
A FULLY DISTRIBUTED PARALLEL GLOBAL
SEARCH ALGORITHM

Layne T. Watson
Multidisciplinary Analysis and Design Center for Advanced Vehicles
Virginia Polytechnic Institute and State University, Virginia, USA

Chuck A. Baker
Engineous Software, Inc., North Carolina, USA

Keywords Direct search, Distributed control, Global optimization, Parallel algorithm

Abstract The n-dimensional direct search algorithm DIRECT of Jones, Perttunen, and Stuckman has attracted

recent attention from the multidisciplinary design optimization community. Since DIRECT only requires function
values (or ranking) and balances global exploration with local refinement better than n-dimensional bisection, it

is well suited to the noisy function values typical of realistic simulations. While not efficient for high accuracy

optimization, DIRECT is appropriate for the sort of global design space exploration done in large scale engineering

design. Direct and pattern search schemes have the potential to exploit massive parallelism, but efficient use of

massively parallel machines is nontrivial to achieve. This paper presents a fully distributed control version of
DIRECT that is designed for massively parallel (distributed memory) architectures. Parallel results are presented

for a multidisciplinary design optimization problem—configuration design of a high speed civil transport.

1. Introduction

There has been a renaissance in direct search algorithms for optimization, as nicely summarized

in the recent state-of-the-art assessment by Lewis et al. (2000). Multidisciplinary design optimiza-

tion (MDO), or any engineering design enterprise based on large scale high fidelity simulation

codes, encounters nonsmooth functions and the need to combine global design space exploration

(using low fidelity analyses) with local refinement (using high or medium fidelity) to accurately

optimize the final design. Just as a range of physical models should be used for the design process

(the “variable complexity” concept), so should a variety of optimization techniques be employed.

The suggestion here is that direct search algorithms, coupled with massively parallel computation,

be used for global design space exploration to identify promising regions, which would then be

investigated using derivative based optimization or response surface methods.

The n-dimensional direct search algorithmDIRECT of Jones, Perttunen, and Stuckman (1993)

has attracted recent attention from the multidisciplinary design optimization community. Since

DIRECT only requires function values (or ranking) and balances global exploration with local

refinement better than n-dimensional bisection, it is well suited to the noisy function values typ-

ical of realistic simulation codes. While not efficient for high accuracy optimization, DIRECT is

appropriate for the sort of global design space exploration done in large scale engineering design.

Direct and pattern search schemes have the potential to exploit massive parallelism, but efficient

use of massively parallel machines is nontrivial to achieve.

While it is not difficult to achieve small scale parallelism with shared memory architectures or

a master-slave programming paradigm, large scale (speedups > 1000) parallelism is another matter

entirely. Even with several hundred processors (as the results presented later here show), memory

contention in a shared memory machine dominates the computation, and such architectures clearly

will not scale. Similarly, as the number of tasks grows, eventually the master-slave model results

in a communication bottleneck at the master node, and efficiency drops sharply. The purpose of

this paper is to describe, in some detail, a parallel version of DIRECT that will scale to thousands

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of processors (in a distributed memory machine). This is accomplished by using fully distributed

control and message passing.

Section 2 describes the serial DIRECT algorithm as proposed by Jones et al. Sections 3 and

4 provide background on the programming techniques used for fully distributed control. For com-

pleteness and for comparison, Section 5 gives pseudo code for a parallel master-slave version of

DIRECT. Section 6 then follows with the detailed description of the parallel distributed control

version of DIRECT. A more aggressive parallel version is suggested later when discussing perfor-

mance results. Section 7 very briefly describes a high speed civil transport (HSCT) application,

for which parallel performance results are presented in Section 8. Section 9 summarizes the results

and concludes.

2. Serial DIRECT algorithm

Jones et al. (1993) describe their search algorithm DIRECT as a Lipschitzian unconstrained

optimization algorithm that (effectively) uses all possible values of the Lipschitz constant. By

using different values of the constant, which can be viewed as an upper limit on the variation

of the function, equal emphasis is placed on the local and global search being performed by the

optimizer. This algorithm is called DIRECT because the algorithm is a direct search technique

and as an acronym for dividing rectangles, one of the primary operations in the procedure.

