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Abstract

Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under

mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory,

robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations,

and special cases such as Brouwer fixed point problems, polynomial systems, and nonlinear constrained optimization. Using

a sample of challenging scientific problems as motivation, some pertinent homotopy theory and algorithms are presented.

The problems considered are analog circuit simulation (for nonlinear systems), reconfigurable space trusses (for polynomial

systems), and fuel-optimal orbital rendezvous (for nonlinear constrained optimization). The mathematical software packages

HOMPACK90 and POLSYS PLP are also briefly described.
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1. Introduction

Nonlinear systems of algebraic equations are ubiquitous in science and engineering, and effective

algorithms to solve them become even more important as computer simulation establishes computational

science as a new scientific paradigm. Nonlinear systems come in all sizes, shapes, and flavors, and a

computational scientist is properly armed with a battery of algorithms. The intent of this paper is to

suggest that a class of algorithms, known as probability-one homotopy algorithms, should be a prominent

member of such a battery. For continuous (as opposed to discrete) problems, the algorithmic approaches

can roughly be categorized as “local” or “global.” Examples of local methods are the classical Newton

method, the secant method, quasi-Newton methods, and endless variants of these. Examples of global

methods are direct search, interval arithmetic methods, and homotopy algorithms. Sometimes local

methods (e.g., trust region quasi-Newton or damped Newton) are called globally convergent, but that

is misleading, since the global convergence is to a local minimum of some merit function, which is not

necessarily a solution to the original nonlinear system. Discrete problems, local methods, and global

methods other than homotopy are not considered here.

Much of the early work on computational homotopy algorithms was motivated by Brouwer fixed point

problems: given a continuous function f from a compact, convex subset of finite dimensional Euclidean

space into itself, find a fixed point x = f(x). The algorithms and theory are elegant and well understood

for both simplicial and continuous approaches.

For nonlinear systems of equations F (x) = 0 not derived from Brouwer fixed point problems, the

convergence theory of homotopy algorithms is well developed in terms of properties of F . Special cases,
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such as when F is a polynomial system, have a deep and rich supporting theory, and special, highly

sophisticated algorithms have been devised to exploit the structure of F . This case is discussed in a

later section. However, except in rare instances that usually result in polynomial systems, a physical

model does not directly result in a finite dimensional nonlinear system of equations F (x) = 0. Rather,

F (x) = 0 results from a discretization, approximation, or iteration step of another mathematical model

of the physical phenomenon. The catch is that abstract conditions on F (for a homotopy algorithm to

converge) do not easily translate into meaningful or verifiable conditions on the physical model or on

the discretization/approximation/iteration process. The gap here between the physical problem charac-

teristics and properties of the subproblems F (x) = 0 is considerable: not many homotopy convergence

theorems are stated at the level of physical modelling or the high level processes that spawn the nonlinear

systems F (x) = 0 to be solved.

One notable exception is the solution of nonlinear two-point boundary value problems (BVPs).

Conditions on the original two-point boundary value problem itself for which an approximation F (x) = 0

is solvable by a globally convergent homotopy algorithm have been derived. Convergence theorems directly

addressing the nonlinear two-point boundary value problem exist for approximation processes based on

shooting, finite differences, collocation, and finite elements. This is significant because many physical

models reduce to nonlinear two-point boundary value problems, and thus convergence theory exists for a

large class of problems of interest.

Section 2 gives some background material on homotopy methods, and then Sections 3–5 illustrate

some aspects of the theory and algorithms via nontrivial applications. Sections 6 and 7 discuss the

software packages HOMPACK90 and POLSYS PLP, respectively.

2. Background on probability-one globally convergent homotopies

A homotopy is a continuous map from the interval [0,1] into a function space, where the continuity

is with respect to the topology of the function space. Intuitively, a homotopy ρ(λ) continuously deforms

the function ρ(0) = g into the function ρ(1) = f as λ goes from 0 to 1. In this case, f and g are said

to be homotopic. Homotopy maps are fundamental tools in topology, and provide a powerful mechanism

for defining equivalence classes of functions.

Homotopies provide a mathematical formalism for describing an old procedure in numerical analysis,

variously known as continuation, incremental loading, and embedding. The continuation procedure for

solving a nonlinear system of equations f(x) = 0 starts with a (generally simpler) problem g(x) = 0

whose solution x0 is known. The continuation procedure is to track the set of zeros of

ρ(λ, x) = λf(x) + (1 − λ)g(x) (1)

as λ is increased monotonically from 0 to 1, starting at the known initial point (0, x0) satisfying ρ(0, x0) =

0. Each step of this tracking process is done by starting at a point (λ̃, x̃) on the zero set of ρ, fixing some

∆λ > 0, and then solving ρ(λ̃ + ∆λ, x) = 0 for x using a locally convergent iterative procedure, which

requires an invertible Jacobian matrix Dxρ(λ̃+∆λ, x). The process stops at λ = 1, since f(x̄) = ρ(1, x̄) =

0 gives a zero x̄ of f(x). Note that continuation assumes that the zeros of ρ connect the zero x0 of g to a

zero x̄ of f , and that the Jacobian matrix Dxρ(λ, x) is invertible along the zero set of ρ; these are strong

assumptions, which are frequently not satisfied in practice.
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Continuation can fail because the curve γ of zeros of ρ(λ, x) emanating from (0, x0) may (1) have

turning points, (2) bifurcate, (3) fail to exist at some λ values, or (4) wander off to infinity without

reaching λ = 1. Turning points and bifurcation correspond to singular Dxρ(λ, x). Generalizations of

continuation known as homotopy methods attempt to deal with cases (1) and (2), and allow tracking

of γ to continue through singularities. In particular, continuation monotonically increases λ, whereas

homotopy methods permit λ to both increase and decrease along γ. Homotopy methods can also fail via

cases (3) or (4).

The map ρ(λ, x) connects the functions g(x) and f(x), hence the use of the word “homotopy.” In

general the homotopy map ρ(λ, x) need not be a simple convex combination of g and f as in (1), and

can involve λ nonlinearly. Sometimes λ is a physical parameter in the original problem f(x; λ) = 0,

where λ = 1 is the (nondimensionalized) value of interest, although “artificial parameter” homotopies

are generally more computationally efficient than “natural parameter” homotopies ρ(λ, x) = f(x; λ). An

example of an artificial parameter homotopy map is

ρ(λ, x) = λf(x; λ) + (1− λ)(x− a), (2)

which satisfies ρ(0, a) = 0. The name “artificial” reflects the fact that solutions to ρ(λ, x) = 0 have no

physical interpretation for λ < 1. Note that ρ(λ, x) in (2) has a unique zero x = a at λ = 0, regardless of

the structure of f(x; λ).

All four shortcomings of continuation and homotopy methods have been overcome by probability-one

homotopies, proposed in 1976 by Chow, Mallet-Paret, and Yorke [3]. The supporting theory, based on

differential geometry, will be reformulated in less technical jargon here.

Definition 2.1. Let U ⊂ Rm and V ⊂ Rp be open sets, and let ρ : U × [0, 1)× V → Rp be a C2 map.

