have presented an evolutionary 
path to the Problem Analysis activity.  We have also identified 
(a) where Problem Analysis fits into the Requirements 
Generation process, and (b) the two principal activities 
comprising it, i.e., Problem Identification and Problem 
Decomposition.  The objective of Problem Analysis, and 
subsequently a common one for Problem Identification and 
Problem Decomposition is to develop a comprehensive 
understanding of the problem perceived by the customer, and to 
identify the corresponding needs that, in turn, will serve as the 
basis for requirements elicitation.  We now examine the 
individual components of Problem Analysis.   Figure 1 places Problem Analysis in perspective.  That is, it 

follows Concept Definition but precedes Requirements 
Elicitation.  The Concept Definition activity is not considered a 
requirements generation activity.  Its primary objective is to 
produce a document that provides a conceptual overview of 
how the system  might operate.  This document is called the 
Concept of Operations document, and is used as input to 
Problem Analysis.  Problem Analysis can be considered as the 
first principle activity of the requirements generation phase.   

Problem Identification 
The objective of the Problem Identification is to gain agreement 
on the problem definition.  Common obstacles that stand in the 
path of meeting this objective are  

(a) the customer has only a cursory understanding of the 
problem,  

(b) the customer is convinced of a problem formulation that is 
inconsistent with the symptoms,  

 



(c) the customer is thinking in the solution space before 
he/she has gained any understanding of the underlying 
problem, and finally  

(d) the requirements engineer’s (or analyst’s) lack of domain 
knowledge.   

Educating the requirements engineer in the existing and 
proposed system as well as the operational environment helps 
mitigate the adverse impact of (d).  The other three obstacles are 
customer oriented and require an investigation into the 
perceived inadequacies of the current system (if one exists at 
all) and the corresponding operational needs.   
 
As alluded to earlier and as implied in Figure 1, a cursory 
description to the problem is provided by the Concept of 
Operations document. Alternatively, depending on the 
magnitude of the software development effort, a statement of 
the problem can take the form of a set of high-level 
requirements coming from a prior Systems Engineering effort.  
It is our experience that the effort associated with Problem 
Identification is greater in case of the former as compared to the 
latter.  This stems from the fact that the set of high-level 
requirements are obtained as a result of a formal analysis 
activity during Systems Engineering, while the structure and 
content of the Concept of Operations document may vary 
widely.  In either case, the correctness of the incoming 
document and what it implies must be examined before 
proceeding.  In other words, we must determine if the problem 
it outlines is, in fact, the root cause of the observed symptoms.  
We use the following example to help clarify this concept.   
 
A manager receives numerous complaints from users about the 
poor performance of his organization’s web service.  The 
manager contacts the web administrator and states that he needs 
to place the web service on a faster machine.  Being an 
experienced analyst, he/she recognizes that the manager has just 
provided a solution without stating the problems.  So, rather 
than starting a search for a more powerful web server, the 
analyst asks “What problem will a more powerful web server 
solve?.”  The manager then explains that users are complaining 
about the poor response time for the web services.  After 
applying root cause analysis, the real problem is identified as a 
recently installed search algorithm which takes O(n2) time 
rather that the expected O(n log(n)).  Replacing the inefficient 
algorithm with a more appropriate one led to a more acceptable 
response time. 
 
Once the analyst and customer have agreed on the problem in 
principle, the analyst needs to produce a formal Problem 
Statement.  Leffingwell and Widrig provide an outline of the 
format of such a statement [9].  More specifically, the problem 
statement must  

(a) provide a description of the problem elements,  
(b) identify stakeholders affected by the problem,  
(c) describe the impact of the problem on the stakeholders 

and business activities, and  
(d) indicate the proposed solution along with a few key 

benefits.   

On a final note, although tools and techniques to support 
Problem Identification do exist, they often reflect a multi-
purpose flavor.  In the next section we discuss several 
supporting techniques, including Root Cause Analysis and the 
use of Context Free Questions. 