The algorithm begins by scaling the design box to a n-dimensional unit hypercube. The center

point of the hypercube is evaluated and then points are sampled at one-third the cube side length

in each coordinate direction from the center point. Depending on the direction with the smallest

function value, the hypercube is then subdivided into smaller rectangles, with each sampled point

becoming the center of its own n–dimensional rectangle or box. All boxes are identified by their

center point ci and their function value f(ci) at that point.

From there the algorithm loops in a procedure that subdivides each of the boxes in the set in

turn until termination or convergence. By using different values of the Lipschitz constant, a set of

potentially optimal boxes is identified from the set of all boxes. These potentially optimal boxes are

sampled in the directions of maximum side length, to prevent boxes from becoming overly skewed,

and subdivided again based on the directions with the smallest function value. If the optimization

continues indefinitely, all boxes will eventually be subdivided meaning that all regions of the design

space will be investigated. The algorithm (Jones et al. (1993)) is as follows:

1. Normalize the search space to be the unit hypercube. Let c1 be the center point of this

hypercube and evaluate f(c1).

2. Identify the set S of potentially optimal rectangles (those rectangles defining the bottom of

the convex hull of a scatter plot of rectangle diameter versus f(ci) for all rectangle centers ci)

as in Figure 1.

3. For all rectangles j ∈ S:

3a. Identify the set I of dimensions with the maximum side length. Let δ equal one-third of

this maximum side length.

3b. Sample the function at the points c±δei for all i ∈ I , where c is the center of the rectangle

and ei is the ith unit vector.

3c. Divide the rectangle containing c into thirds along the dimensions in I , starting with the

dimension with the lowest value of f(c± δei) and continuing to the dimension with the

highest f(c± δei).

2

0.05 0.1 0.15 0.2 0.25
Rectangle diameter

3.5

4

4.5

5

5.5

6

f�
c�

Potentially optimal
Not considered

Figure 1. Rectangles selected for further subdivision by DIRECT.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

after 10 iterationsafter 5 iterations

after 1 iterationintitial

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 3.0 -- 3.5
 3.5 -- 3.9
 3.9 -- 4.3
 4.3 -- 4.8
 4.8 -- 5.2
 5.2 -- 5.7
 5.7 -- 6.2
 6.2 -- 6.6
 6.6 -- 7.0
 7.0 -- 7.5
 Points

Figure 2. Illustration of DIRECT behavior with multiple local optima.

4. Repeat 2.–3. until stopping criterion is met.

DIRECT’s behavior on a simple 2–D test function is shown in Figure 2. The test function has

local minima at (0.4, 1.0), (0.9, 0.3), and (0.4, 0.3) with the global minimum at (0.9, 0.3). The

figure shows the optimizer starting from the center of the box and the division of the subsequent

sub-boxes through 10 iterations. After five iterations DIRECT is beginning to converge to the

local minimum at (0.4, 0.3). However, due to its local–global search characteristics, by the end

of 10 iterations DIRECT has refocused its search in the area of the global optimum at (0.9, 0.3)

where it ultimately converged.

3

Two important issues in using the algorithm are how to determine convergence and incorporate

constraint values. For this work, the algorithmwas run for a fixed number of iterations. Constraints

can be accounted for through the use of penalty functions, but undefined values f(c) (e.g., when a

simulation fails due to data outside the intended operating range) require more subtle handling.

3. Load balancing strategies

As the potentially optimal boxes are sampled in their respective directions during the DIRECT

optimization, a typically large set of new design points, or tasks, that need to be evaluated is cre-

ated. It is these tasks in this set of designs that are load balanced. Processor communications were

performed in the optimization algorithm through the use of the Message Passing Interface (MPI)

(Snir et al. (1996)), a message passing standard. MPI was chosen because, as a communications

protocol, it is platform independent, thread-safe, and a widely accepted standard.

