
Confirming the Effectiveness of the Requirements Generation Model:
An Industry-Based Empirical Study

Markus K. Gröner & James D. Arthur
Department of Computer Science; Virginia Tech; Blacksburg, VA 24061-0106

{groener|arthur}@vt.edu

Abstract
Product quality is directly related to how well that prod-
uct meets the customer’s needs and intents. It is para-
mount, therefore, to capture customer requirements cor-
rectly and succinctly. Unfortunately, most development
models tend to avoid, or only vaguely define the process
by which requirements are generated. Other models rely
on formalistic characterizations that require specialized
training to understand. To address such drawbacks we
introduce the Requirements Generation Model (RGM)
that (a) decomposes the conventional “requirements
analysis” phase into sub-phases which focus and refine
requirements generation activities, (b) constrains and
structures those activities, and (c) incorporates a moni-
toring methodology to assist in detecting and resolving
deviations from process activities defined by the RGM.
The results of an industry-based study are also presented
and substantiate the effectiveness of the RGM in produc-
ing a better set of requirements.

Keywords
Requirements Identification, Requirements Generation,
Customer Intent, Requirements Engineering, Software
Engineering, Software Methodology

1. Introduction

This paper presents an industry-based study to help
assess the effectiveness of the Requirements Generation
Model (RGM) [4] in software development efforts. The
RGM is designed to minimize the difficult task faced by
every requirements engineer, i.e., to capture customer re-
quirements accurately and succinctly. Every software de-
velopment effort depends on procedures and methods
such as those found in the Waterfall Model [6], the Spiral
Model [2], and prototyping approaches [7] to name a
few. Yet, no matter how much rigor is applied to the pro-
cess, the resulting product is only as good as the set of re-
quirements by which it is defined. The RGM consists of
a framework and a monitoring methodology that con-
strains and guides a requirements engineer and customer
through the requirements definition process. The objec-

tive of the RGM is to provide a structure within which re-
quirements are captured meeting customer intent. This
paper provides a brief overview of the RGM and presents
the findings of an empirical study conducted to determine
its effectiveness. A complementary subset of the RGM
components was selected for the study. The positive
contributions the RGM makes to the requirements defini-
tion process is substantiated by the empirical data derived
from the study.

The remainder of this paper is structured as follows:
Section 2 provides a brief overview of the Requirements
Generation Model; Section 3 describes the selection proc-
ess for two groups in this study; Section 4 outlines how
the empirical study was structured; Section 5 presents the
data and conjectures supported by that data. Finally, Sec-
tion 6 provides some concluding remarks.

2. An Overview of the Requirements Gen-
eration Model

The Requirements Generation Model (RGM) refines the
conventional “requirements analysis” phase by imposing
a framework and methodology that structures the re-
quirements elicitation, recording and evaluation proc-
esses. Similar to existing models like Participatory De-
sign (PD) [3] and Joint Application Design (JAD) [5], the
RGM seeks to reduce the disparity in domain knowledge
between the requirements engineer and customer. The
RGM differs from those models, however, in that it fo-
cuses extensively on the requirements phase, and within
that phase, prescribes activities that address a more spe-
cific and well-defined set of objectives.

2.1 The Framework

As illustrated in Figure 1, the RGM framework parti-
tions the conventional requirements analysis phase into an
initial indoctrination phase, which is then followed by an
iterative requirements capturing phase. The objectives of
the indoctrination phase are to (a) introduce the customer
to the requirements definition process, (b) provide the re-
quirements engineer with an overview of the customer’s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Indoctrination
Preparation Elicitation Evaluation

Requirements Capturing Requirements
Analysis

Iteration

Concept
Definition

Requirements Generation

Figure 1: The Requirements Generation Framework

problem domain and needs, and (c) describe the partici-
pants’ tasks and responsibilities in the requirements defi-
nition process. The objectives of the requirements cap-
turing phase are directly related to the three sub-phases
that comprise it – preparation, elicitation and evaluation.
Respectively, the primary objectives of those sub-phases
are to (a) define the scope of the up-coming elicitation
meeting and ensure that all participants have completed
their pre-meeting assignments, (b) enable the require-
ments engineer to accurately identify and record software
requirements as expressed by the customer, and (c) evalu-
ate the contributions of the preceding elicitation meetings,
identify unresolved (or new) issues, and determine if an
additional refinement iteration is needed. All three sub-
phases are embedded within an iterative framework that,
in turn, encourages the progressive identification, refine-
ment and elaboration of individual requirements. Collec-
tively, the three sub-phases and the iterative framework
define the requirements capturing process. Through
phase-specific guidelines and protocols, and through its
iterative framework, this process promotes a structured
approach to the interaction format and information ex-
change between the customer and the requirements engi-
neer.

