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Abstract

A key problem. in designing parallel programs that achieve a desired performance goal is the
ability to exactly analyze program performance, given a specification of the process synchronization
structure and the execution timings of all code segments. Given a definition of program stale, an
execution of a program can be represented by a timed ezeculion sequence (TES). A TES is a sequence
of states that the program passes through in an execution, along with the duration of time spent
in each state. In some parallel programs, & representation of the set of all possible TESs that
can arise in any execution contains a suffix that consists of the repetition of a finite sequence of
states, excluding deadlocks and nondeterminiséic behavior. The sequence that is repeated is termed
the limit cycle ezecution sequence. The problem solved in this paper is to derive, for all possible
process starting times, the set of all possible limit cycle execution sequences in which a process
blocks. The paper makes two contributions. First, it employs a novel analysis method thab derives
TESs from a geometric model of program executien, called timed progress graphs. A timed progress
graph adds timing information to Dijkstra’s (untimed) progress graph, which Carson and Reynolds
define as “a multidimensional, Cartesian graph in which the progress of each of a set of concurrens
processes is measured along an independent time axis” [10]. A timed progress graph represents
process synchronization between processes by line segments, and a TES by a directed, continuons
path that does not cross a segment, The second contribution of the paper ig to solve the timed
progress graph not by a computational geometric algorithm, as employed by most solutions in the
literature to untimed progress graphs, but by an analytic solution. The analytic solution transforms
the problem of deriving blocking limit cycles to that of finding the minimum value satisfying each of
a set of Diophantine equations.

Categories and Subject Descriptors: D28 [Software]: Metrics — Performance measures; D.4.8 [Oper-
ating Systems]: Performance — Modeling and prediction; C.4 [Performance of Systems]: Modeling
techniques

General Terms: progress graphs, software performance analysis, Diophantine equation, periodic behavier
1 Introduction

The ability to analyze prograimn performance lies at the heart of integrating into the software development
life cycle what Smith [35] terms software performance engineering. The requirements life cycle phase

states performance goals. 1deally, we would like to establish whether a program under development
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meets the performance goals long before the integrated testing life cycle phase. Doing this requires
techniques to verify whether a program specification and pieces of code that cannot yet be executed
meet the performance goals. Unfortunately, few theoretical methods exist today to do this. (See §2.)
This paper considers a fundamental problem that underlies performance engineering of parallel soft-
ware. First, we define the state of a program. (In this paper, state represents the contro! point of each
process.) We represent an execution of a program by two sequences, one consisting of the states that
a program passes through during an execution, and the second consisting of real numbers. The i-th
value in the real number sequence represents the time duration that the program spent in the i-th state
of the state sequence. The two sequences together are called the timed evecution sequence (TES). For
example, let the state of a two process program be represented by an ordered pair (z,y), where z and y
each denote the control point of a different process, and let the control points be numbered (for reasons

apparent later) -1, 0, 1, and 2. Then a TES for a program that never terminates’ might be:

state: (—1,-1), (0,-1), (1,-1), (%-1), (0,0), {(1,0), (2,1), (0,2) }
time: 0, 1, 3, 1, 1, 3, 1, 1

ﬁhere “{}*” denotes an infinite number of repetitions of the enclosed sequence. The TES represents a
program that starts in state (-1,-1), instantly moves to state (0,-1), remains in state (0,-1) for 1 time
unit, then moves to state (1,-1) for 3 time units, and so on. In general, for a given program there may
exist an infinite number of possible TESs. For example, there may exist a different TES for each initial
program state. If program execution is nondeterministic, there may even exist multiple TESs for a single
initial state. A TES has finite length iff the program terminates or reaches a deadlock.

Can we find a representation of the set of all possible TESs for a program? The ability to do so would
allow computation of any performance measure required to evaluate a performance goal. Although it may
be possible to compute performance measures in a simpler manner, the structure of the TESs themselves
might give insights as to why a performance measure has a particular value. In fact, the idea of analyzing
execution sequences is quite popular, as witnessed by recent work on software performance visualization

systems (e.g., [16, 33]) that include the ability to display program event traces.

1 Certain programs can be considered non-terminating for the purpose of analysis. One example is long running programs
that execute the same code repeatedly, such as simulations. A second example is reactive programs [11], such as operating
system algorithms, that react to external stimuli. In fact, Chandy and Misra [11] have suggest that all computations can
be represented as non-terminating transition systems that reach a fixed point.