 
Problem Decomposition 
Once the actual problem is identified the next step in Problem 
Analysis is to decompose the problem into smaller distinct 
elements, and to further refine their individual characteristics.  
The intent is to gain additional insights into the problem, and 
subsequently, a better understanding of the customer needs.  
Decomposition and refinement are activities of Problem 
Decomposition.  
 
Problem Decomposition involves a series of steps by means of 
which a set of needs is obtained, from which the requirements 
are derived.  Like its predecessor, Problem Decomposition is an 
iterative process that begins with root cause analysis.  This 
presumes, of course, that the actual problem has been identified 
and has a well-defined problem statement. In addition, we 
recommend that the analyst be educated about the problem-
specific aspects of the customer’s domain and the environment 
within which the new/modified system will eventually function.  
This indoctrination either outlines or provides the basis for (a) 
defining the solution boundaries and (b) identifying the 
constraints to be imposed on the solution space, e.g., economic, 
political, technical, etcetera.  
 
As mentioned above, Problem Decomposition is an iterative 
process that often involves numerous meetings with the 
customer.  Prior to each meeting the analyst needs to ensure that 
he/she has identified the appropriate set of stakeholders (or 
meeting participants), set a meeting agenda, and has outlined 
each participant’s role and responsibilities prior to the meetings.  
To support problem refinement, each meeting must have a 
focused objective and employ structured activities that support 
the achievement of that objective, e.g., recording decomposition 
components and evolved needs, and monitoring/controlling the 
meeting process.  Finally, at the end of each meeting, the 
identified “set of needs” are evaluated relative to their 
correctness, completeness and non-ambiguity.  The final set of 
customer needs can be “validated” (in a loose sense) against the 
Con-Ops document or against the set of high-level requirements 
formed during the systems engineering process.  As illustrated 
in Figure 1, the set of customer needs are then provided as input 
to the requirements elicitation process and form the basis from 
which the requirements (or solution specification) are derived.  
 
4. TOOLS AND METHODS SUPPORTING PROBLEM 

ANALYSIS  

We have identified various tools and methods that support 
Problem Identification and Problem Decomposition.  In general, 
most of those we have encountered can be applied to both 
Problem Identification and Problem Decomposition; very few 
exist that deal with them as separate entities.  
 
Nonetheless, how do we identify tools that support either of the 
two activities, or perhaps both? The answer is based on the 
observation that Problem Identification relies on searching for 
one or more unknowns, and then when found, applying a 
refinement activity to the discovery.  Clearly, these activities 
require a substantial amount of customer interaction. Problem 
Decomposition, on the other hand, is predominately an analysis 
activity focused on extracting customer needs. Hence, the set of 
tools and/or methods that emphasize customer interaction can 
be applied to Problem Identification; the set dealing with 
analyzing, decomposing and refining a problem is more suited 
to Problem Decomposition.  We do note that customer 



interaction is also present during Problem Decomposition, but 
just not as much as is required for Problem Identification. 
 
During our investigation of Problem Analysis we have 
identified several applicable tools and methods.  A majority of 
them are interaction-oriented and support various interaction 
formats with the customer.  A representative set of tools and 
methods that can be applied to both Problem Identification and 
Decomposition are: 

• Interviews,  
• Preliminary System Study,  
• Cause Effect Diagram and  
• Root Cause Analysis. 

A representative set applicable primarily to problem 
identification are: 

• Context Free Question and  
• Walk Through Technique.  

A principal tool supporting the objectives of problem 
decomposition is  

• Problem Frames. 
 
Figure 2 shown below provides an illustration of the process 
underlying Problems analysis and attempts to place these tools 
and methods relative to that process. 