2.2 The Monitoring Methodology

Even within a structured requirements elicitation pro-
cess problems can still surface, and before being recog-
nized as such, have an adverse impact on that process.
Hence, identifying and addressing such problems as they
occur is an important component of the RGM. The RGM
provides this detection/correction component through its
monitoring methodology. That is, the RGM’s monitoring
methodology detects deviations in the prescribed elicita-
tion process and suggests appropriate remedies. In more
specific terms the monitoring methodology is composed
(a) automated and manual procedures that constantly
“monitor” the elicitation process for defined problems,
and (b) methods that assist in their resolution. An exam-
ple of one simple procedure is setting a timer to provide
an audible “alarm” when a meeting has exceeded its
stipulated time duration.

In effect, the framework and methodology of the
RGM have been purposefully designed to (a) add struc-

ture and control to the requirements generation activities,
(b) support the accurate capturing of requirements, and
we conjecture, and (c) promote an effective requirements
generation process.

3. Selection Process

The selection of participants for this empirical study
calls for two groups of comparable size and experience.
One group, designated as the “Non-RGM” group, serves
as the control group for the study. The Non-RGM defines
requirements and implements software using currently ac-
cepted practices. The second group, called the “RGM”
group, is the experimental group. The RGM group re-
ceives training in the use of the RGM and in the applica-
tion of its activities to the software development process.
Both the RGM and Non-RGM groups work in the same
industrial setting, supporting financial data processing
systems and software. Prior to the study, the development
efforts and track records for each group were similar.

The details of the empirical study and a discussion of
how we attempted to avoid introducing bias is discussed
in the following section.

4. Empirical Study Setup

This section describes the details of the empirical
study. We focus on 1) those parts of the RGM that are
deployed in the empirical study, 2) the environment in
which the empirical study is conducted, 3) characteristics
of the projects developed within the empirical study, 4)
the people involved in the empirical study, and 5) the ap-
proach used to insert the RGM into the development pro-
cess.

4.1. A Description of the Empirical Study

An empirical study was conducted to assess the bene-
fits of using the RGM within an industrial development
environment. In this study, we show that using the RGM
instead of the currently existing requirements generation
process improves the effectiveness of the requirements
generation process, and has an additional positive impact
on the remaining development phases. Through this
study, we establish three benefits of employing the RGM,
although many more are believed to exist:

1. By using the RGM to more effectively capture re-
quirements as stated by the customer, we expect to
see less (if any) schedule slippage for major project
milestones.

2. By using the RGM we expect fewer adverse impacts
in later development phases due to requirements
changes.

3. By using the RGM we expect those directly involved
in the project development, as well as the customer,
to have a higher level of satisfaction with the project.

Changing a development environment is a difficult
task at best. We desire, therefore, to implement minimal,
but effective changes. Hence, we have selected elements
of the RGM that we expect will contribute to the require-
ments generation process, but require minimal imple-
mentation overhead. These elements are:

• Issues/Participant Notifications – Participants in up-
coming requirements elicitation meetings are notified
in advance of issues they are expected to present.

• Meeting Notifications – Resolutions and problems are
distributed in a timely manner before meetings, as
well as meeting place/date/time and alternative ways
to attend the meeting are announced.

• Silent Parking Lot – Provide a mechanism by which
meeting participants can record thoughts for later dis-
cussion, and thereby avoid interrupting the current
dialogue process.

• Limited Unstructured Requirements List Reviews – A
thorough review of “just-captured” requirements by
the requirements engineer and the customer.

• Controlled Interrupts – A method embraced by the
RGM and intended to reduce interruptions during a
requirements elicitation meeting. This method com-
plements the use of the Silent Park Lot.

• Avoiding the “Guessing Game” – This method is
used to detect and minimize the introduction of vague
requirements stemming from the stakeholder
“guessing” at the correct requirement. Responses
containing containing terms or phrases like “possi-
bly”, “maybe”, and “I think so” indicate questionable
understanding.

• Seeking Requirements, Not Solutions – The RGM is
specific in stipulating that the requirements engineer
must avoid the introduction of requirements that sug-
gest a priori solutions, and thereby, constrain re-
quirements formulation.

4.2. Environment

The study environment is comprised of the physical
surroundings, the hardware, and the operating systems
being used, as well as the atmosphere established through
the organization of the study. This section details those
components and discusses the efforts made to avoid the
introduction of bias.