This paper examines a certain class of parallel programs, defined below. The set of all TESs for
a program in the class contains a suflix that consists of the repetition of a finite sequence of states,
excluding deadlocks and nondeterministic behavior (see Theorem 1 of Section 4.3). The sequence that
is repeated is termed the limit eycle ewecution sequence (LCES). The TES listed above has as a LCES

states (1,0), (2,1), and (0,2) for 3, 1, and 1 time unit, respectively.

Problem Statement: Let the program state be an enumeration of the control point of each process.
We are given a specification of the process synchronization structure and the execution timings of all
code segments, in the form of a set of timed transition diagrams (illustrated below). The problem solved
here is to derive, for all possible process starting times, the set of all possible LCESs in which a process
blocks.

LCESs and, more generally, periodic behavior, have been observed experimentally several times in
the literature. Zhang, Shenker and Clark observed low frequency oscillations in queue length and packet
traffic in a communication protocol [38). Periodic behavior also occurs with pericdic tasks, such as op-
erating system daemons [9]. Our past studies 3, 5] using a commercial TCP/IP protocol and a dining
philosophers program [13] have also exhibited LOESs. In fact, experience with our own visualization
system [5] demonstrates that the TESs of many long running programs that spend the bulk of their
time looping in small fractions of the code repeatedly exhibit certain state subsequences. If the pro-
gram execution time is chiefly determined by a small set of repeated subsequences, then finding these
subsequences given the code and timings is an effective way to diagnose performance problems.

Analysis presented later paper gives some insight into the circumstances under which LCESs arise.
In addition, for a wide variety of initial process starting times, any TES of a program converges to the
same LCES. If we imagine a knob whose setting determines the time required for a transition, and vary
the knob, then the subsequence stays the same until we turn the knob past a critical point at which the

LLCES to which the program converges changes.

Assumptions: To obtain a tractable problem, we make the assumptions listed below. The assumptions

are stated in terms of binary semaphores [14] and mutually exclusive access to a set of resources. A binary



semaphore is an abstract data type with initial value 0 or 1, with two operations: P and V. The process
invoking a P operation blocks iff the initial semaphore value plus the number of prior V' operations
performed by all processes does not exceed the number of prior P operations performed by all processes.
If a process is blocked at a P operation when a V operation is performed, then one blocked process
unblocks. Associated with each resource is a set of one or more code segments in each process. Mutually
exclusive resource access means that the control point of both processes cannot simultaneously be in a

code segment associated with the resource.

Al: A program contains two processes.

A2: Each process meets the following assumptions:

A2.1. A process executes on a dedicated processor.

A2.2. A process executes a nonterminating loop.

A2.3. A process synchronizes with other processes through binary semaphores
A2.4. Binary semaphore operations are executed unconditionally.

A2.5. The execution time of each code segment within each process that either (1) starts at the initial
statement of the loop body and continues to and includes the first semaphore operation, or (2)
follows each semaphore operation and continues to and includes the next semaphore operation

is an independent constant, exclusive of time spent blocked.

A3: Synchronization between processes is used only to achieve mutually exclusive access to each of a

set of resources.

The assumptions, while restrictive, define a program class that always reaches a LCES {Theorem 1
in Section Theorem 1 of Section 4.3} if it does not deadlock, excluding nondeterministic behavior, and
permits performance analysis through a novel approach: geometry. Therefore we lay the foundation for
studying other parallel program classes with geometry.

We argue next that the assumptions are not unreasonable. Although the analysis is constrained to

two processes (A1), a recent performance analysis of Lamport’s mutual exclusion algorithm [7] using



Petri nets requires so much computation that its numeric solution is limited to only four processes.
In addition, the initial solutions to other problems in paralle]l programming ~ such as shared memory
mutual exclusion algorithms — were initially solved only for two processes. And one important tool nsed
for parallel systems - queueing networks - started only with the ability to solve just one kind of queue
(M/M/1) in isolation. Assumption A2.1 was addressed in the footnote earlier. Regarding A2.2, the
assumption of constant timings is perhaps no more or less reasonable than the assumption of exponential
timings required by the Markov chains underling some Petri net and queueing network models. In fact,
one could view a (constant time) geometric model of the type used in this paper and an (exponential
time} Markov process model as two extremes in modeling program behavior. A2.3, A2.4, and A3 could
be relaxed by using the discussion in later sections on how to map a transition system to a geometric
model as a guide to developing mappings for other classes of transition systems. For example, [1, pp.
41-44] illustrates how certain other synchronization constructs (CSP’s [21] input and output commands)

can be mapped to a geometric model.