In the master-slave implementation of dynamic load balancing, one processor, the master,

makes all of the calculations for box manipulation in DIRECT and controls the distribution of

tasks to be evaluated by the HSCT code on the slave processors. The master processor begins with

the set of all boxes, finds the potentially optimal boxes, and then samples inside of these boxes

to generate the set of tasks. It then distributes one task to each slave processor. When a slave

processor completes the evaluation of its task it returns the function value back to the master and

receives another task, if available. The biggest potential drawback to using this method is that there

is a chance for a communication bottleneck caused by slave processors simultaneously requesting

work from the master. To investigate this effect, a version of the master-slave implementation was

also used that distributes the tasks in bins of 10.

For the static load balancing case, the processors only communicate with each other when

finding the set of potentially optimal boxes and initially distributing the tasks. At the start of

a DIRECT loop each processor finds its own local set of potentially optimal boxes. The root

processor, P0, gathers all of the local potentially optimal sets from the other processors and finds

the global set of potentially optimal boxes. This processor creates the set of new tasks from

the global set of potentially optimal boxes. The new tasks are equally distributed to all of the

processors and the individual processors evaluate every task in their set of new tasks. The problem

inherent to static load balancing is that differences in evaluation times can cause some processors

to finish their tasks early and sit idle, while other processors continue to work on their tasks.

The interprocessor communications used for the DIRECT box manipulation by the fully dis-

tributed version of dynamic load balancing are the same as those performed by the static version,

with the added capability of task migration to processors that have finished their tasks. The

dynamic load balancing algorithm is based on that of previous work (Krasteva et al. (1999)), em-

ploying random polling for the redistribution of tasks and token passing to terminate the load

balancing process. Once task evaluation is started by a processor, it evaluates a single task and

then processes any messages received during the evaluation of the task. The cycle of evaluating and

communicating is continued until the processor runs out of work, in which case it begins sending

work requests to a randomly selected processor either until work is found or the termination is

detected. If a work request is received by a processor, half of its remaining tasks are transferred

to the requesting processor. Also, a characteristic of random polling described in Tel (1994) is

exploited, where it is beneficial to use random polling if the number of tasks to load balanced is

greater than Np logNp, where Np is the total number of processors . If the number of potentially

optimal boxes meets this criteria, then it is the potentially optimal boxes that are deemed tasks.

4

If this number isn’t large enough, as is usually the case, then the newly sampled points inside the

potentially optimal boxes are load balanced.

A dynamic load balancing strategy is also implemented that uses threads in the fully dis-

tributed version. Multi-threading in the distributed version is based on the POSIX (pthreads)

package. In this implementation, one thread is a worker responsible for evaluating tasks and sit-

ting idle when no tasks are available. A second thread handles all of the message passing and

processing. By exploiting concurrency at the processor level, messages can be processed at the

same time as a task is being evaluated, instead of the purely sequential operations used by the

distributed version without threads.

In the subsequent discussion, these load balancing strategies are referred to as static (STATIC),

dynamic load balancing with the master-slave paradigm—bin size 1 (DLBMS01), dynamic load

balancing with the master-slave paradigm—bin size 10 (DLBMS10), dynamic load balancing with

fully distributed control (DLBDC), dynamic load balancing with fully distributed control using

pthreads (DLBDCT).

4. Termination detection

The termination detection scheme used for DLBDC and DLBDCT is the standard token wave

algorithm used in Krasteva et al. (1999). Suppose there are P processors. Each processor keeps

track of its state in a local flag idle. Initially, the flag idle is set to false if a processor has work

or true otherwise. If at any time a processor receives work, the idle flag is set to false. A token

is passed around, in ring fashion, to all processors. If a processor with idle = true receives the

token, the token is less than P , and there are no pending requests for incoming work, the token

value is incremented and sent to the next processor in the ring; if the token received is equal to

P , then that processor terminates, and broadcasts a termination message to all other processors.