ρ is said to be transversal to zero if the p × (m+ 1 + p) Jacobian matrix Dρ has full rank on ρ−1(0).

The C2 requirement is technical, and part of the definition of transversality. The basis for the

probability-one homotopy theory is:

Theorem 2.2 (Parametrized Sard’s Theorem) [3]. Let ρ : U × [0, 1)× V → Rp be a C2 map. If ρ is

transversal to zero, then for almost all a ∈ U the map

ρa(λ, x) = ρ(a, λ, x)

is also transversal to zero.

To discuss the import of this theorem, take U = Rm, V = Rp, and suppose that the C2 map

ρ : Rm × [0, 1)×Rp → Rp is transversal to zero. A straightforward application of the implicit function

theorem yields that for almost all a ∈ Rm, the zero set of ρa consists of smooth, nonintersecting curves

which either (1) are closed loops lying entirely in (0, 1)×Rp, (2) have both endpoints in {0} ×Rp, (3)

have both endpoints in {1}×Rp, (4) are unbounded with one endpoint in either {0}×Rp or in {1}×Rp,

or (5) have one endpoint in {0} ×Rp and the other in {1} ×Rp. Furthermore, for almost all a ∈ Rm,

the Jacobian matrix Dρa has full rank at every point in ρ
−1
a (0). The goal is to construct a map ρa whose

zero set has an endpoint in {0} × Rp, and which rules out (2) and (4). Then (5) obtains, and a zero

curve starting at (0, x0) is guaranteed to reach a point (1, x̄). All of this holds for almost all a ∈ Rm,

and hence with probability one [3]. Furthermore, since a ∈ Rm can be almost any point (and, indirectly,
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Figure 1. Zero set for ρa(λ, x) satisfying properties (1)—(4).

so can the starting point x0), an algorithm based on tracking the zero curve in (5) is legitimately called

globally convergent . This discussion is summarized in the following theorem (and illustrated in Figure 1).

Theorem 2.3. Let f : Rp → Rp be a C2 map, ρ : Rm × [0, 1)×Rp → Rp a C2 map, and ρa(λ, x) =

ρ(a, λ, x). Suppose that

(1) ρ is transversal to zero,

and, for each fixed a ∈ Rm,

(2) ρa(0, x) = 0 has a unique nonsingular solution x0,

(3) ρa(1, x) = f(x) (x ∈ Rp).

Then, for almost all a ∈ Rm, there exists a zero curve γ of ρa emanating from (0, x0), along which the

Jacobian matrix Dρa has full rank. If, in addition,

(4) ρ−1
a (0) is bounded,

then γ reaches a point (1, x̄) such that f(x̄) = 0. Furthermore, if Df(x̄) is invertible, then γ has finite

arc length.

Any algorithm for tracking γ from (0, x0) to (1, x̄), based on a homotopy map satisfying the hy-

potheses of Theorem 2.3, is called a globally convergent probability-one homotopy algorithm. Of course

the practical numerical details of tracking γ are nontrivial, and have been the subject of twenty years of

research in numerical analysis. Production quality software called HOMPACK90 [12] exists for tracking

γ. The distinctions between continuation, homotopy methods, and probability-one homotopy methods

are subtle but worth noting. Only the latter are provably globally convergent and (by construction)

expressly avoid dealing with singularities numerically, unlike continuation and homotopy methods which

must explicitly handle singularities numerically.
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Assumptions (2) and (3) in Theorem 2.3 are usually achieved by the construction of ρ (such as (2)),
and are straightforward to verify. Although assumption (1) is trivial to verify for some maps, if λ and a

are involved nonlinearly in ρ the verification is nontrivial. Assumption (4) is typically very hard to verify,
and often is a deep result, since (1)–(4) holding implies the existence of a solution to f(x) = 0.

Note that (1)–(4) are sufficient, but not necessary, for the existence of a solution to f(x) = 0, which
is why homotopy maps not satisfying the hypotheses of Theorem 2.3 can still be very successful on

practical problems. If (1)–(3) hold and a solution does not exist, then (4) must fail, and nonexistence
is manifested by γ going off to infinity. Properties (1)–(3) are important because they guarantee good

numerical properties along the zero curve γ, which, if bounded, results in a globally convergent algorithm.
If γ is unbounded, then either the homotopy approach (with this particular ρ) has failed or f(x) = 0 has

no solution.
A few remarks about the applicability and limitations of probability-one homotopy methods are in

order. They are designed to solve a single nonlinear system of equations, not to track the solutions of

a parameterized family of nonlinear systems as that parameter is varied. Thus drastic changes in the
solution behavior with respect to that (natural problem) parameter have no effect on the efficacy of the

homotopy algorithm, which is solving the problem for a fixed value of the natural parameter. In fact, it is
precisely for this case of rapidly varying solutions that the probability-one homotopy approach is superior

to classical continuation (which would be trying to track the rapidly varying solutions with respect to
the problem parameter). Since the homotopy methods described here are not for general solution curve

tracking, they are not (directly) applicable to bifurcation problems.
Homotopy methods also require the nonlinear system to be C2 (some theory exists for piecewise

C2), and this limitation cannot be relaxed. However, requiring a finite dimensional discretization to be
smooth does not mean the solution to the infinite dimensional problem must also be smooth. For example,

a Galerkin formulation may produce a smooth nonlinear system in the basis function coefficients even

though the basis functions themselves are discontinuous. Homotopy methods for optimization problems
may converge to a local minimum or stationary point, and in this regard are no better or worse than

other optimization algorithms. In special cases homotopy methods can find all the solutions if there is
more than one, but in general the homotopy algorithms are only guaranteed to find one solution.

3. Analog circuit simulation

Analog circuit simulation is one application area where physical arguments directly mirror mathe-
matical theory. Consider first a very general homotopy convergence theorem [8].

Theorem 3.1. Let F : Rp → Rp be a C2 map such that for some r > 0 and r̃ > 0, F (x) and x− a do
not point in opposite directions for ‖x‖ = r, ‖a‖ < r̃. Then F has a zero in {x ∈ Rp | ‖x‖ ≤ r}, and for

almost all a ∈ Rp, ‖a‖ < r̃, there is a zero curve γ of

ρa(λ, x) = λF (x) + (1− λ)(x− a),

along which the Jacobian matrix Dρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of

F at λ = 1. Furthermore, γ has finite arc length if DF (x̄) is nonsingular.

Note that homotopy convergence theorems are simultaneously existence theorems. The Brouwer

fixed point theorem (for C2 maps) is a special case of the next theorem [8], which is in turn a special case
of Theorem 3.1.

5



Theorem 3.2. Let F : Rp → Rp be a C2 map, and suppose there exists r > 0 such that xtF (x) ≥ 0 for

‖x‖ = r. Then F has a zero in {x ∈ Rp | ‖x‖ ≤ r}, and for almost all a ∈ Rp, ‖a‖ < r, there is a zero

curve γ of

ρa(λ, x) = λF (x) + (1− λ)(x− a),

along which the Jacobian matrix Dρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of

F at λ = 1. Furthermore, γ has finite arc length if DF (x̄) is nonsingular.