Solution Method: The geometric solution method uses a program execution model called a timed
progress graphs (TPG). A TPG adds timing information to Dijkstra’s (untimed) progress graph (UPG),
which Carson and Reynolds define as “a multidimensional, Cartesian graph in which the progress of each
of a set of concurrent processes is measured along an independent time axis” {10]. A TPG represents
synchronization between processes by lines, and a TES by a directed, continuous path that does not
cross a line.

Dijkstra [12] devised UPGs. Later, Kung, Lipski, Papadimitriou, Soisalon-Soininen, Yannakakis, and
Wood [24, 28, 36, 37] used UPGs to detect deadlocks in lock-based transaction systems. Carson and
Reynolds [10] used UPGs to prove liveness properties in programs with an arbitrary number of processes
containing P and V operations that are unconditionally executed. TPGs differ from UPGs in two
ways: First, TPG’s represent the time required for transitions, and can be used to derive performance
properties of a program. UPG’s represent timed transition diagram sets in which all times are equal.
Second, UPG’s are used to characterize deadlocks for any number of processes, any number of processors,

and any scheduling discipline. In contrast, TPG’s as defined here can be used to detect deadlock only



for two process programs executing on two dedicated processors. One final distinction between this
paper and past work on UPGs is that we do not use a computational geometric algorithm to analyze
the progress graph, as most solutions in the literature to UPGs employ, but rather we derive an analytic
solution based on number theory. Combining Carson and Reynolds [10] work and this paper shows that

one model can be used to verify liveness and analyze performance of semaphore programs.

Example: Dijkstra’s dining philosophers problem with two philosophers exemplifies the class [13).
Two philosophers eating a meal share two chopsticks. A philosopher must wait upon attempting to
acquire the chopsticks while the other is eating. Figure 1 shows a semaphore program solution along
with the execution time required for each code segment in some time unit, excluding blocking. The
delay statements cause Philosopher(1) to start execution 5 time units after Philosopher(0). Figure 2
represents the program by a set of two timed transition diagrams. (Timed transition diagrams are
presented in Section 3.) Diagram vertices represent all possible code segments, and are labeled by
consecutive integers starting at -1, for a reason that will become evident later, called locations. Location
-1 represents a process that is waiting to start execution. Diagram edges are labeled above by a time t
and below by a condition ¢, or a set of labels. The intended meaning is that the process remains in a
location i for ¢ time units; then the process makes a transition from location i to location i + 1 mod 2 at
the first instant when the location of the other process is not in set ¢. The program state is an ordered
pair whose first (respectively, second) element denotes the location of Philosopher(0) {Philosopher(1}}.

Figure 3 lists all possible states that the timed transition diagram set in Fig. 2 can reach. Any infinite
length path through the graph, starting with initial state (-1,-1), represents a possible TES. The example
TES listed eatlier is one such path. All such paths in Fig. 3 contain the LCES listed earlier: states (1,0),
(2,1), and (0,2) for 3, 1, and 1 time unit, respectively.

The LCES can be derived from the TPG illustrated in Fig. 4. The figure illustrates a finite portion of
the TPG. (In all TPG illustrations, the grey grid is not part of the TPG and is present only to help the
reader to determine graph coordinates.) The figure contains two directed paths that have in common
the ray with endpoints (0,0) and (1,1). The paths illustrate all possible TESs for Fig. 2. Each path

is called a timed ezecution trajectory (TET). Fach coordinate of a TET point may be interpreted as a



Philosopher(i) {

L: Think;
P(a); /* acquire chopsticks; wait if not available */
Eat;
V(a); /* release chopsticks */
goto L;

1

semaphore a=1;

parbegin
begin delay 0; Philosopher(0); end
begin delay 5; Philosopher(i); end

parend
Code Graph Ezecution time required
segment location | Philosopher(0) | Philosopher(1)
delay ... -1 0 5
Think; P(a); 0 1 1
Eat; V(a}; 1 3 1
goto L; 2 1 1
Figure 1: One semaphote dining philosophers program.
0 1 3 1
Philosopher(0): -1 » 0 » 1 >» 2
4] $ {1} & 7]
) 5 1 1 1
Philosopher(1): -1 >» 0 >» 1 » 2
& * {1} & &

Figure 2: Timed transition diagrams corresponding to Figure 1.