If a processor with idle = false receives the token, the token is set to zero. When that processor

finishes its work, it passes the (zero) token along and sets idle = true. After all the tasks on all the

processors have been completed, the token makes two complete circuits of the ring of processors,

terminating at the end of the second circuit.

5

5. Parallel master-slave pseudo code DLBMS01

Below is pseudo code for a parallel implementation of DIRECT incorporating the hierarchical,
centralized control, master-slave paradigm DLBMS01. This is a precise description of the master-
slave parallel version of DIRECT described in Section 3.

iteration : = 1
while iteration ≤ maximum iteration
if P0 then
find potentially optimal point set, local Copt, from previously evaluated box
center points, Ceval

sample around all Copt to create Cnew

total tasks Ntasks : = number of points in Cnew

sent task counter isent : = 0
received task counter irecv : = 0
slave processor counter Pslave : = 1
while Pslave ≤ number of slave processors
if Pslave ≤ Ntasks then

isent : = isent + 1
send Cnew(isent) to Pslave

else
send dummy point with termination tag to Pslave

end if
Pslave : = Pslave + 1

end while
while irecv < Ntasks

receive itask, function value at itask, and processor id,
Pslave, from any slave processor

set Cnew(itask) : = function value at itask
irecv : = irecv + 1
if isent < Ntasks then

isent : = isent + 1
send Cnew(isent) to Pslave

else
send dummy point with termination tag to Pslave

end if
end while
set new box side lengths for Cnew and its parent Copt points
append all Cnew to Ceval

else
while termination tag not received
receive Cnew point from P0

if termination tag not received then
evaluate function at point
send point id, function at point, and processor id to P0

end if
end while

end if
iteration : = iteration+ 1

end while

6

6. Parallel distributed control pseudo code DLBDC

Below is pseudo code for a parallel implementation of DIRECT using Np processors, incorpo-

rating fully distributed control (DLBDC). This is a precise description of the parallel distributed

control version of DIRECT described in Sections 3 and 4.

iteration : = 1

while iteration ≤ maximum iteration

find potentially optimal point set, local Copt, from previously evaluated box

center points, Ceval

if P0 then

gather Copt from all processors

find global Copt from local Copt sets

broadcast global Copt set to all processors

end if

remove points in local Copt not in global Copt

if number of points in global Copt ≤ Np logNp, then

total tasks Ntasks : = number of points in local Copt

task counter itask : = 1

while termination not detected

if itask ≤ Ntasks then

sample around all Copt(itask) to create Cnew(itask)

evaluate function at all Cnew(itask)

itask : = itask + 1

else

if outgoing work request is not pending, then

generate random processor number, Prand

send work request to Prand

end if

end if

process message of each type (incoming work request, outgoing work

request reply, token pass, etc.) received;

if outgoing work request reply received then increment Ntasks

by number of tasks received;

if work request received then

if Ntasks − itask > 1 then

send �(Ntasks − itask)/2� tasks to requesting processor;
decrement Ntasks by �(Ntasks − itask)/2� tasks;

else

send 0 tasks to requesting processor;

end if

end if

end while

else

sample around all Copt to create Cnew

total tasks Ntasks : = number of points in Cnew

task counter itask : = 1

7

while termination not detected

if itask ≤ Ntasks then

evaluate function at Cnew(itask)

itask : = itask + 1

else

if outgoing work request is not pending, then

generate random processor number, Prand

send work request to Prand

end if

end if

process message of each type (incoming work request, outgoing work

request reply, token pass, etc.) received;

if outgoing work request reply received then increment Ntasks

by number of tasks received;

if work request received then

if Ntasks − itask > 1 then

send �(Ntasks − itask)/2� tasks to requesting processor;
decrement Ntasks by �(Ntasks − itask)/2� tasks;

else

send 0 tasks to requesting processor;

end if

end if

end while

end if

if P0 then

gather Cnew from all processors

sort Cnew points by parent processor rank

scatter each Cnew point to its parent processor

end if

set new box side lengths for Cnew and its parent Copt points

append all Cnew to Ceval

iteration : = iteration+ 1

end while

7. HSCT configuration design application

The application chosen to illustrate the parallel versions of DIRECT is the optimization of a