4.2.1. The Physical Environment.

The empirical study is performed in a large financial
institution. The department within which the study takes
place is comprised of five separate groups. Four of these
groups work within the same building but are physically
separated. The fifth group works in a separate building.
The physical environment is one of cubicles for each em-
ployee, with either a single PC running MS Windows 95,
or two PCs, one with MS Windows and a second with
Unix. Developers use either MS Visual Basic or C/C++
on the Unix operating system.

4.2.2. Avoiding Bias
One concern when conducting a study is the intro-

duction of bias – bias compromises otherwise valid re-
sults. A first step in avoiding the introduction of bias is to
set up an “experimental” group and a “control” group and
minimize their interaction. For example, those elements
to be studied, i.e. changes to the normal environment, are
introduced through the experimental group, while the
control group continues to function the same as before.

Our empirical study employs an experimental group
and a control group. The experimental group (referred to
as the RGM group) uses those previously described com-
ponents of the RGM. The control group (referred to as
the Non-RGM group) continues to employ the currently
established development process. For both groups we use
several techniques to minimize the introduction of bias:
• Both groups work in the same department, but work

in physically separate locations.
• Both groups work on the same type of applications

but which have no overlapping components. Each
group has a completely different set of customers.

• Only the experimental (RGM) group is trained in the
RGM process. No one else is aware of this special
training.

• Necessary artifacts are given only to the RGM group.
• We monitor both groups throughout the empirical

study.
• Neither group is aware that they are part of a study.

The data to be collected is a standard component of
both group’s submission requirement for projects.

The six items noted above serve to minimize the in-
troduction of bias into the empirical study.

4.3. Project Characteristics

This section presents the characteristics of the proj-
ects used in the empirical study. Those characteristics in-
clude the elements that determine selection, such as proj-
ect size, application type, and development and target en-
vironments. Also included are the roles of those involved
in the projects.

4.3.1. Project Selection
The following set of characteristics were used in se-

lecting the projects for the groups in the study:
• Project Time Length – must be estimated at no more

than six months to completion.
• Project Size – each group must have two large proj-

ects and two small projects. Project size in the given
development environment is determined by estimated
project cost. A project of greater than $250K is
large, and below $250K small. This cost includes the
purchase of hardware as well as employee time. Size
is not an indicator for the expected project length, as
small projects may be developed in parallel with less
than 100% human resource dedicated to a single
project at a time. In this environment, it is common
for small and large projects to start and finish at the
same time due to this factor.

• Project Complexity – all projects must be afinancial
processing application with database access. The
large projects were critical and essential to the daily
operations of the business. The small projects were
system functionality enhancements.

• Personnel – between the two groups corresponding
participants must have equal qualifications, experi-
ence, and length of time within their groups.

Additional project characteristics and division be-
tween the two development groups are as follows:

RGM (Experimental) Group:
• Two large projects (Projects 1 & 2).
• Two small projects (Projects 4 & 5).
• All projects are financial applications with sim-

ple data manipulation (calculations), database
look-ups, and database stores.

• All projects are to be developed in either MS
Visual Basic or C++ on Windows 95 or Unix
based operating systems, respectively.

• All projects are deployed on either Windows 95
or Unix based operating system machines.

• Roles:
− Large projects each have 1 project manager,

1 systems analyst, and 2 developers, as well
as a single customer.

− Small projects each have 1 project manager,
1 systems analyst, and 1 developer, as well
as a single customer.

Non-RGM (Control) Group:
• Two large size projects initially. One project is

canceled early during requirements definition.
(Project 3 is one that remained).

• Two small size projects (Projects 6 & 7).

• All projects are financial applications with sim-
ple data manipulation (calculations), database
look-ups and database stores.

• All projects are developed in either MS Visual
Basic or C++ on Windows 95 or Unix based op-
erating systems respectively.

• All projects are deployed on either Windows 95
or Unix based operating system machines.

• Roles:
− Large project has 1 project manager, 1 sys-

tems analyst, and 2 developers, as well as a
single customer.

− Small projects each have 1 project manager,
1 systems analyst, and 1 developer, as well
as a single customer.

For each group, we selected two large projects and
two small projects using the criteria stipulated above, any
other similarities or differences were coincidental. The
selection process for the RGM projects, however, did in-
clude the exception that project start dates must be after
the anticipated completion date for the training of the
RGM group.

4.3.2. Personnel
In this section we provide an overview of the people

who are involved in the study projects. It is important for
the study that all have comparable skill sets, education
and roles.
• Project Managers: There are a total of four project

managers – two in each group. All project managers
have a minimum of ten years of experience in man-
aging projects for various organizations, and all have
been within the same department for a minimum of
one and a half years. Three of the project managers
have an MBA degree, and one has an MIS degree.

• Systems Analysts: Two systems analysts (one in each
group) are part of the empirical study. Both analysts
have a minimum of three years of work experience as
both developers and analysts. Each has a Masters
Degree in Computer Science.