01)#12)+ (1 O)\1
(-1, 1)_>(o 1)_>(1 -1) (2 -1) (00) ﬁ( (02))(110

Figure 3: All possible states that can be reached in the timed transition diagram set (Fig. 2) solving the
dining philosophers problem. The number above each state represents the time spent in each state.
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Figure 4: TPG corresponding to Fig. 2. Open (filled) circles represent open (closed) end points. Thick
lines represent all possible TETs.

clock associated with the corresponding process that initially is enabled and has value zero, is disabled
whenever the process to which it corresponds blocks, and is re-enabled whenever the process unblocks.
For example, point (8,4) denotes that process 0 has run for 8 time units, and process 1 for 4 time unit.
Thus process 1 has blocked for 8-4=4 time units more than process 0.

The TPG represents the suffix of a TES in which both processes are running. In Fig. 2, process ( runs
for 5 time units before process 1 starts. However when process 1 starts, both processes simultaneously
enter location zero; hence the initial point of the TESs is (0,0).

To understand the mapping from transition diagram set to TPG, first consider what would happen
if the P and V semaphore operations in Fig. 1 are deleted, so that the two processes never synchronize.
Then process 0 is in location 0 during time interval [0,1), location 1 during [1,4), location 2 during [4,5),
location 0 during [5,6), and so on. Therefore to find the location of process 0 corresponding to graph
point {x,), we calculate 2 mod ¢, where ¢ is the sum of the delay in each location except -1 in the timed
transition diagram of process 0; in this case t = 1+ 3+ 1. Therefore the location of process 0 is 0,1, or 2
depending on whether z mod 5 lies in interval [0,1), [1,4), or [4,5), respectively. A point that lies in an

interval represents partial execution of the location: point (z,y) where x = 7 represents the case where



process {) must remain in location 1 for 2 more time units, because 4 — (7mod 5) =2 A 2 € [1,4). The
TET representing the TES will be a diagonal ray with slope one, rooted at point (0,0).

Next consider the program as shown in Fig. 1, with semaphore operations. A P operation potentially
blocks one process; therefore the TET portion representing a TES portion in which one process is
biocked is a horizontal or vertical ray, depending on which process is blocked. The “L” shaped lines in
the plane, called constraint lines, represent all possible situations in which one process is blocked at a
P operation, waiting for another process to perform a V operation. An intuitive justification for the
generator locations for the dining philosophers follows. Process 0 blocks iff it is about to enter location
1 and the current location of process 1 is 1. Process 0 unblocks when process 1 moves from location 1
to 2. Therefore process () blocks iff the TPG point representing its current state lies on a line congruent
to [(1,1),(1,2)). Similarly, process 1 blocks iff the point representing its current state lies on a line
congruent to [(1, 1), (4, 1}). A TET cannot cross a constraint line. A point that is the initial point of two
constraint lines, such as (1,1}, represents the race condition when both processes simultaneously attempt
to perform a P operation.

Figure 5 illustrates deadlock. The dining philosophers solution in Fig. 5(a) uses two semaphores;
each process acquires the semaphores in the opposite order, which can cause deadlock for certain process
starting times. In a TPG, a point that lies on two constraint lines, but is not the initial point of the two
lines, represents a program deadlock. The point (3,3) in the TPG of Fig. 5(b) represents a deadlock.
Figure 5(c) shows that certain TETs lead to deadlock the first time that the processes perform the P
operations, while others do not. The different initial points of the four TETs in Fig. 5(c) illustrate
four different relative starting times of the two processes. The points on line segments ((3, 3}, (4, 3)) and
(3.3), (3,4) do not lie on any TET, and hence are unreachable. Because UPGs have been used extensively
for analysis of deadlocks [10, 24, 28, 36, 37], deadlocks are not considered further in this paper.