A number of elegant mathematical results concern solutions to systems of equations that satisfy

certain “boundedness” conditions. Perhaps the best example is the Brouwer fixed point theorem, which

states that a continuous map f from a convex compact set into itself must have a fixed point; i.e., for

some x∗ in the set, f(x∗) = x∗. A fundamental problem in analog VLSI circuit simulation is to find

a direct current (dc) operating point of the circuit. The voltage reference circuit [5] shown in Figure 2

is a typical example of a circuit for which standard circuit simulators have difficulty computing the dc

operating points. The Brouwer fixed point theorem is applicable to the dc operating point problem. The

intuition that such is the case is based on the following fact about nonlinear resistive circuits (at least,

those that arise in practical integrated circuit designs). At the dc operating point of such a circuit, each

node voltage is bounded in absolute value by the sum of the absolute values of the voltage sources in the

circuit. A circuit with this property is called no-gain. In other words, if the circuit has n nodes, and the

sum of the absolute values of the voltage sources is normalized to the range [0, 1], then the operating point

is an element of of the unit n-cube. This fact is no surprise to designers of electronic circuits, although a

rigorous proof of this assertion is not trivial.

The no-gain property is intrinsic to real transistors, but may or may not be preserved in a circuit

simulator, depending on transistor models. An overly simple model of a transistor may not capture the

saturation behavior of a real transistor. However, the true behavior and correct bias voltage always results

from the use of a sufficiently accurate transistor model. This kind of boundedness property extends to the

time domain behavior of electronic circuits. Although the output waveform may clip, its peak-to-peak

amplitude remains bounded by the supply voltage.

Despite the historical appeal of the Brouwer fixed point theorem, and the body of knowledge about

the no-gain property, Theorem 3.2 above is easier to apply to circuit equations. A physical argument for

the applicability of Theorem 3.2 now follows. The nodal formulation of circuit equations specifies a sum

of currents for each node. The result is a system

F1(x1, . . . , xn) = 0,

F2(x1, . . . , xn) = 0,

...

Fn(x1, . . . , xn) = 0,

where the dimension of xi is voltage and the dimension of Fi is current. Thus, the dimension of the inner

product xt F (x) is power.

A circuit element is passive if it does not generate power. This can be stated in mathematical terms

by considering the voltage vk across each element and the current ik flowing into the element. If the sum∑
ikvk over all elements is always nonnegative, then the device is passive. Passivity is a less restrictive

condition than the no-gain property introduced earlier.
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Figure 2. Voltage reference circuit.

Among the electronic devices introduced so far, linear (positive) resistors, diodes, and transistors are

passive. The current amplifier is not passive; however, the particular arrangement of diodes and current

amplifiers in the Ebers-Moll transistor model is passive. Any interconnection of passive components is

passive. These facts permit the evaluation of the inner product condition for the nodal equations of a

nonlinear resistive circuit. The particular values of circuit parameters establish a radius of a ball in Rn

such that for any vector of node voltage x on this ball, the inner product xt F (x) is a sum of powers that

is nonnegative. By appealing to passivity rather than the no-gain property, then, in general, the radius

of this ball will be larger than the sum of the absolute values of the independent voltage sources, and

might be difficult to calculate. However, applications of Theorem 3.2 do not require the knowledge of the

radius, only its existence. A rigorous mathematical exposition of this argument can be made.

Therefore, a passivity argument can be made for an electronic circuit consisting of independent

voltage sources, resistors, diodes, and transistors. This covers all practical cases. Occasionally, designers

use voltage amplifiers to model operational amplifiers. A voltage amplifier delivers an output voltage

µvin, where µ is a constant and vin is a voltage drop across some branch in the circuit. The graph of

the input/output relationship of such a device would be a straight line of slope µ extending to infinity in

either direction. Suppose µ is large, say 1000. Then an input voltage of 1 V generates an output voltage
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of 1000V. Again, common sense about electronic circuits says that an operational amplifier built using

transistors and operated from +12 V and −12 V supplies cannot generate an output voltage of 1000 V.

Any practical operational amplifier exhibits limiting behavior at its output. That is, the output is indeed

equal to µvin over some range of vin, but beyond that range, the output voltage is bounded by the positive

and negative power supply values. When a voltage amplifier is modified to model this limiting behavior

(providing a more accurate model of an operational amplifier), the inner product condition of Theorem

3.2 can be satisfied at a certain radius r that may depend on the limits set for the voltage amplifiers.

It turns out that the passivity argument is not only valid for the case of nonlinear resistive circuits,

i.e., circuits with no notion of time, but also applies to the time domain response of a passive circuit. Thus

homotopy methods have found significant application not only to the calculation of dc operating points,

but also to transient circuit analysis [5]. The description here of probability-one homotopy methods

applied to analog circuit simulation is only the tip of the iceberg, since the homotopy map ρa(λ, x) =

λF (x) + (1− λ)(x− a), while it works, is not numerically efficient. Much more efficient homotopies are

obtained by embedding λ deeply in the transistor models (in effect “turning on” the transistor nonlinearity

as λ goes from 0 to 1), resulting in homotopy maps of the form

ρa(λ, x) = λF (x, λ) + (1− λ)(x − a).

Such homotopies are discussed in detail in [5].

4. Reconfigurable space trusses

Stewart’s platform, which has been widely adopted for use in vehicle simulators and other platform

control tasks, is an example of a variable geometry truss (VGT)—a parallel-actuated manipulator. In

its simplest and most elegant form, Stewart’s platform is a variable geometry octahedral truss with two

triangular platforms connected by six extensible legs (see Figure 3). Such an arrangement yields an

inherently strong manipulator, because all the members are loaded in pure tension or compression. In

general, a variable geometry truss (VGT) can be defined as a statically determinate truss that has been

modified to contain some number of variable length members. The number of these variable members is

equal to the number of degrees of freedom of the device.

VGTs have been studied for their potential as as adaptive or collapsing space structures. The devices

proposed for these applications are typically symmetric, constructed of repeating identical cells, and have

exceptional stiffness to weight ratios. Most VGTs of this type can be folded down and stored very

compactly, an important feature for space applications. Some of the typical space applications that have

been envisioned include booms to position equipment, berthing devices, serpentine structures to position

and support a transfer tunnel, and supports for space antennae. The use of VGTs for such space and

military applications has been discussed extensively in the literature.

Another interesting application of VGTs is as a manipulator arm or robot. The geometry that has

been considered most suitable for this purpose is the octahedral truss. By changing the lengths of the

extensible members, the manipulator arm can vary its configuration in three-dimensional space. The

VGT manipulator arm can accomplish all the functions of current articulated manipulator arms, and it

also has the advantage of having higher stiffness. The use of octahedral VGTs as joints in manipulators
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Figure 3. Stewart’s platform—an example of a parallel-actuated platform manipulator.

has also been studied, and techniques, which do not require the specification of all intermediate link

variables, have been developed to precisely control the end position of long chain VGT manipulators.