• Developers: Each group in the empirical study has
four developers working on the projects. Each de-
veloper has a minimum of two years of work experi-
ence programming in both MS Visual Basic as well
as Unix C/C++. All developers have a Bachelors
Degree in Computer Science.

4.4. Empirical Study Process

To maximize the probability of a successful study
and to support the collection of valid data, several issues
had to be resolved before the study is conducted. This
section focuses on those particular issues.

4.4.1. Training
The RGM group had to be trained in the selected ac-

tivities and methods of the RGM to be used during the
study. Only project managers and systems analysts are
trained because they alone have direct contact with the
customer and will be using the RGM. Training of the
group includes an overview of the RGM, as well as a dis-
cussion and rationale for using the selected RGM methods
and artifacts. To help avoid the introduction of bias or
other behaviors that might impact the validity of the
study, we did not reveal to the group that a study was be-
ing conducted.

4.4.2. Oversight
To ensure adherence to the RGM process and to as-

sist the group in prescribed activities thereof, we attended
several of the earlier requirements elicitation meetings.
Assistance was required only a few times, and those were
primarily related to Controlled Interrupts and the use of
the Silent Parking Lots. Following the requirements
elicitation process we met with the project managers and
systems analysts to provide them feedback as to their ad-
herence to the RGM, and to receive their thoughts on how
we might further enhanced the RGM.

5. Data Collection, Presentation, and Inter-
pretation

The data described in this section was collected from
a company-wide status-reporting database. In addition to
reporting phase initiation and completion dates, project
managers are required to update their project status when
major milestones are reached (such as finishing the re-
quirements phase and moving into design), and when
project status change. Project status colors are established
to indicate how the project is progressing – those colors,
and what they imply, are as follows:
• Green – project is proceeding on schedule and within

budge. Overall the project is encountering no current
risks.

• Yellow – project has run into a possible risk that
could impact either schedule or budget. The project
needs to be closely managed with an emphasis on
minimizing perceived risk.

• Red – project has encountered a setback that ad-
versely impacts either schedule or budget. At this
time the setback needs to be evaluated and necessary
project changes negotiated with the customers to re-
solve the red status.

During the study we also collected observational data
during meetings with, and among, the customers, project
managers and analysts. This data was used to make ad-
justments to the RGM and helped explain certain unex-
pected findings.

Together, the subjective and objective data collected
through the status reporting database serve to confirm
three conjectures concerning the beneficial impacts of
using the RGM. We examine each conjecture and related
data items in the following subsections.

5.1. Conjecture 1

Projects using the RGM to capture customer in-
tent should experience less slippage in project
phase completion dates.

Stated in other terms, we expect that projects developed
under the auspice of the RGM will meet their projected
phase completion dates more often than similar projects
which do not employ the RGM. To confirm this conjec-
ture, we need to know the original date a phase is sup-
posed to be completed, and the actual date the phase is
completed.

Although the RGM has its highest impact on the re-
quirements generation phase, its benefits are also realized
in succeeding development phases. For the purpose of
this study, therefore, we include an examination of the re-
quirements definition, design, and implementation phases.

The data presented in Tables 1 and 2 represent phase-
by-phase slippage days for the RGM and Non-RGM proj-
ects respectively. Slippage days are computed as the dif-
ference between the originally specified ending date for
each phase and the actual ending date for that phase.
(Adjustments were made to account for the compound
impact of slippage on originally specified ending dates.)
A negative number indicates the project ended earlier than
expected. The projected duration is the number of days
originally projected. The projected duration allows one to
place the slippage days in perspective.

Table 1: RGM Group Projected Duration
And Slippage Days

Project 1 (large)
Projected
Duration Slippage Days

Definition 31 0
Design 16 7
Implementation 54 -7
Total 101 0

Project 2 (large)
Projected
Duration Slippage Days

Definition 31 0
Design 246 -9
Implementation 2 9
Total 79 0

Project 4 (small)
Projected
Duration Slippage Days

Definition 25 0
Design 59 -3
Implementation 5 15
Total 89 12

Project 5 (small) Slippage Days
Definition 26 0
Design 52 -1
Implementation 14 25
Total 92 24

Table 2: Non-RGM Group Slippage Days

Project 3 (large)
Projected
Duration Slippage Days

Definition 27 27
Design 0 215
Implementation 44 -8
Total 71 234

Project 6 (small)
Projected
Duration Slippage Days

Definition 19 9
Design 30 -2
Implementation 151 -31
Total 200 -24

Project 7 (small)
Projected
Duration Slippage Days

Definition 15 52
Design 14 1
Implementation 18 5
Total 47 58

5.1.1. Analyzing Slippage Days
To confirm (or refute) our first conjecture, we exam-

ine the data presented in Tables 1 and 2 from two differ-
ent perspectives.