The paper is organized as follows. The following section compares the use of TPGs to find limit
cycles to other techniques in the literature. Section 3 presents timed transition diagrams. Section 4
formally defines TPGs, TETs, and related terms. Sections 5 to 8 develop through stepwise refinement

an algorithm that maps the geometric representation to a Diophantine equation, whose solution yields a



Philosopher{0) { L:Think;
Philosopher(1) { L:Think;

semaphore a=1,b=1;
integer array d[0..1];
parbegin

P(a); P(b); Eat; V(a); V(b); goto L; }
P(v); P(a); Eat; V(b); v(a); goto L; }

begin delay d[03; Philosopher(0); end
begin delay d[1]; Philosopher{1); end

parend
Code Graph | Erzecution time required
segment location (either philosopher)
Think; first P; 0 1
second P; 1 2
Eat; first V; 2 1
second V; 3 2
goto L; 4 1

(a) Two semaphore dining philosophers program.

2 1 2 1

d
Process -1 11 >
4]

0 1)1 >» 2 » 3 » 4

A {2,3} {1.2} @ & ]

(b) Timed transition diagram for each process in {a)
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Figure 5: Geometry of deadlock.
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representation of the set of all blocking limit cycle execution sequences in a TPG.

2 Related Work

Performance goals are usually stated using measures, such as execution time, delay, and throughput,
Measures are computing from more primitive quantities, for example the process synchronization struc-
ture and code segment timings used in this paper. The literature contains many approaches o deriving
software performance measures. The approaches differ in their assumption about primitive quantities,
such as code segment timings; they may be specified as constants, random variables, or lower and upper
bounds. The approaches may compute exact, approximate (if the analysis requires one or more simpli-
fying assumptions to make computation of the measure tractable), or lower and upper bounds on the

measures. Deriving measures from code before execution can be done by analysis, simulation, or logic.

Analysis: Analytic methods include complexity analysis {e.g., [6]), micro-analysis using difference
equations (e.g.,[20]), Petri nets (e.g.,[7, 22}), stochastic processes (e.g.,[15]}, stochastic automata [29],
queueing networks (e.g.,[17, 34]), and analysis of graphs whose nodes represent code segments (e.g.,[35]).

Of these works, the closest is consistent Petri nets (i.e., nets that return to their initial marking)
in which a deterministic firing time is associated with each transition. Ramamoorthy and Ho [20} con-
sider minimum cycle time (MCT) calculation, or the minimum time required for the program to return
to its initial state (corresponding to an initial marking of the Petri net). The Ramamoorthy and Ho
method takes exponential time and works for both decision-free and persistent Petri nets, in which a
token mever enables two or more transitions simultaneously. Methods to compute bounds on the MCT
of conservative, general Petri nets are given; finding the exact value is proved NP-complete. Magott
[25] formulates the MCT problem for decision-free and persistent Petri nets as a linear programming
problem, and therefore solvable in polynomial time. He gives an improved lower bound and shows that
it also applies to non-conservative general Petri nets. Magott [26] gives an O(N) algorithm to compute
MCT for nets consisting of a set of N cyclic processes that mutually exclusively share a single resource.
Finally, Magott [27] extends his earlier paper [26] by showing that finding MCT in most nets with more

complex resource sharing is NP-hard. Also proved are complexity results for systems of processes with
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communication by buffers. The problem considered in this paper, of processes synchronizing only to
achieve mutual exclusion, cannot be represented by decision-free or persistent Petri nets. The dining
philosophers problem has been analyzed by Holliday and Vernon [22] assuming deterministic as well
as geometrically distributed local state occupancy times. Their Petri net modei uses frequency expres-
gions to resolve deterministically which transition fires when a token enables two or more transitions
simultaneously. In their model of the dining philosophers problem, this expression takes the form of a
probability.

Compared to a Petri net approach, TPGs have two advantages. First, TPGs yield the exact limit
cycle execution sequence that the program follows; in contrast the Petri net solutions listed above provide
average measures. The Ramamoorthy/Ho and Magott solutions yield the mean cycle time, while the
Holliday/Vernon solution yields the long run fractions of time that each process spends in a state. Second,
TPGs give the execution sequence for all possible Petri net markings in a single solution, while existing
Petri net solutions require resolving the net for each marking. A disadvantage of the TPG solution

presented here is that it is limited to two processes, while Petri nets solutions have no such limitation.

Simulation: Simulation explicitly generates a TES by simulation uses the definition of program ex-
ecution, along with the initial state, to step through an initial subsequence of the execution sequence.
Simulation has three drawbacks. First, it must be repeated for each initial condition. Second, if the
program behavior is nondeterministic, the execution sequence observed represents only one possible be-
havior. Third, each technique is executed for a finite period, generating only an initial portion of an
execution sequence. Therefore, any repetition of behaviar that exists in a TES, such as a LCES, may

not be revealed.