HSCT configuration (MacMillin et al. (1996), MacMillin et al. (1997)) to minimize takeoff gross

weight (TOGW) for a range of 5500 nautical miles and a cruise Mach number of 2.4, while carrying

251 passengers. The choice of gross weight as the objective function directly incorporates both

aerodynamic and structural considerations, in that the structural design directly affects aircraft

empty weight and drag, while aerodynamic performance dictates drag and thus the required fuel

weight. This HSCT design problem is described in detail elsewhere (Baker et al. (1998), Golovidov

(1997), Hutchison et al. (1993), Hutchison et al. (1994), MacMillin et al. (1996), MacMillin et al.

(1997)), and thus only a few pertinent details will be repeated here.

To successfully perform aircraft configuration optimization, it is important to have a simple,

but meaningful, mathematical characterization of the geometry of the aircraft. This paper uses a

8

Table 1. HSCT configuration design variables and limits.

Index Description Lower Upper
1 Wing root chord (ft) 130 200
2 Leading edge (LE) break point, streamwise (ft) 50 160

3 LE break point, spanwise (% of semispan) 40 95
4 Wing break chord (ft) 7 50
5 LE wing tip, streamwise (ft) 50 180

6 Wing tip chord (ft) 7 30
7 Wing semispan (ft) 50 90
8 Chordwise location of max. thickness (% of chord) 20 60

9 LE radius parameter 1.5 4.0
10 Airfoil t/c at wing root 0.0150 0.0350

11 Airfoil t/c at wing break 0.0150 0.0300
12 Airfoil t/c at wing tip 0.0150 0.0250
13 Fuselage restraint 1, streamwise (ft) 2.00 8.00

14 Fuselage restraint 1, radius (ft) 0.4 0.8
15 Fuselage restraint 2, streamwise (ft) 12 18
16 Fuselage restraint 2, radius (ft) 2.0 4.0

17 Fuselage restraint 3, streamwise (ft) 100 140
18 Fuselage restraint 3, radius (ft) 4.0 7.0
19 Fuselage restraint 4, streamwise (ft) 150 250

20 Fuselage restraint 4, radius (ft) 4.0 7.0
21 Nacelle 1 location (7 ft + % of spanwise break) 0 80

22 Nacelle 2 location (DV 21 + % of DV 3 - DV 21) 0 100
23 Flight fuel (lb) 200,000 600,000
24 Starting cruise altitude (ft) 50,000 70,000

25 Cruise climb rate (ft/min) 25.0 45.0
26 Vertical tail area (ft2) 400 900
27 Horizontal tail area (ft2) 600 1,200

28 Thrust per engine (lb) 3,000 7,000

model that defines the HSCT design problem using the twenty-eight design variables listed in Table

1. Twenty-four of the design variables describe the geometry of the aircraft and can be divided

into six categories: wing planform, airfoil shape, tail areas, nacelle placement, and fuselage shape.

In addition to the geometric parameters, four variables define the idealized cruise mission: mission

fuel, engine thrust, initial cruise altitude, and constant climb rate used in the range calculation.

The n-dimensional design box (normalized by DIRECT) uses the variable limits also given in

Table 1. In order to ensure that a thorough design space exploration was being conducted, the

bounds were chosen to include as wide a range of designs as realistically possible. The edges of

the design box were set near the limits of physically impossible designs (overlapping geometries,

negative chord lengths) or the assumptions of the numerical analyses being used.

Sixty-eight geometry, performance, and aerodynamic constraints, listed in Table 2, are in-

cluded in the optimization. Aerodynamic and performance constraints can only be assessed after a

complete analysis of the HSCT design; however, the geometric constraints can be evaluated using

algebraic relations based on the 28 design variables.