First, we view the data as a simple phase-by-phase
comparison of slippage for both the large and small proj-
ects. To help simplify the process and to help remove any
potential bias that could be introduced by looking at the
relative and absolute magnitude of the numbers, we use
two indicators, “<” and “>”, to capture “slippage.” That
is, “<” means that the RGM group had less slippage than
the Non-RGM group for that particular phase on a same
size project. Conversely, “>”indicates less slippage for
the Non-RGM group. Using the above slippage indica-

tors, Table 3 depicts a cross comparison of the large proj-
ects for the experimental (RGM) and control (Non_RGM)
groups. Similarly, Table 5 provides the cross-comparison
for the small projects.

Our second perspective is based on a magnitude indi-
cator. The magnitude indicator is intended to reflect the
collective extent to which the slippage days differ be-
tween the RGM and Non-RGM development efforts. The
magnitude indicator is computed as a function of the
number of slippage indicators (“<” and “>”) given in Ta-
bles 3 and 5. That is, for a given set of cross-comparisons
if all of the slippage indicators within a phase are “<” then
we set the magnitude indicator for that phase to “++”, in-
dicating a significant advantage for the RGM develop-
ment effort. If more than half but not all slippage indica-
tors within a phase are “<”, then the magnitude indicator
for that phase is set to “+”, indicating a simple advantage
for the RGM group. If the number of slippage indicators
is evenly split among the cross-comparisons for a given
phase, then we set the magnitude indicator for that phase
to a “0”, indicating that no advantage exists for either the
RGM or Non-RGM development effort. Similarly, for
the “>” slippage indicators we compute phase-wise mag-
nitude indicators of “--”, “-”, and “0” denoting the extent
of the advantage for the Non-RGM development effort.
Tables 4 and 6 provide the magnitude computations for
the large and small project cross-comparisons, respec-
tively.

We now provide and analysis of project slippage us-
ing slippage days (Tables 1 and 2), slippage indicators
(Tables 3 and 5) and magnitude indicators (Tables 4 and
6).

Table 3: Large Project Slippage Comparison

RGM
Project 1 Comp.

Non-RGM
Project 3 Diff.

Definition 0 < 27 -27
Design 7 < 215 -208
Implementation -7 > -8 1
Total Days 0 < 234 -234
% Slippage 0 < 330% -330%

RGM
Project 2 Comp.

Non-RGM
Project 3 Diff.

Definition 0 < 27 -27
Design -9 < 215 -224
Implementation 9 > -8 17
Total Days 0 < 234 -234
% Slippage 0% < 330% -330%

Table 4: Large Projects Magnitude Indicators

 Comp. Dir. Magn.
Total
Diff.

Avg.
Diff.

Definition 2 < and 0 > ++ -54 -27
Design 2 < and 0 > ++ -432 -216
Implementation 0 < and 2 > -- 18 9
Total 2 < and 0 > ++ -468 -234
% Slippage 2 < and 0 > ++ -659% -330%
Total Magnitude 8 < and 2 > ++

5.1.2. A Comparison Among the Large Projects
Table 3 provides a cross-comparison of slippage days

for the large RGM and Non-RGM projects. The compari-
sons show that both RGM group projects (1 & 2) per-
formed better than the Non-RGM group project (3) in the
requirements definition and design phases. The Non-
RGM group, however, faired better in its implementation
phase for Project 3 by finishing eight days ahead of
schedule. Nonetheless, we also note that Project 3 com-
pleted its implementation phase only one day ahead of the
RGM Project 1, which completed its implementation
seven days ahead of schedule.

Looking at the total number of slippage days, as well
as the percent of slippage, the two RGM group projects (1
& 2) finished the combined definition, design, and im-
plementation phases on the time. The Non-RGM project
did not fair as well. Due to the large setback in the design
phase, the project came in 234 days late, or 330% slip-
page over the initially planned schedule.

Examining the magnitude indicators shown in Table
4, we also observe that the large RGM projects fair much
better than the Non-RGM counterpart – the one exception
is in the implementation phase. The overall (or “total”)
magnitude indicator also significantly favors the RGM
development effort.

Therefore, based on the data provided in Tables 1 –
4, we are confident in stating that the larger projects de-
veloped within the RGM framework tend to meet their
projected phase completion dates more often than their
counterpart projects which did not employ the RGM.