Logic: Certain methods for formally reasoning about programs may be applied to reason about per-
formance measures. Henzinger, Manna, and Pnueli [19] propose a proof system for real time systems
uses lower and upper bounds on the times of transitions in a timed transition system. The proof system
allows proof of properties about TESs, without explicitly deriving them, as the method used in this

paper does. Shaw [32] extends Hoare logic to reason about time in software. Ramshaw [31] generates
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recurrence equations about program timings nsing Hoare style axioms.

3 Timed Transition Diagrams

Our model of a program is based on Henzinger, Manna, and Pnueli’s timed transition diagrams [18].?
Time is represented by nonnegative real numbers. Let R, R*, and Z denote, respectively, the set of
nonnegative reals, positive reals, and nonnegative integers. We assume that (¥n :n € Z :: n < 00)® to
simplify our notation. Let r € {0, 1} denote one of two processes, # = 1 —r {if r = 0 then 7 = 1 and vice
versa), and (Yr :: n,) denote finite, positive integers.

Each process r is represented by a finite, connected, directed graph containing n, + 1 vertices, each
labeled by an integer in {—1,0,1,...,n, — 1}. Each integer label is called a location. Each vertex has
exactly one outgoing edge; therefore the graph contains one cycle. The program uses variables {m, m },
which are shared by all processes; m, denotes the control point of process r. Each edge with initial vertex
i, for —1 < i < n,, is labeled by a delay #. and a condition ci. Delays satisfy Brottl=0At €
Ry A (¥t :i> 0t € Rt). Conditions in the graph of process r, name labels of process 7, satisfying

cr=0A{v:ved nve {0,1,...,n;—1}). Given two labels i and i’ of process r, i & (respectilvely,
i©1') denotes addition (subtraction) modulo n,. The intended operational meaning of edge —1 tﬂ;) 0
?

is that process r waits for #7! time units before it starts execution. The intended operational me-aning
1

of edge 7 —t:w) i@ 1, for i > 0, is that if, for exactly ¢ time units, control of process r has resided at
i9

vertex i, thei’l. .control will move to vertex ¢ @ 1 at the earliest time at which the control point of process

F is not a label in ¢i. Process r is blocked whenever it has remained in its current location, 4, for longer
than ¢! time units. After process r starts execution, it is running whenever it is not blocked. Figure 2
and Fig. 5(b) each illustrate a set of two timed transition diagrams.

Timed transition diagrams represent semaphore programs as follows. Let semq, semy, ..., semy, _;

20ur diagrams fundamentally differ from those of Henzinger, Manna, and Paueli {HMP) in that the condition labeling
an edge need not hold until the control point of the process has resided at the initial vertex of the edge for the time labeling
the edge, whereas in the HMP diagrams, the condition must be continuously true for the time labeling the edge. Otherwise
our diagrams are a special case of HMP diagrams hecause we allow no program variables, we limit edge conditions to a
test for set membership, we require the minimal and maximal delays labeling an edge to be equal, and we require all but
one graph nodes to be contained in a single cycle.

3We use the notation from {11} { <quantified vatiable> : <domain of quantification> :: <quantified formula> }, and
omit <domain of guantification> when it is obvious from context.
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denote the semaphores used by a program. FEach graph edge out of vertex ¢ > 0 corresponds to at
most one P or V operation. We say that a process holds semaphore sem; (where 0 < j < n,) in
locations i,2 4+ 1,...,2 + k if edge ¢ — 1 corresponds to a P(sem;) operation, edge i + & corresponds
to a V{sem;) operation, and none of the edges in {¢,7+1,...,i+ k — 1} correspond to a semaphore
operation on sem;. Let 5p°"7 denote the set of locations in process r that hold semaphore sem;; formally
{3,i+1,...,i+k} C 5™ If the edge out of vertex § in process r corresponds to operation P{sem;),
then ¢l is the set of all locations in the diagram for process 7 in which process 7 holds semaphore sem;.
Formally, if the edge out of a location ¢ corresponds to operation P{sem;), then ¢! = S;*""; otherwise
e =§.