Context Free Questions and Interviews can serve as effective 
tools for problem identification. Context free questions can be 
viewed as “high-level questions that can be posed early in a 
project to obtain information about global properties of the 
design problem” [7]. Context free questions like “Who is 
behind the request for the system?”, “Is there another source of 
solution that you need?”, “What problems does this system 
solve?” are especially effective during initial meetings and 
interviews because they set the stage for problem identification.  
Later in the interview process, context free questions like “Are 
my questions relevant to the problem your have?”,  “Are you 
the right person to ask the questions?”, and “Are your answers 
official?” add to the validity of this approach to problem 
identification.  The facts and figures revealed during the use of 
context free questions often provide significant insights into the 
real problem. 
 

Cause-effect analysis and diagrams assist in understanding the 
causal relationships that exist in a system and which, in turn, 
help during problem decomposition. Cause-effect diagrams are 
a reflection of the ‘divide and conquer’ technique. Using a 
cause-effect diagram, the identified problem (or symptom) is 

broken down into its constituent parts contributing to the 
problem.   In effect, we are simply decomposing the problem 
into smaller system elements, each of which is viewed as a 
potential candidate causing the perceived symptom or problem.  
Figure 3 illustrates how the Cause-Effect (or Fishbone Diagram) 
is used to decompose the perceived problem into potential 
causes of that problem.  Using an example mentioned earlier in 
the paper, we observe four potential causes for slow response to 
web page requests, i.e., a slow CPU, network overload, slow 
disk access and/or an inefficient search algorithm.  The “effect” 
is the slow response to web page requests; the (potential) causes 
are the four components mentioned above.  In the final analysis, 
the decomposed problem also serves as the basis from which we 
begin identifying the set of customer needs. 

 

Slow Response 
to Web Page 
Request

Slow CPU 

Network 
Overload 

Inefficient 
Search Algorithm 

Disk Access
Too Slow 

Figure 3 
The Fishbone Diagram 

Root Cause Analysis, Preliminary System Study and Cause-
Effect Analysis are often used in conjunction when identifying 
the actual problem, and decomposing it into its principal 
components. A flowchart outlining the relationship of these 
methods within the framework of problem identification and 
decomposition is provided in Figure 4. 

 

The 
Decomposed 
Problem 

Derived 
Customer
Needs 

Identified 
Problem 

Concept 
Of 
Operations 

Problem 
Identification 

Problem Frames 

Context Free Questions 
Walk Through Technique 

Problem 
Decomposition 

Interviews,  Preliminary System Study,  Root Cause Analysis,  Cause Effect Diagrams
 

Figure 2 

 
The Walk Through (WALT) technique described by Lenart [10] 
is another method that assists in problem analysis.  WALT uses 
the Concept of Operations Document provided by the customer 
as its input.  Within WALT the customer is guided (or 
“walked”) through a description of the perceived problem.  As 
the description unfolds, the analyst records the description and 
constituent components.  The analyst continuously asks 
questions in increasing detail in an effort to gain an 
understanding of (a) the problem as a whole, and (b) the 
potential causes of the problem.   
 
Finally, the concept of Problem Frames is examined.  Problem 
Frames are used in the Jackson System Development process 
and employs problem decomposition as a method to identify 
potential reuse components [8].  Having identified the problem, 
Problem Frames focuses on decomposing the problem into 
solution pieces that are known to already exist.  Hence, this tool 
can be used to extract from the original problem those 
components that have the existing solution templates.  This is an 
example of a “solution-oriented” approach to problem 
decomposition.  
 
The tools and methods discussed above help support problem 
identification and/or problem decomposition.  Many other tools 
exist, of course, that assist in these two aspects of Problem 
Analysis.  There is, however, one piece of this puzzle that 
particularly needs additional exploration and tool/method 
development – generating customer needs from elements of the 
decomposed problem set.  Currently this activity relies mostly 
on intuition and experience. 
 