An ideal truss is composed exclusively of two-force members; no bending moments or torques can

be transmitted at the joints. This means that the relative rotations of adjoining links must occur at

a single point, either through spheric joints, or through a set of revolute joints with intersecting axes.

This is a difficult requirement to satisfy exactly in practice. Many trusses are approximate in the sense

that some joint offset is present and hence small bending moments are transmitted between links. All the

derivations here assume that the truss under consideration is ideal, and that adjoining links are connected

by spheric joints.

The octahedral VGT shown in Figure 4 is a variant of Stewart’s platform used in robotics and

vibration control. Although in principle it is possible to actuate any link of a VGT, this particular design

has three extensible actuators in a triangle called the actuator frame. Let θ1, θ2, θ3 be the angles made by
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the links A0A1, B0B1, C0C1, respectively, with the ground (containing the base A0B0C0). The forward

kinematics problem here is to find the angles θi given the 12 VGT cell link lengths. The relationship

between the angles and the link lengths is

L2
1 −

(
A cos θ1 + A cos θ2 +B cos θ1 cos θ2 − 2B sin θ1 sin θ2 +C

)
= 0,

L2
2 −

(
D cos θ2 +D cos θ3 +E cos θ2 cos θ3 − 2E sin θ2 sin θ3 + F

)
= 0,

L2
3 −

(
G cos θ1 +G cos θ3 +H cos θ1 cos θ3 − 2H sin θ1 sin θ3 + I

)
= 0,

(3)

where A, . . ., I are functions of the fixed link dimensions, and the lengths Li are kept explicit because

these links can be adjusted. Using the tangent half-angle substitutions for sine and cosine, (3) becomes

α1z
2
1 + α2z

2
2 + α3z

2
1z

2
2 + α4z1z2 + α5 = 0,

β1z
2
2 + β2z

2
3 + β3z

2
2z

2
3 + β4z2z3 + β5 = 0,

γ1z
2
3 + γ2z

2
1 + γ3z

2
3z

2
1 + γ4z3z1 + γ5 = 0.

(4)

Each component of (4) has degree 4, and from classical algebraic geometry the number of solutions

(counting multiplicities and solutions at infinity in complex projective space, and assuming there are no

solution manifolds) is the total degree 4 · 4 · 4 = 64, the classical Bezout number.

Writing (4) as F (z) = 0, there are several important observations to be made. First, there is

no easy way to separate the real solutions, complex solutions, and solutions at infinity (those existing

in complex projective space but not in affine space). All known computationally feasible algorithms for

solving polynomial systems like F (z) = 0 end up computing nonphysical complex and projective solutions.

Second, a homotopy algorithm can be constructed that is guaranteed to find all 64 complex projective

solutions of (4). Third, systems with structure like (4) typically have many solutions at infinity (48 in this

case). Fourth, homotopy algorithms can exploit structure and avoid computing many of these solutions

at infinity.

To understand this structure, partition the variables into three sets {z1}, {z2}, {z3}. Observe that
F1(z) has degree 2 with respect to {z1}, treating z2, z3 as fixed. Similarly, F1(z) has degrees 2 and 0

with respect to {z2} and {z3}, respectively. Defining dij to be the degree of Fi(z) with respect to the jth

variable set, the system F (z) has degree structure

(dij) =


 2 2 0
0 2 2
2 0 2


 .

Now

G(z) =


 (z21 − 4)(z22 − 9)

(z22 − 1)(z23 − 4)

(z23 − 9)(z21 − 1)


 = 0 (5)

has exactly this same degree structure, and (5) has exactly 16 finite solutions, trivially constructed. The

homotopy map (ignoring the technical detail that the constants 1, 4, 9 in G must be generic)

ρ(λ, z) = λF (z) + (1− λ)G(z)
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Figure 4. Octahedral variable geometry truss (VGT).

will have 16 zero curves starting at the roots of G(z), and every affine solution of (4) will be reached

by one of these curves. These statements follow from the general theory given below. Thus a homotopy

algorithm can effectively exploit the structure in (4), and track only 16 (instead of 64) zero curves. 16

is called the 3-homogeneous Bezout number with respect to the partition
{
{z1}, {z2}, {z3}

}
. For typical

link lengths in the octahedral VGT, there are in fact 16 different geometrical assemblies of the VGT with

those links (see [2] for pictures).

The general homotopy theory for polynomial systems now follows. Let F (z) = 0 be a polynomial
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system of n equations in n unknowns. In symbols,

Fi(z) =
ni∑
j=1

[
cij

n∏
k=1

zk
dijk

]
= 0, i = 1, . . . , n, (6)

where the cij are complex (and usually assumed to be different from zero) and the dijk are nonnegative
integers. The degree of Fi(z) is

di = max
1≤j≤ni

n∑
k=1

dijk,

and the total degree of the system (1) is

d =
n∏

i=1

di.

Define a homotopy map ρ : [0, 1)×Cn → Cn by

ρ(λ, z) = (1− λ)G(z) + λF (z). (7)

λ ∈ [0, 1) is the homotopy parameter, G(z) = 0 is the start system, and F (z) = 0 is the target system. The
goal is to find a start system with the same structure as the target system, while possessing the property
that G(z) = 0 is easily solved. Here a start system with a partitioned linear product (PLP) structure will
be constructed.

Let P = (P1, P2, . . . , Pn) be an n-tuple of partitions Pi of the set {z1, z2, . . . , zn}. That is, for
i = 1, 2, . . . , n, Pi = {Si1, Si2, . . . , Simi}, where Sij has cardinality nij = 0,

⋃mi

j=1 Sij = {z1, z2, . . . , zn},
and Sij1 ∩Sij2 = ∅ for j1 = j2. For clarity, P is called the system partition, and the Pi are the component
partitions. For i = 1, 2, . . . , n and j = 1, 2, . . ., mi define dij to be the degree of the component Fi in only
the variables of the set Sij , that is, considering the variables of {z1, z2, . . . , zn}\Sij as constants. Thus if

F2(z1, z2, z3) = z22 + z3z
3
2 − z1, S21 = {z3}, and S22 = {z1, z2}, then d21 = 1, d22 = 3. It is convenient,

though only for the definition of the start system, to rename the variables component-by-component.
Let Sij = {zij1, zij2, . . . , zijnij}. With all this said, the start system is represented mathematically by

Gi(z) =
mi∏
j=1

Gij, where

Gij =



( nij∑

k=1

cijkzijk

)dij

− 1, if dij > 0;

1, if dij = 0,

i = 1, 2, . . . , n, (8)

where the numbers cijk ∈ C0 = C\{0} are chosen at random. The structure defined by the system
partition P and manifested in (8) is called the partitioned linear product structure. The degree of Gi(z)
is

deg(Gi) =
mi∑
j=1

dij.

The total number of solutions to G(z) = 0 is called the PLP Bezout number BPLP .
The significance of the system partition P , the start system G(z) = 0, and the PLP Bezout number

BPLP , is given by the following theorem from [13].
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Theorem 4.1. For almost all choices of cijk in the start system defined by (8), ρ−1(0) consists of BPLP

smooth curves emanating from {0} ×Cn, which either diverge to infinity as λ approaches 1 or converge

to solutions of F (z) = 0. Each nonsingular solution of F (z) = 0 will have a curve converging to it.