The methods used to calculate the drag components used in the drag calculation and their

corresponding ranges are described in Hutchison et al. (1993) and Hutchison et al. (1994). The

9

Table 2. HSCT optimization constraints.

Index Constraint
1 Fuel volume ≤ 50% wing volume
2 Wing root TE ≤ Tail LE

3–20 Wing chord ≥ 7.0 ft
21 LE break within wing semi-span
22 TE break within wing semi-span

23 Root chord t/c ratio ≥ 1.5%
24 LE break chord t/c ratio ≥ 1.5%
25 Tip chord t/c ratio ≥ 1.5%
26–30 Fuselage restraints
31 Wing spike prevention

32 Nacelle 1 inboard of nacelle 2
33 Nacelle 2 inboard of semi-span
34 Range ≥ 5500 nautical miles
35 CL at landing speed ≤ 1
36–53 Section CL at landing ≤ 2
54 Landing angle of attack ≤ 12◦
55–58 Engine scrape at landing
59 Wing tip scrape at landing
60 TE break scrape at landing

61 Rudder deflection ≤ 22.5◦
62 Bank angle at landing ≤ 5◦
63 Tail deflection at approach ≤ 22.5◦
64 Takeoff rotation to occur ≤ Vmin

65 Engine-out limit with vertical tail

66 Balanced field length ≤ 11000 ft
67–68 Mission segments: thrust available ≥ thrust required

aerodynamics calculations are based on the Mach box method (Carlson et al. (1974), Carlson et

al. (1979)), and the Harris (1964) wave drag code. A simple strip boundary layer friction estimate

is implemented as in Hutchison et al. (1994). A vortex lattice method with vortex lift and ground

effects included (Bertin et al. (1989)) is used to calculate landing angle of attack. Structural weights

are calculated by the FLOPS (McCullers (1984)) weight equations. Each of these analysis methods

uses iterative algorithms or discretization methods that can cause differences in the time needed

to evaluate different HSCT designs, hence the need for dynamic load balancing.

Figure 3 shows a planar slice in the 28-dimensional design space, illustrating that the feasible

set is nonconvex and possibly even multiply connected. The need for a global exploration algorithm

like DIRECT is clear.

8. Parallel performance

The parallel runs were conducted on an SGI Origin 2000 with a total of 256 CPUs. Runs

were made on 4, 8, 16, 32, and 64 processors for each of the five load balancing methods. The

DIRECT optimizer was terminated after 37 iterations, performing 10,077 function evaluations.

The parallel efficiencies for the runs are plotted in Figure 4. Efficiency is calculated relative to a

serial implementation of DIRECT. With static load balancing, the efficiency starts high (0.97) for 4

processors and then linearly decreases to 0.83 with all 64 processors. The master-slave organization

10

775000
770000
765000
760000
755000
750000

TOGW (lbs)Feasible Point
Infeasible Point

Constraint Boundaries
Range
Geom., Nacelle
Max. Thrust Req.

Base Point 2

Base Point 1 Base Point 3

Figure 3. Design space visualization.

(DLBMS01) of dynamic load balancing starts with a low efficiency, and then the efficiency gradually

increases to be the highest of the load balancing schemes for 64 processors. The initial low values

of efficiency are because, even though four processors are used, only the three slave processors are

evaluating tasks. As the number of processors increases, the increased number of slave processors

minimizes this effect. The master-slave organization with a bin size of 10 (DLBMS10) initially has

a low efficiency like DLBMS01 then it peaks at 0.80 for 8 processors. From then as the number

of processors used increases, the efficiency plateaus at 0.57. The fully distributed version with

dynamic load balancing performs the best up to 32 processors and then the efficiency drops to 0.84

when using 64 processors, slightly below that of DLBMS01 and slightly above that of STATIC.