Anecdotal note: We noticed on several occasions
that the Non-RGM group developers started implementa-
tion well before the requirements or design documenta-
tion was completed. Often, implementation can proceed
based on “knowledge” about the overall project’s goals –
and therefore independent of requirement and design de-
tails. This might provide an insight as to why they fin-
ished their implementation phase ahead of schedule. We
also noticed that the “base” code from similar applications
was later modified to meet requirements.

Table 5: Small Project Slippage Comparison

RGM
Project 4 Comp.

Non-RGM
Project 6 Diff.

Definition 0 < 9 -9
Design -3 < -2 -1
Implementation 15 > -31 46
Total Days 12 > -24 36
% Slippage 13% > -12% 25%

RGM
Project 4 Comp.

Non-RGM
Project 7 Diff.

Definition 0 < 52 -52
Design -3 < 1 -4
Implementation 15 > 5 10
Total Days 12 < 58 -46
% Slippage 13% < 123% -110%

RGM
Project 5 Comp.

Non-RGM
Project 6 Diff.

Definition 0 < 9 -9
Design -1 > -2 1
Implementation 25 > -31 56
Total Days 24 > -24 48
% Slippage 26% > -12% 38%

RGM
Project 5 Comp.

Non-RGM
Project 7 Diff.

Definition 0 < 52 -52
Design -1 < 1 -2
Implementation 25 > 5 20
Total Days 24 < 58 -34
% Slippage 26% < 123% -97%

Table 6: Small Projects Magnitude Indicators

 Comp. Dir. Magn.
Total
Diff.

Avg.
Diff.

Definition 4 < and 0 > ++ -122 -30.5
Design 3 < and 1 > + -6 -1.5
Implementation 0 < and 4 > -- 132 33
Total 2 < and 2 > 0 4 1
% Slippage 2 < and 2 > 0 -144% -36%
Total Magnitude 11 < and 9 > +

5.1.3. A Comparison Among Small Projects
Table 5 provides a comparison among the smaller

projects in the study. More specifically, it depicts four
cross-comparisons using two RGM group projects (4 & 5)
and the two Non-RGM group projects (6 & 7). The data

provided in Tables 1 and 5 confirms that the RGM group
experienced no slippage during the requirements defini-
tion phases and actually ended the design phases for their
projects ahead of schedule. The RGM group did experi-
ence some slippage in both projects during implementa-
tion – twelve and twenty-four days of total slippage (13%
and 26% slippage) for Projects 4 and 5, respectively.

Yet, when compared to the Non-RGM group the
RGM group still fairs better. The Non-RGM group expe-
rienced slippage for both projects during their definition
phases (as compared to no slippage for the RGM proj-
ects). In comparing the design phase, the RGM projects
faired better in 3 out of 4 of the cross comparisons, loos-
ing out only in a comparison between RGM Project 5 and
Non-RGM Project 6 – and even in this comparison, both
projects finished design ahead of schedule. Table 5 does
not show any definite advantage either way when com-
paring slippage during implementation and overall total –
they appear to split evenly. A pertinent observation,
however, is that the Non-RGM Project 6 finished almost
one month early. As we stated in the previous anecdotal
note, we impute such success to a tendency for Non-RGM
developers to start implementation before definition and
design are complete.

Because the magnitude indicators reflect a more col-
lective view of project “success”, an examination of the
data presented in Table 6 reveals a clearer picture of how
the small RGM projects compared to their Non-RGM
counterparts. Relative to project slippage, the magnitude
indicators show that the RGM projects performed signifi-
cantly better during the requirements definition phases
than did the Non-RGM projects. The RGM group also
performed better during the design phase (although not as
impressive when compared to the requirements definition
phase). During the implementation phases the Non-RGM
group did significantly better than the RGM group. From
an overall perspective, however, the magnitude indicator
favors the RGM projects. On a final note, when we com-
pare slippage percentage, the RGM projects experienced
36% less slippage than did the Non-RGM projects.

Once again, and similar to the conclusions drawn for
large projects, there does appear to be a beneficial contri-
bution in using the RGM for small project development
efforts. Hence, we assert that the data presented in Tables
1 – 6, and the comparisons provided in the previous sec-
tions confirm our first conjecture, that is,

Projects using the RGM to capture customer in-
tent should experience less slippage in project
phase completion dates.

Anecdotal note: The data provided in the previous
tables suggest that with and increase in project size there
is a commensurate increase in the benefit of using the
RGM. We also expected to find that the RGM would re-
sult in an increased communication overhead during the

definition phase. Based on our observations and discus-
sions, however, no such increase was apparent.

5.2. Conjecture 2

Projects using the RGM should exhibit less ad-
verse impact stemming from late discovery of re-
quirements.