These paths potentially diverging to infinity can be avoided by doing the tracking in complex pro-

jective space, with a trick due to A. P. Morgan known as the projective transformation. Define the

homogenization of F (z) to be

F ′
i (w) = wn+1

di Fi(w1/wn+1, . . . , wn/wn+1), i = 1, . . . , n. (9)

and that of ρ(λ, z) to be

ρ′i(λ, w) = w
deg(Gi)
n+1 ρi

(
λ,

w1

wn+1
, . . . ,

wn

wn+1

)
, i = 1, . . . , n.

Define the linear function

u(w1, . . . , wn+1) = ξ1w1 + ξ2w2 + . . .+ ξn+1wn+1,

where the numbers ξi ∈ C0 are chosen at random. The projective transformation of ρ(λ, z) is

ρ′′(λ, w) =



ρ′1(λ, w)
ρ′2(λ, w)

...
ρ′n(λ, w)
u(w)− 1


 .

F (z) is defined over Cn and F ′(w) is defined over complex projective space Pn. z ∈ Cn is a solution

to F (z) = 0 if and only if the line through w = (z, 1) (a point in Pn) is a solution to F ′(w) = 0. The

computer implementation actually works with ρ′′ rather than with ρ. The effect of these transformations

is that all the homotopy zero curves will now have finite arc length in [0, 1]×Cn+1, and every nonsingular

solution of F (z) = 0 will be found. The precise statement follows.

Theorem 4.2. For almost all choices of the cijk in the start system defined by (8) and almost all

choices of the ξ in the linear function u(w), (ρ′′)−1(0) consists of BPLP smooth curves emanating from

{0}×Cn+1, which converge to solutions of F ′(w) = 0. Each nonsingular solution of F ′(w) = 0 will have

a curve converging to it.

Finally, the issue of singular solutions deserves mention. Problem symmetries result in singular

solutions, and it is not uncommon in practice to have solutions with multiplicity 4, 8, or even higher.

These high multiplicities result in severely rank deficient Jacobian matrices Dρa(λ, x), requiring a very

special “end game” to even moderately approximate these singular solutions. Very sophisticated and

complicated end game strategies, based on power series or contour integrals, have been devised [13], and

one of these is implemented in the code POLSYS PLP described in Section 7.
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5. Fuel-optimal orbital rendezvous

Before describing the orbital rendezvous problem and its somewhat complicated homotopy, it is

useful to give some background theory for homotopies in optimization. Then, after a detailed description

of the motivating application, a general homotopy convergence theory for optimization is presented.

5.1. Homotopies in optimization

A few typical convergence theorems for optimization are given here (see the survey in [7] for more

examples and references). Consider first the unconstrained optimization problem

min
x
f(x). (10)

Theorem 5.1. Let f : Rn → R be a C3 convex map with a minimum at x̃, ‖x̃‖2 ≤M . Then for almost

all a, ‖a‖2 <M , there exists a zero curve γ of the homotopy map

ρa(λ, x) = λ∇f(x) + (1− λ)(x− a),

along which the Jacobian matrix Dρa(λ, x) has full rank, emanating from (0, a) and reaching a point

(1, x̃), where x̃ solves (10).

A function is called uniformly convex if it is convex and its Hessian’s smallest eigenvalue is bounded

away from zero. Consider next the constrained optimization problem

min
x≥0

f(x). (11)

This is more general than it might appear because the general convex quadratic program reduces to a

problem of the form (11).

Theorem 5.2. Let f : Rn → R be a C3 uniformly convex map. Then there exists δ > 0 such that for

almost all a ≥ 0 with ‖a‖2 < δ there exists a zero curve γ of the homotopy map

ρa(λ, x) = λK(x) + (1− λ)(x− a),

where

Ki(x) = −
∣∣∣∣∂f(x)∂xi

− xi

∣∣∣∣
3

+

(
∂f(x)

∂xi

)3

+ x3i ,

along which the Jacobian matrix Dρa(λ, x) has full rank, connecting (0, a) to a point (1, x̄), where x̄ solves

the constrained optimization problem (11).

Given F : Rn → Rn, the nonlinear complementarity problem is to find a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, xtF (x) = 0. (12)
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It is interesting that homotopy methods can be adapted to deal with nonlinear inequality constraints and

combinatorial conditions as in (12). Define G : Rn → Rn by

Gi(z) = −
∣∣Fi(z) − zi

∣∣3 + (
Fi(z)

)3
+ z3i , i = 1, . . . , n,

and let

ρa(λ, z) = λ G(z) + (1− λ)(z − a).

Theorem 5.3. Let F : Rn → Rn be a C2 map, and let the Jacobian matrix DG(z) be nonsingular at

every zero of G(z). Suppose there exists r > 0 such that z > 0 and zk = ‖z‖∞ ≥ r imply Fk(z) > 0. Then

for almost all a > 0 there exists a zero curve γ of ρa(λ, z), along which the Jacobian matrix Dρa(λ, z)

has full rank, having finite arc length and connecting (0, a) to (1, z̄), where z̄ solves (12).

Theorem 5.4. Let F : Rn → Rn be a C2 map, and let the Jacobian matrix DG(z) be nonsingular at

every zero of G(z). Suppose there exists r > 0 such that z ≥ 0 and ‖z‖∞ ≥ r imply zkFk(z) > 0 for

some index k. Then there exists δ > 0 such that for almost all a ≥ 0 with ‖a‖∞ < δ there exists a zero

curve γ of ρa(λ, z), along which the Jacobian matrix Dρa(λ, z) has full rank, having finite arc length and

connecting (0, a) to (1, z̄), where z̄ solves (12).

Homotopy algorithms for convex unconstrained optimization are generally not computationally com-

petitive with other approaches. For constrained optimization the homotopy approach offers some advan-

tages, and, especially for the nonlinear complementarity problem, is competitive with and often superior

to other algorithms. Consider next the general nonlinear programming problem

min θ(x)

subject to g(x) ≤ 0,

h(x) = 0,

(13)

where x ∈ Rn, θ is real valued, g is an m-dimensional vector, and h is a p-dimensional vector. Assume

that θ, g, and h are C3, and that at a local solution x̄ of (13), g and h satisfy some regularity condition,

e.g., the weak Arrow-Hurwicz-Uzawa constraint qualification at x̄. The Kuhn-Tucker necessary optimality

conditions for (13) are

∇θ(x) + βt∇h(x) + µt∇g(x) = 0,

h(x) = 0,

g(x) ≤ 0,

µ ≥ 0,

µtg(x) = 0,

(14)

where β ∈ Rp and µ ∈ Rm. The complementarity conditions µ ≥ 0, g(x) ≤ 0, µtg(x) = 0 are replaced

by the equivalent nonlinear system of equations

W (x, µ) = 0, (15a)

where

Wi(x, µ) = −
∣∣µi + gi(x)

∣∣3 + µ3
i −

(
gi(x)

)3
, i = 1, . . . , m. (15b)
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Thus the optimality conditions (14) take the form

F (x, β, µ) =


 [∇θ(x) + βt∇h(x) + µt∇g(x)]t

h(x)
W (x, µ)


 = 0. (16)

With z = (x, β, µ), the proposed homotopy map is

ρa(λ, z) = λF (z) + (1− λ)(z − a), (17)

where a ∈ Rn+p+m. The homotopy map in (17) has worked on some difficult realistic engineering

problems, although the convergence theory for the particular map in (17) is not especially satisfying (θ,

g, and h have to be very special). A more useful homotopy map is described next, and the general

convergence theory presented later covers this type of map.