This is attributable to both the short average time per task and the relatively small amount of

total work assigned to each of the 64 processors. Also, a peculiarity was observed in that DLBDC

either ran at an efficiency of 0.84 or 0.78 (shown on plot). The distributed version with threads

performs the worst of all the methods, rapidly decreasing in efficiency as the number of processors

used is increased. This behaviour was not observed for pthreads on the Intel Paragon reported

in Krasteva et al. (1999), and thus is more likely a reflection of the SGI pthreads implementation

than of an inherent characteristic of pthreads.

A detailed discussion of these parallel performance results, relative to the SGI Origin hardware

and process assignment to memory banks and CPUs, can be found in Baker (2000). In essence,

the Origin results for DLBDC are not indicative of what would occur (on a distributed memory

machine) as the number of tasks, the time per task, and the number of processors are all increased.

To observe the effect of larger sets of tasks for a large number of processors, a more aggressive

version of the DIRECT algorithm is implemented. For the aggressive DIRECT, the idea of using

the Lipschitz constants is discarded and the box with the smallest objective function for each box

size existing is deemed potentially optimal and subsequently subdivided. Consequently, for the

example shown in Figure 1 there will be a total of four potentially optimal boxes like in Figure 5,

11

10 20 30 40 50 60 70
Number of processors

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Figure 4. Parallel efficiencies for 4, 8, 16, 32, and 64 processor cases.

0.05 0.1 0.15 0.2 0.25
Rectangle diameter

3.5

4

4.5

5

5.5

6

f�
c�

Potentially optimal
Not considered

Figure 5. Rectangles selected for further subdivision by aggressive DIRECT.

instead of the three for the standard DIRECT algorithm. This change in the algorithm typically

results in a much larger set of new tasks to be evaluated and load balanced at each iteration.

Aside from generating a large set of data at each iteration, this method also has the benefit

of being able to find the global optimum in fewer iterations. A box containing the global optimum

can be neglected using the standard DIRECT algorithm due to the way that the design variable

limits are chosen. A box containing the global optimum may be potentially optimal with one set

of variable limits and look poor for another. With the aggressive version, since a box of each size

is subdivided, the effect of the variable limits is less substantial. If the variable limits chosen make

a box look poor, the box is still more likely to be subdivided and the global optimum found.

The parallel runs were conducted on the same SGI Origin 2000 as the standard DIRECT. Runs

were made on 8, 16, 32, 64, and 128 processors for each of the five load balancing methods. Due to

the large number of points generated, the DIRECT optimizer was terminated after 20 iterations

and performing 48,577 function evaluations. Compared to the standard DIRECT, the variation in

evaluation time per task is increased as well as the number of tasks with aggressive DIRECT. The

aggressive version was also able to find a better optimum HSCT design in fewer iterations than

standard DIRECT, although of course the total number of evaluations and aggregate CPU time

12

20 40 60 80 100 120
Number of processors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Figure 6. Parallel efficiencies for 8, 16, 32, 64, and 128 processor cases.

are more (the aggressive case used 86,374 seconds of serial CPU time versus 17,642 seconds for the

standard DIRECT).

The parallel efficiencies for the runs using the aggressive DIRECT are plotted in Figure 6. All

the load balancing methods implemented exhibit similar trends as when used with the standard

DIRECT except that their efficiencies have been slightly improved. Due to the increase of variation

in evaluation time, DLBDC is now the most efficient method to 64 processors, where its efficiency

is 0.94. The anomaly for DLBDC (attributable to SGI hardware and scheduling algorithms) was

again observed, and no good run for 128 processors ever occurred (cf. the solid triangles in Figure

6).

9. Conclusions

A variety of parallel load balancing strategies were successfully integrated into a global design

space exploration method and applied to a meaningful, complex aircraft design problem. The

load balancing methods implemented ranged from simple static load balancing to fully distributed

dynamic load balancing via pthreads. It was observed that the master-slave load balancing method

was the most efficient for a large number of processors, when the variation in function evaluation

times was small (because the master then did little redistribution work). When the variation in

function evaluation times is significant, as is the case for the aggressive DIRECT algorithm or

inherently in other aircraft design problems (Krasteva et al. (1999)), or as here when using a

small number of processors, the fully distributed dynamic load balancing method is most efficient.