We contend that given similar projects development
efforts, if one project uses the RGM during the require-
ments definition phase, it will have a better success at
identifying and recording customer requirements earlier
than a project not employing the RGM. Consequently,
the project employing the RGM will experience less ad-
verse impact stemming from the late discovery of needed
requirements. Our experience has shown that scope and
requirements changes are to be expected for many proj-
ects – not that this is desirable, but simply a fact of our
development process. When identified earlier in the
software development process, however, these necessary
changes can be corrected for a fraction of the time and
cost it would take to fix them during the later phases of
the development cycle [1]. By emphasizing a more com-
plete and accurate identification of customer requirements
during the requirements phase, the RGM helps minimize
the adverse impact stemming from the late discovery of
requirements.

During the study the project status database was also
used to record changes stemming from late requirements
discovery and to note their potential impact (if any) on the
development effort. The project database supports the
entry of three project status indicators throughout a devel-
opment effort. These status indicators are associated with
the project’s schedule, budget and overall project
“health”. Project status changes are indicated by shifts
in status colors. For example, the schedule status can
shift from “green” to “red”, indicating substantial prob-
lems ahead. There are three types of “bad” shifts: (G)reen
to (Y)ellow, Green to (R)ed, and Yellow to Red. To help
reason about Conjecture 2, we count the number of “bad”
status changes stemming from the late discovery of re-
quirements. Tables 7 and 8 capture those counts for the
RGM and Non-RGM development efforts, respectively.

Table 7: RGM Group Project Status Change

Project 1 Schedule Budget Overall
G->Y 0 0 0
G->R 0 0 0
Y->R 0 0 0

Project 2 Schedule Budget Overall
G->Y 0 0 0
G->R 0 0 0

Y->R 0 0 0

Project 4 Schedule Budget Overall
G->Y 0 0 0
G->R 0 0 0
Y->R 0 0 0

Project 5 Schedule Budget Overall
G->Y 0 0 0
G->R 0 0 0
Y->R 0 0 0

Table 8: Non-RGM Group Project Status Change

Project 3 Schedule Budget Overall
G->Y 2 2 2
G->R 2 0 0
Y->R 1 0 0

Project 6 Schedule Budget Overall
G->Y 1 0 0
G->R 0 0 0
Y->R 0 0 0

Project 7 Schedule Budget Overall
G->Y 3 1 2
G->R 0 0 0
Y->R 1 0 1

5.2.1. Interpreting Status Changes
The benefits of incorporating the RGM in a “tradi-

tional” development process become apparent when one
examines the data presented in Table 7 and Table 8. For
all three status categories (schedule, budget and overall),
the two large projects and the two small projects of the
RGM group experienced no status changes due to late
discovery of requirements throughout the development
effort. On the other hand, the single large project and the
two small projects for the Non-RGM group all experi-
enced less than desirable project status changes. Project
6, the best of the three for the Non-RGM group had only
one status change stemming from the discovery of late re-
quirements, and that was from green to yellow. (Again,
consistent with observations supporting Conjecture 1, this
project performed better than the other Non-RGM proj-
ects.) The other two Non-RGM projects shifted to yellow
several times, and each also had shifts to red.

As stated earlier, the RGM is designed to promote the
identification of a more complete and accurate set of re-
quirements early in the software development lifecycle.
Consequently, we should expect (and conjecture) that

projects using the RGM should exhibit less ad-
verse impact stemming from late discovery of re-
quirements.

The difference between the number of status changes
for the RGM group projects as compared to those for the
Non-RGM group projects, i.e. 0 – 18, confirms our sec-
ond conjecture.

5.3. Conjecture 3

Projects using the RGM result in a higher satis-
faction level for the project manager and busi-
ness customer a greater percentage of time
throughout the project to closure.

Unlike the previous two conjectures, which are substanti-
ated through the examination of objective data, the con-
firming data for Conjecture 3 are more subjective in na-
ture. In particular, this third set of data tracks the level of
satisfaction (or frustration) as directly expressed by the
project manager and customer. The project manager and
customer independently record their current satisfaction
(or frustration) in the project status database whenever the
project status changes or milestones are reached. We
compare the satisfaction indicators, “yes” or “no”, to de-
termine the percentage of satisfaction versus frustration
over the project development time for the Project Man-
ager (PM) and the Business Customer (BC). Table 9 and
Table 10 show the satisfaction data for the RGM group
and the Non-RGM group, respectively. That is, for each
project the tables indicate the total number of times the
PM and BC indicate satisfaction (yes) or frustration (no).
The percentage of “yes” and “no” satisfaction responses
relative to the total number is also given for the PM and
BC (PM % and BC %).