Frequently in practice the functions θ, g, and h involve a parameter vector c, and a solution to (13)

is known for some c = c(0). Suppose that the problem under consideration has parameter vector c = c(1).

Then

c = (1− λ)c(0) + λc(1) (18)

parametrizes c by λ and θ = θ(x; c) = θ(x; c(λ)), g = g(x; c(λ)), h = h(x; c(λ)). The optimality conditions

in (16) become functions of λ as well, F (λ, x, β, µ) = 0, and

ρa(λ, z) = λF (λ, z) + (1− λ)(z − a) (19)

is a highly implicit nonlinear function of λ. If F (0, z(0)) = 0, a good choice for a in practice has been

found to be a = z(0). A natural choice for a homotopy would be simply

F (λ, z) = 0, (20)

since the solution z(0) to F (0, z) = 0 (the problem corresponding to c = c(0)) is known. However, for

various technical reasons, (19) is much better than (20). For the orbital rendezvous problem described

next, a homotopy map like (19) is used, where c = c(0) corresponds to a simple, relaxed constraint problem

for which a solution z(0) is known.

5.2. An orbital mechanics problem

The problem is to find a minimum fuel rendezvous trajectory between two bodies, the nonmaneuver-

ing target and the interceptor. The interceptor trajectory consists of Keplerian coasting arcs separated

by impulsive thrusting, characterized by a change in velocity (magnitude and direction). An impulse is

applied at the end of the interceptor trajectory to provide the velocity match with the target. The ma-

neuver must be completed within some specified time and the trajectory must avoid passing through the

earth, i.e., the arcs must not violate a minimum radius constraint. The fuel-optimal problem translates

to minimizing the total change in the velocity (characteristic velocity).

The variables are: the coasting angles on each arc including a possible initial coast, components of

the velocity change vector, and the coasting angle of the target. Assume a spherical earth and use Burdet
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oscillator [2] type coordinates with the change in true anomaly as the independent variable η. Thus, the

position and velocity of the body in Keplerian orbit can be represented by:

u and r̂— reciprocal of the magnitude of the radius vector, and a unit vector in the radial direction;

h and ĥ— magnitude of the angular momentum vector, and a unit vector along its direction;

5r(η)— the radius vector given by r̂(η)/u(η);

5v(η)— the velocity vector given by h(η)
{
u(η)r̂′(η) − u′(η)r̂(η)

}
.

Here ′ refers to the derivative with respect to the change in true anomaly η. Therefore, knowing initial

conditions on any subarc and the change in true anomaly, the conditions at any other point can be

obtained as

u(η) =
µ

h2
+
(
u(0)− µ

h2

)
cos(η) + u′(0) sin(η),

u′(η) = −
(
u(0)− µ

h2

)
sin(η) + u′(0) cos(η),

and similarly, the unit vectors as

r̂(η) = r̂(0) cos(η) + r̂′(0) sin(η),

r̂′(η) = −r̂(0) sin(η) + r̂′(0) cos(η).

The time of flight T on any subarc can be obtained by integrating

T (η) =

∫ η

0

1

hu2(θ)
dθ.

At an impulse u and r̂ remain unchanged and the impulse is characterized by a change in u′, h, r̂′,

and ĥ. Thus, a change in u′ and h provides the magnitude change in velocity and a change in r̂′ and

ĥ provides the directional change. Since r̂ is fixed, the only change, if any, in r̂′ and ĥ is a rotation φ

about r̂. Using these Burdet oscillator type coordinates to represent the position and velocity, an impulse

vector {∆vx, ∆vy, ∆vz} is characterized by {∆u′, ∆h, φ}.
Mathematically, the aforementioned problem can be described as choosing a sequence of {η, ∆u′,

∆h, φ} so that the characteristic velocity (total velocity change), which provides a measure of the fuel
consumed, is minimized. Therefore, a time limited problem becomes: minS V (x), where

S =
{(
(η,∆u′,∆h, φ)j, j = 1, . . . , nim, ηt

)}
,

nim is the prespecified number of impulses, and the characteristic velocity V can be expressed in terms

of these variables as

V =
nim∑
j=1

√
u2j+1(0)

{
h2j+1 − 2hjhj+1 cos(φj) + h2j

}
+
{
∆hju′j+1(0) + ∆u′jhj

}2
.

For the quantities u, u′, and h, the subscript j denotes the conditions at the beginning of the jth

subarc, and on the variables ∆u′, ∆h, and φ the subscript j denotes the jth impulse which occurs at the

end of the jth subarc. In addition, the following equality and inequality constraints must be satisfied.
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Equality constraints H(x) = 0. The conditions for rendezvous require the following position and

velocity matching constraints:

(i) final position match constraint H1(x) ≡ 5rf − 5rt(ηt) = 0;

(ii) final velocity match constraint H2(x) ≡ 5vf − 5vt(ηt) = 0;

(iii) time of the flight constraint H3(x) ≡ Tf − Tt = 0,

where the subscript f refers to the conditions on the interceptor trajectory after the final impulse and

the subscript t refers to conditions on the target.

Inequality constraints G(x) ≥ 0. Additional constraints which must be satisfied along each arc of the

interceptor or target trajectory in the form of an inequality are:

(i) nonnegativity of the coasting arcs of the interceptor Gi(x) ≡ ηi ≥ 0, i = 1, . . . , nim;

(ii) nonnegativity of the coasting arc of the target, Gnim+1(x) ≡ ηt ≥ 0;

(iii) time of flight limit constraint (maximum time specified for rendezvous), Gnim+2(x) ≡ Tmax−Tf ≥ 0;

(iv) minimum radius constraint, Gj(x) ≡ u0 − umax ≥ 0, j = nim + 3, . . . , 2nim + 1. The transfer arc

should lie outside a circle of radius r0 ≡ 1/u0. This is essentially a semi-infinite constraint, but from

the nature of the transfer arcs, i.e., conic sections, the minimum radius on any subarc is given by

the following:

1

umax
= perigee radius, if perigee passage occurs on subarc, and min(rinitial, rfinal) otherwise.

This minimum radius constraint is not C2. Consequently, a stiffer constraint of requiring the perigee

radius of any transfer arc to be greater than the minimum allowable radius is used.