5. PLACING PROBLEM ANALYSIS WITHIN THE 
REQUIREMENTS GENERATION MODEL 

The primary task of the requirements engineer or analyst is to 
capture accurately the requirements expressed by the customer.  
One of the many impediments to achieving this goal lies within 
the customer’s domain.  That is, the customer often (a) has only 
a minimal understanding of the many functions that the 
proposed system is to support, (b) lacks experience in 
identifying and expressing desirables as requirements, and (c) 
states desirables in terms that lead to misleading or incorrect 
inferences by the requirements engineer [5].  In similar ways, 
the requirements engineer also contributes to the challenge, e.g., 
lack of domain knowledge.  Taken together, they all contribute 
to the potentially difficulty of the task that must precede 
requirements capturing, i.e., Problem Analysis. 
 
So, where does Problem Analysis really fit into the requirements 
generation process?  Figure 1 provides a very high-level picture 
that attempts to answer that question.  The Requirements 
Generation Model (RGM) shown in Figure 5, however, 
provides a more detailed illustration that places Problem 
Analysis in relation to the other major activities that support 
requirements generation.  Because a substantial number of 
RGM activities rely on the artifacts produced during Problem 
Analysis, and because we desire to place Problem Analysis 
within an holistic framework, we provide a brief overview the 
RGM next.  
 
The RGM refines the requirements analysis phase of the 
conventional Waterfall Software Development Model by 
imposing a framework and methodology that structures the 
problem analysis, requirements elicitation, recording and 
evaluation processes [1].  In particular, it partitions the 

requirements analysis phase into an initial problem analysis 
phase followed by a minimally overlapping indoctrination 
phase.  (The overlap is present because educating the 
requirements engineer [or analyst] about the perceived problem 
is part of the indoctrination phase, yet it is a necessary precursor 
to completing Problem Analysis.)  The indoctrination phase is 
then followed by an iterative requirements capturing phase.   

 

Perform 
Preliminary System Study 

Develop 
Cause-Effect Diagram 

yes 

no 

yes 

no 

Does an 
undesirable  
symptom or 

problem 
exist? 

Can a 
Root Cause 

Be Determined? 

No steps need to be 
taken - Terminate 

Continue 
System Study

Record Problem 
Record Constituent Components 

Figure 4 
Relating System Study, Cause-Effect Diagrams and Root Cause Analysis 

 

Concept
Definition

Requirements
Validation 

Problem 
Analysis 

Indoctrination Requirements Capturing 

Preparation Elicitation Evaluation 

Iteration 

Requirements Generation 

Figure 5 
The Requirements Generation Framework 

 
As stated earlier, the objectives of the problem analysis phase 
are (a) to evolve a succinct and accurate description of the 
problem and (b) to derive a set of customer needs.  The 
objectives of the indoctrination phase are to (a) introduce the 
customer to the requirements definition process, (b) provide the 
requirements engineer with an overview of the customer’s 
problem domain and needs, and (c) describe the participants’ 
tasks and responsibilities in the requirements definition process.  
The objectives of the requirements capturing phase are directly 
related to the three sub-phases that comprise it – preparation, 
elicitation and evaluation.  Respectively, the primary objectives 
of those sub-phases are to (a) define the scope of the elicitation 
meeting and ensure that all participants have completed their 
pre-meeting assignments, (b) enable the requirements engineer 
to accurately identify and record software requirements as 
expressed by the customer, and (c) evaluate the contributions of 
the preceding elicitation meetings, identify unresolved (or new) 
issues, and determine if an additional refinement iteration is 
needed.  The RGM also includes a monitoring methodology that 
operates throughout the requirements generation phase and in 
tandem with attendant activities to ensure that proper 
procedures and protocols are being followed. 
 
Clearly, a successful Problem Analysis phase is crucial to the 
success of the remaining RGM phases.  More specifically, the 
succeeding phases cannot hope to meet their objectives unless a 
well-formulated set of customer needs can be derived.  That set 
of needs is predicated on identifying the root cause of the 
problem, and then successfully decomposing it into its 
contributing constituents. 
 