Table 9: RGM Group Project Satisfaction

Project 1 PM PM % BC BC %
Yes 5 100% 5 100%
No 0 0% 0 0%
Total 5 5

Project 2 PM PM % BC BC %
Yes 5 100% 5 100%
No 0 0% 0 0%
Total 5 5

Project 4 PM PM % BC BC %
Yes 6 100% 6 100%
No 0 0% 0 0%
Total 6 6

Project 5 PM PM % BC BC %
Yes 3 100% 3 100%
No 0 0% 0 0%
Total 3 3

Table 10: Non-RGM Group Project Satisfaction

Project 3 PM PM % BC BC %
Yes 8 57% 9 64%
No 6 43% 5 36%
Total 14 14

Project 6 PM PM % BC BC %
Yes 9 100% 9 100%
No 0 0% 0 0%
Total 9 9

Project 7 PM PM % BC BC %
Yes 4 44% 6 67%
No 5 56% 3 33%
Total 9 9

5.3.1. Interpreting Satisfaction Levels
Table 9 shows that the PM and the BC were satisfied

with the RGM projects 100% of the time. This is not sur-
prising since the four projects (a) met or were close to
their expected delivery dates (see Table 1), and (b) had no
“bad” status changes throughout their development life-
cycle (see Table 7). Overall, this shows that the projects
using the RGM succeeded in meeting customer expecta-
tions. The satisfaction data for the Non-RGM group proj-
ects is provided in Table 10 and conveys a picture similar
to the one formed when analyzing the data for Conjecture
2. That is, Project 6 faired better than the other two proj-
ects by garnering 100% satisfaction from both the PM and
BC. For the other two Non-RGM projects, however, the
BC was frustrated at least 1/3 of the time. An even higher
level of frustration is indicated by the PMs for these two
projects – they reported being frustrated with the project
progress almost 50% of the time.

Hence, based on the data provided in Tables 9 and 10
we can state that (at least for this study)

The RGM promotes an increased level of satisfaction
among project managers and business customers.

Anecdotal Note: During post-project reviews for the
two RGM group projects (4 & 5), the business customer
and other stakeholders stated that their expectations was
were always met or exceeded. With respect to RGM
methods, the Silent Parking Lot approach was judged by
those involved as one of the best tools used during re-
quirements elicitation and other meetings. The feeling of

“not forgetting” necessary items, as well as “being heard
without speaking” was articulated as a major benefit.

6. Conclusion

The data presented in this study contrasting RGM
and Non-RGM development efforts has led to a confir-
mation of three conjectures. That is, the RGM

• helps in decreasing project slippage,
• reduces the detrimental impact stemming from late

requirements discovery, and
• reduce the frustration levels for project managers and

their business customers.

We further note that the elements of the RGM em-
ployed during this study was only a subset of those avail-
able – yet even this subset was effective in promoting
better requirements definition. We expect that employing
the full set of RGM activities and procedures will add ad-
ditional strengthen and structure the all-too-often ad hoc
requirements definition processes.

Structuring, monitoring, and controlling the require-
ments definition process are all goals of the RGM. Al-
though still in its infancy, the RGM represents one addi-
tional step towards defining a comprehensive and inte-
grated approach that provides effective support for the re-
quirements generation process.

7. References

[1] J. D. Arthur, M. K. Gröner, K. J. Hayhurst, and C. M.
Holloway, "Evaluating the Effectiveness of Independent
Verification and Validation," IEEE Computer, vol. 32, pp.
79-83, 1999.

[2] B. Boehm, "A Spiral Model for Software Development and
Enhancement," Computer, vol. 21, pp. 61-72, 1988.

[3] E. Bravo, “The hazards of leaving out the users,” in
Participatory Design: Principles and Practices, D.
Schuler and A. Namioka, Eds. Hillsdale, NJ: Law-
rence Erlbaum Associates, Inc., Publishers, 1993, pp.
3-11.

[4] M. K. Gröner and J. D. Arthur, "An Operational Model
Supporting The Generation of Requirements That Capture
Customer Intent," 17th Annual Pacific Northwest Software
Quality Conference, Portland OR, Oct. 1999, pp. 286-302.

[5] P. Mambrey and B. Schmidt-Belz, “Systems Design-
ers and Users: Fictions and Facts,” in Systems Design
for, with, and by the user, U. Briefs, C. Ciborra, and
L. Schneider, Eds.: North-Holland Publishing Com-
pany, 1983, pp. 61-69.

[6] W. W. Royce, "Managing the Development of Large Soft-
ware Systems: Concepts and Techniques," presented at
WESCON, 1970.

[7] I. Sommerville, Software Engineering, 5th ed. Reading,
Mass.: Addison-Wesley Publishing Co., 1996.