(v) Nonnegativity of the radius constraint Gj(x) ≡ umin ≥ 0, j = 2nim + 2, . . . , 3nim. This too is

a semi-infinite constraint, and the formulation here requires the final radius to be positive. This

constraint is required to preclude negative distances, which are mathematically possible from the

nature of the governing equations.

The orbital rendezvous problem thus has the general form of (13), namely

min V (x) subject to − G(x) ≤ 0, H(x) = 0.

Homotopy convergence theory for such problems is addressed next.

5.3. Convergence theory for constrained optimization

The problem (13) involves equality constraints, and in practice (16) and (19), which include the

equality constraints, have been very successful on real problems. However, a satisfactory comprehensive

convergence theory does not yet exist for homotopy maps like (16) and (19). Recently, homotopy con-

vergence theory has been developed for the inequality (only) constrained case with general θ and general

inequality constraints g(x) <
= 0. That theory from [9] is briefly summarized here.

Let f : Rn → R and g : Rn → Rm be C3 functions, and assume that g satisfies the Arrow-Hurwicz-

Uzawa constraint qualification at every local solution of

minf(x) subject to g(x) <
= 0. (21)
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If x̄ solves (21) locally, then there exists ū ∈ Rm such that (x̄, ū) solves the Kuhn-Tucker problem

(
∇f(x)

)t
+
(
∇g(x)

)t
u = 0, (22)

g(x) <
= 0, (23)

u >
= 0, (24)

utg(x) = 0. (25)

Let F : Rn × [0, 1]→ R and G : Rn × [0, 1]→ Rm be C3 functions such that

F (x, 1) = f(x), G(x, 1) = g(x), (26)

and the optimization problem

minF (x, 0) subject to G(x, 0) <
= 0 (27)

has an easily obtained (local) solution x0. In practice F (x, λ), G(x, λ) represent a family of optimization

problems

minF (x, λ) subject to G(x, λ) <
= 0, (28)

where λ is embedded deeply and nonlinearly in the objective function F (x, λ) and constraints G(x, λ).

This embedding often embodies considerable physical insight into the problem (21), and (27) is a version

of (21) with simplified physics and/or geometry. A good choice for (28) may take years to develop, and

generally requires considerable problem specific knowledge and the intimate involvement of an engineer or

scientist. The payoff will be a robust, globally convergent algorithm that is more efficient than applying an

“off-the-shelf” algorithm, and avoids spurious solutions (e.g., unstable equilibria in mechanics or unstable

circuit operating points can be expressly avoided).

One could naively solve (28) with continuation varying λ from 0 to 1, but this is precisely the point

at which the probability-one theory can make a significant improvement over simple continuation in λ

(and also over arc length continuation). A probability-one homotopy for (28) guarantees the existence of

a zero curve γ with good numerical properties, the importance of which for practical computation cannot

be overstated. A homotopy map analogous to (19) is

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(
∇xF (x, λ)

)t
+
(
∇xG(x, λ)

)t
u
]
+ (1− λ)(x − x0)

K(λ, x, u, b0, c0)

)
, (29)

where
Ki(λ, x, u, b

0, c0) = −
∣∣(1− λ)b0i −Gi(x, λ)− ui

∣∣3 + (
(1− λ)b0i −Gi(x, λ)

)3
+ u3i − (1− λ)c0i , i = 1, · · · , m,

(30)

is slightly different from the last m components of (19). Given arbitrary x0 ∈ Rn, choose b0 > 0 such

that G(x0, 0)− b0 < 0 and choose any c0 > 0. The map (29), or some minor variation thereof, is what is

typically used in practice, and has been extremely successful on industrial optimization problems.

The above discussion is summarized in the hypotheses of the following theorem [9]. Let a =

(x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), according to (29) and (30). It can be proved

that u0 is always uniquely defined by K(0, x0, u0, b0, c0) = 0.
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Theorem 5.5. Let f : Rn → R and g : Rn → Rm be C3 functions, let g satisfy the Arrow-Hurwicz-

Uzawa constraint qualification at every local solution of (21), let X0 ⊂ Rn and B0 ⊂ {b ∈ Rm | b > 0}
be open and nonempty, and for b0 ∈ B0 and 0 <

= λ <
= 1 define

Sλ(b
0) =

{
x ∈ Rn | G(x, λ)− (1− λ)b0 <

= 0
}
.

For each x0 ∈ X0 assume there exists b0 ∈ B0 such that G(x0, 0) − b0 < 0. For each x0 ∈ X0 and

b0 ∈ B0 satisfying G(x0, 0) − b0 < 0, further assume that Sλ(b
0) is nonempty for 0 <

= λ <
= 1, and that⋃

0<=λ<=1

Sλ(b
0) is bounded. Let ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u) be defined from (29) and (30). Then for

almost all x0 ∈ X0, almost all b0 ∈ B0 such that G(x0, 0)− b0 < 0, and almost all c0 ∈ Rm with c0 > 0,

there exists a zero curve γ of ρa(λ, x, u) emanating from (0, x0, u0), along which the Jacobian matrix

Dρa(λ, x, u) has rank n+m. If in addition there exists κ > 0 such that for any point (λ, x, u) on γ,

∥∥(λ, x, u)− (0, x0, u0)
∥∥ > 1 =⇒ λ >

= κ,

and for any accumulation point (λ̂, x̂) of (λ, x) along γ

[
∇xGJ(x̂, λ̂)

]
z > 0 has a solution z,

where J =
{
j | Gj(x̂, λ̂) − (1 − λ̂)b0j = 0

}
, then γ reaches a point (1, x̄, ū), where (x̄, ū) solves the

Kuhn-Tucker problem (22)–(25). If rank Dρa(1, x̄, ū) = n+m, then γ has finite arc length.

An interpretation of the assumptions in Theorem 5.5, and a discussion of the likelihood they might

hold in practice, are given in [9]. A key component of the proof is the nature of the sets Sλ(b
0) for

0 <
= λ <

= 1, which provides considerable insight into the construction of a family of optimization problems

(28) to which Theorem 5.5 applies.

6. HOMPACK90

There are several software packages implementing both continuous and simplicial homotopy methods;

see [1] and [12] for a discussion of some of these packages. A production quality software package written

in Fortran 90 is described here. HOMPACK90 [12] is a Fortran 90 collection of codes for finding zeros

or fixed points of nonlinear systems using globally convergent probability-one homotopy algorithms.

Three qualitatively different algorithms—ordinary differential equation based, normal flow, quasi-Newton

augmented Jacobian matrix—are provided for tracking homotopy zero curves, as well as separate routines

for dense and sparse Jacobian matrices. A high level driver for the special case of polynomial systems

is also provided. HOMPACK90 features elegant interfaces, use of modules, support for several sparse

matrix data structures, and modern iterative algorithms for large sparse Jacobian matrices.