6. SUMMARY AND CONCLUSIONS 

The “Chaos” study has shown the detrimental impact of 
developing systems that have ill-defined requirements.  A 
substantial contributor to ill-defined requirements is attempting 
to generate requirements before the causal problem has been 
identified, studied and understood.  In this paper we have 
provided an overview of the Problem Analysis process.  
Through its two major activities, Problems Identification and 
Problem Decomposition, that requisite understanding of the 
problem can be captured.  We have also discussed several of the 
tools and methods supporting Problem Analysis, and have 
provided examples outlining how they can work together in a 
synergistic fashion, as well as how they can be used 
independently.  Finally, using the Requirements Generation 
Model as a foundation we are able to place the Problem 



[13] Thayer, R.H. and M. Dorfamn (1997).  Software 
Requirements Engineering, 2nd Edition, IEEE Computer 
Society, Los Alamitos CA, 1997. 

Analysis process in relation to other activities supporting 
requirements generation, and in doing so, illustrate why 
Problem Analysis is so crucial to evolving requirements that 
reflect those intended by the customer.  

[14] Young, R.R. (2001), Effective Requirements Practices, 
Addison-Wesley Information Technology Series, 
Addison-Wesley, Boston Mass, 2001. 

 
7. References 

 
 [1] Arthur, J.D. and Markus K. Groener (1999). “An 

Operational Model Supporting the Generation of 
Requirements that Capture Customer Intent,” Proceedings 
of the Pacific Northwest Software Quality Conference, 
Portland OR, October 1999, pp. 286-302 

 
[2] Boehm, B.W. (1988). “A Spiral Model of Software 

Development and Enhancement,” IEEE Computer, Vol. 
21, No. 5, May 1988, pp. 61-72. 

 
[3] Booch, G. (1986). “Object-Oriented Development,” IEEE 

Transactions on Software Engineering, Vol. 12, No. 2, 
February 1986, pp. 221 ff. 

 
[4] Davis, A.M., Software Requirements: Objects, Functions, 

& States, Prentice-Hall, Upper Saddle River, New Jersey, 
1993. 

 
[5] Freedman, DP and G. M. Weinberg (1990).  Handbook of 

walkthroughs, inspections, and technical reviews: 
evaluating programs, projects, and products, 3rd ed. New 
York, NY: Dorset House Publishing Co., Inc., 1990. 

 
[6] Gause, D.C. and G.M. Weinberg (1989a). Are Your Lights 

On?  How to Know What the Problem Really Is, Dorset 
House Publishing, New York, 1989. 

 
[7] Gause, D.C. and G.M. Weinberg (1989b). Exploring 

Requirements: Quality Before Design, Dorset House 
Publishing, New York, 1989. 

 
[8] Jackson, D. and M. Jackson (1996).  “Problem 

Decomposition for Reuse,” The Software Engineering 
Journal, Vol. 11, No. 1, January 1996, pp. 19-30. 

 
[9] Leffingwell, D. and D. Widrig (19XX), Managing 

Software Requirements: A unified Approach, Addison-
Wesley Object Technology Series, Addison-Wesley, 
Boston MA, 2000. 

 
[10] Lenart, M. and Ana Pasztor (1998). “A Participatory 

Design Requirement Engineering System,” 
www.cs.fiu.edu/~pasztora/design/padre/aid98.ps 

 
[11] Royce, W.W. (1970). “Managing the Development of 

Large Software Systems: Concepts and Techniques,” 
Proceedings of the Western Electronic Show and 
Convention (WesCon), Los Angeles, August 1970, pp. 1-9 
(Reprinted in the Proceedings of 9th International 
Conference on Software Engineering, March 1987, 
Monterey CA, pp. 328 – 338.) 

[12] Standish Group (1995), “Chaos”, Standish Research 
Paper, 
http://www.standishgroup.com/sample_research/chaos_19
94_1.php 

 


	Problem Identification and Decomposition
	within the Requirements Generation Process
	ABSTRACT
	2.BACKGROUND AND MOTIVATION
	Problem Identification
	Problem Decomposition