The implication is that for large scale realistic MDO problems, compared to static distribution or

dynamic load balancing via a master-slave paradigm, the fully distributed control paradigm for

dynamic load balancing will scale the best to massively parallel (distributed memory) machines.

One final practical observation is that the use of pthreads greatly facilitates programming, but

the execution efficiency of pthreads varies greatly between system implementations—from nearly

invisible on the Intel Paragon to a factor of two slower on the SGI Origin.

13

References

C. A. Baker, B. Grossman, R. T. Haftka, W. H. Mason, and L. T. Watson(1998), “HSCT configuration design space

exploration using aerodynamic response surface approximations”, in Proceedings of 7th AIAA/USAF/-
NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Saint Louis, MO, pp. 769-777.

C. A. Baker(2000), “Parallel global aircraft configuration design space exploration”, Technical Report MAD 2000-

06-28, Virginia Polytechnic Institute and State University, Blacksburg, VA.

J. Bertin and M. Smith(1989), Aerodynamics for Engineers, Prentice Hall.

H. Carlson, R. Mack, and R. Barger(1979), “Estimation of attainable leading edge thrust for wings at subsonic and
supersonic speeds”, Technical Report NASA TP-1500.

H. Carlson and D. Miller(1974), “Numerical methods for the design and analysis of wings at supersonic speeds”,

Technical Report NASA TN D-7713.

O. Golovidov(1997), “Variable-Complexity Response Surface Approximations for Aerodynamic Parameters in HSCT
Optimization”, Master’s thesis, Virginia Polytechnic Institute and State University, VA.

R. Harris Jr(1964), “An analysis and correlation of aircraft wave drag”, Technical Report NASA TM X-947.

M. G. Hutchison, W. H. Mason, R. T. Haftka, and B. Grossman(1993), “Aerodynamic optimization of an HSCT
configuration using variable-complexity modeling”, AIAA 31st Aerospace Sciences Meeting and Exhibit,
Reno, NV, AIAA Paper 93-0101.

M. G. Hutchison, E. R. Unger, W. H. Mason, B. Grossman, and R. T. Haftka(1994), “Variable-complexity aerody-
namic optimization of a high-speed civil transport wing”, Journal of Aircraft, Vol. 31, No. 1, pp. 110–116.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman(1993), “Lipschitzian optimization without the Lipschitz constant”,

Journal of Optimization Theory and Application, Vol. 79, No. 1, pp. 157–181.

D. T. Krasteva, C. Baker, L. T. Watson, B. Grossman, W. H. Mason, and R. T. Haftka(1999), “Distributed control
parallelism in multidisciplinary aircraft design”, Concurrency: Practice and Experience, Vol. 11, pp. 435–

459.

R. L. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then and now”, Journal of Computational
and Applied Mathematics, to appear.

P. MacMillin, O. Golovidov, W. Mason, B. Grossman, and R. Haftka(1996), “Trim, control, and performance ef-

fects in variable-complexity high-speed civil transport design”, Technical Report MAD 96-07-01, Virginia
Polytechnic Institute and State University, Blacksburg, VA.

P. E. MacMillin, O. B. Golovidov, W. H. Mason, B. Grossman, and R. T. Haftka(1997), “An MDO investigation of

the impact of practical constraints on an HSCT optimization”, AIAA 35th Aerospace Sciences Meeting and
Exhibit, Reno, NV, AIAA Paper 97-0098.

L. A. McCullers(1984), “Aircraft configuration optimization including optimized flight profiles”, in Proceedings of

a Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization, NASA CP-2327, pp.
395–412.

M. Snir, S. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra(1996), MPI: The Complete Reference, MIT

Press.

G. Tel(1994), Introduction to Distributed Algorithms, Cambridge University Press.

14