HOMPACK90 is logically organized in two different ways: by algorithm/problem type and by sub-

routine level. There are three levels of subroutines. The top level consists of drivers, one for each problem

type and algorithm type. The second subroutine level implements the major components of the algo-

rithms such as stepping along the homotopy zero curve, computing tangents, and the end game for the

solution at λ = 1. The third subroutine level handles high level numerical linear algebra such as QR
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Table 1. Taxonomy of homotopy subroutines.

x = f(x) F (x) = 0 ρ(a, λ, x) = 0 algorithm

dense sparse dense sparse dense sparse

FIXPDF FIXPDS FIXPDF FIXPDS FIXPDF FIXPDS ordinary differential equation

FIXPNF FIXPNS FIXPNF FIXPNS FIXPNF FIXPNS normal flow

FIXPQF FIXPQS FIXPQF FIXPQS FIXPQF FIXPQS augmented Jacobian matrix

factorization, and includes some LAPACK and BLAS routines. The organization of HOMPACK90 by

algorithm/problem type is shown in Table 1, which lists the driver name for each algorithm and problem

type.

The naming convention is

FIXP



D
N
Q



{
F
S

}
,

where D ≈ ordinary differential equation algorithm, N ≈ normal flow algorithm, Q ≈ quasi-Newton

augmented Jacobian matrix algorithm, F ≈ dense Jacobian matrix, and S ≈ sparse Jacobian matrix.

Depending on the problem type and the driver chosen, the user must write exactly two subroutines,

whose interfaces are specified in the module HOMOTOPY, defining the problem (f or ρ). The module

REAL PRECISION specifies the real numeric model with

SELECTED REAL KIND(13),

which will result in 64-bit real arithmetic on a Cray, DEC VAX, and IEEE 754 Standard compliant

hardware.

The special purpose polynomial system solver POLSYS1H can find all solutions in complex projective

space of a polynomial system of equations. Since a polynomial programming problem (where the objective

function, inequality constraints, and equality constraints are all in terms of polynomials) can be formulated

as a polynomial system of equations, POLSYS1H can effectively find the global optimum of a polynomial

program. However, polynomial systems can have a huge number of solutions, so this approach is only

practical for small polynomial programs (e.g., surface intersection problems that arise in CAD/CAM

modelling).

The organization of the Fortran 90 code into modules gives an object oriented flavor to the package.

For instance, all of the drivers are encapsulated in a single MODULE HOMPACK90. The user’s calling

program would then simply contain a statement like

USE HOMPACK90, ONLY : FIXPNF

Many scientific programmers prefer the reverse call paradigm, whereby a subroutine returns to the

calling program whenever the subroutine needs certain information (e.g., a function value) or a certain

operation performed (e.g., a matrix-vector multiply). Two reverse call subroutines (STEPNX, ROOTNX)

are provided for “expert” users. STEPNX is an expert reverse call stepping routine for tracking a
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homotopy zero curve γ that returns to the caller for all linear algebra, all function and derivative values,

and can deal gracefully with situations such as the function being undefined at the requested steplength.

ROOTNX provides an expert reverse call end game routine that finds a point on the zero curve

where g(λ, x) = 0, as opposed to just the point where λ = 1. Thus ROOTNX can find turning points,

bifurcation points, and other “special” points along the zero curve. The combination of STEPNX and

ROOTNX provide considerable flexibility for an expert user.

7. POLSYS PLP

The mathematical software package POLSYS PLP [13] consists of two Fortran 90 modules (GLO-

BAL PLP, POLSYS). GLOBAL PLP contains Fortran 90 derived data types to define the target system, the

start system, and the system partition. As its name suggests, GLOBAL PLP provides data globally to the

routines in POLSYS PLP. The module POLSYS contains three subroutines: POLSYS PLP, BEZOUT PLP, and

SINGSYS PLP. POLSYS PLP finds the root count (the Bezout number BPLP for a given system partition

P ) and the roots of a polynomial system, BEZOUT PLP finds only the root count. SINGSYS PLP checks the

singularity of a given start subsystem, and is of interest only to expert users. The package uses the HOM-

PACK90 modules REAL PRECISION, HOMPACK90 GLOBAL, and HOMOTOPY [12], the HOMPACK90 subroutine

STEPNX, and numerous LAPACK and BLAS subroutines. The physical organization of POLSYS PLP into

files is described in a README file that comes with the distribution.

Arguments to POLSYS PLP include an input tracking tolerance TRACKTOL, an input final solution

error tolerance FINALTOL, an input singularity tolerance SINGTOL for the root counting algorithm, input

parameters for curve tracking, various output solution statistics, and four Fortran 90 optional arguments:

NUMRR, RECALL, NO SCALING, and USER F DF. The integer NUMRR specifies the number of iterations times

1000 that the path tracker is allowed; the default value is 1. The logical variable RECALL should be

included if, after the first call, POLSYS PLP is being called again to retrack a selected set of curves. The

presence of the logical variable NO SCALING (regardless of value) causes POLSYS PLP not to scale the target

polynomial system. The logical optional argument USER F DF specifies that the user is supplying hand-

crafted code for function and Jacobian matrix evaluation—this option is recommended if efficiency is a

concern, or if the original formulation of the system is other than a linear combination of monomials.

POLSYS PLP takes full advantage of Fortran 90 features. For example, all real and complex type

declarations use the KIND specification; derived data types are used for storage flexibility and simplic-

ity; array sections, automatic arrays, and allocatable arrays are fully utilized; interface blocks are used

consistently; where appropriate, modules, rather than subroutine argument lists, are used for data asso-

ciation; low-level linear algebra is done with Fortran 90 syntax rather than with BLAS routines; internal

subroutines are used extensively with most arguments available via host association. POLSYS PLP is

easy to use, with a short argument list, and the target system F (z) defined with a simple tableau format

(unless the optional argument USER F DF is present). The calling program requires the statement

USE POLSYS

The typical use of POLSYS PLP is either to call BEZOUT PLP to obtain the root count BPLP of

a polynomial system of equations for a specified system partition P , or to call POLSYS PLP to obtain

all the roots of the polynomial (and the root count as a byproduct). It is advisable to explore several
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system partitions with BEZOUT PLP before committing to one and calling POLSYS PLP. A sample main
program MAIN TEMPLATE demonstrates how to use POLSYS PLP as just described. MAIN TEMPLATE uses
NAMELIST input for the target system and partition definitions, and allows the user to solve multiple
polynomial systems in a single run.

The template TARGET SYSTEM USER (an external subroutine) is also provided. This subroutine would
contain hand-crafted code for function and Jacobian matrix evaluation if the optional argument USER F DF

to POLSYS PLP were used.
The system partition must be defined by the user in the module GLOBAL PLP. Heuristics exist for

estimating an optimal system partition (PLP structure), but are no substitute for physical insight into
the problem at hand. In practice, polynomial systems typically arise as sums of products with physical
variables naturally grouped. Matching the PLP structure to the problem’s “physical” structure usually
yields a near optimal Bezout number BPLP . Intuitively, the idea is to get all the set degrees dij as
low as possible. For real problems, an m-homogeneous [13] partition almost always suffices, and for the
remainder a PLP structure is adequate. Of course linear product decomposition (LPD) [13] and general

product decomposition (GPD) [13] Bezout numbers can be lower than BPLP , but no class of applications
has yet emerged for which BLPD or BGPD are significantly lower than BPLP .
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