The set of timed transition diagrams representing a parallel program are denoted by enumerating, for

each diagram, the nnmber of vertices and the times and conditions labeling each edge. Formally, a timed

transition diagram set D = (W, ¥,), where (¥r : U, = (n,, {71,220, 21, 0= 1), (0, ¢k, . .. et~ 1) ).
Example 1 For Fig. 2, ¥o = (3, (0,1,3,1), ({1},8,0)) and 4, = (3, (5,1,1,1), ({1},8,8)). o

4 Timed Process Graphs

4.1 Notation

The following notation is used throughout the paper. Let uppercase letters with optional superscripts
denote graph points (e.g., G°). Let the subscripts 0 and 1 denote the components of a point (e.g.,
G = (G}, GY)). Unless otherwise noted, every point G € R? — {(00,00)}. We assume that v.i # v.f.
For any two points G and &', G < G' Go+ Gy < G+ GY. For any continuous path v and any point G
on vy, we write (7 € . For any directed, continuous path v, we write v.7 (respectively, v.f) to denote the
initial (final) point. For any two continuous paths v and v/ in R?%, y N+’ denctes {G |G € yA G € ¥'}.
A line segment with open end point G and closed endpoint ' is denoted either by L =[G, G’). If both
end points are open, L = m A ray, which is a directed line segment uses the same notation. The
relation G € L holds iff G lies on line or ray L. Line or ray [G, (oo, 00)) has slope one and infinite length.

We define the cycle time of process r, denoted ¢, as the time required for process » to pass through

each location once, ignoring the time spent blocked. Formally, {¥r :: qb,déf > o<i <n, ¢). For any point
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G e R?, mod(G)déf(Gg mod ¢, Gy mod ¢;). Two points G and G’ are congruent, denoted G = &, iff
mod(G) = mod(G’). Two continuous paths vy and 4 are congruent, denoted v = 4/, iff there exists a

one-to-one correspondence between their points such that corresponding points are congruent. For any

line or ray L = [G, G}, mod(L) denotes [mod(G), mod(G")).
4.2 Definitions

A TPGTp = (®,A,GC, f), corresponding to a timed transition diagram set D = {0, %1), consists of:

®: a set containing cycle times ¢g and ¢;.

A: a set of constraint line generators, which are a set of line segments that lie in the R2 plane in the
rectangle with opposite vertices (0,0) and ($g, #1), each corresponding to one edge in one transition
diagram labeled by a non-empty condition. For any condition ¢f = {i,i+1,...,7+ z}, for some

i',z € Z, we write (3,1 + 2) € ¢k, Formally, generator [W,X) e Aiff
(Fr3kFiF 0 <k <ne, = (§,i) €A

We=X,= 3 8 AWe= > tiAXe= > d)

0<i<k 0<i<s 0<i<i

The instances of a constraint line generator are defined to be all lines in the R? plane congruent to
the generator. The set of all instances of all constraint lines in A is A=</ W X)|WeR*AXe

R? A mod([W, X)) € A}.

GC: an initial point representing the earliest instance at which both processes have started execution.
The initial point lies on an axis within one cycle time of the origin and represents the times at which

each process starts exection. Formally, G satisfies (3r : 171 =0 = G = t7! mod ¢, A G€ = 0).

f: a lransition function, which maps each point G € R? — {(00,00)} to a (possibly empty) set of
successors f(G) C R?, where ||f(G)]] € 2. The definition of f is stated in terms of two more

primitive functions, f; and f5: f(G')d_i..f F{G) U f2(G). Informally,

Gef (G) iff G hes on a constraint line instance L and (7 is the smallest point on line L, excluding
L.i, at which L intersects another constraint line instance and G # L.f, or, if there is no such

intersection point, G = L.f; and
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Figure 6: Illegal constraint line geometries.

G € f2(G) iff G does not lie on a constraint line instance and ¢ is the smallest point at which a
slope one ray rooted at (7 intersects a constraint line instance, or, if there is no such intersection

point, G = (oo, ©0).

To formally define f1 and f3, let S1(G, L), where G € L, be the smallest point in set {L.FYHG |G >
GAQ@L :L'eN ANL#L =G €((Li, L.fyNL"))}. Let S2(G) be the smallest point in set
{(o0,00)}U{G" | (AL : L' e A" AL # I’ = G € [G, (00, 00}) N L'}. Then

Gei(G)iff AL : LEA*AGEL = G=5(G,L) A G# G, and

Ge R(G)ff (AL : LeA*AGeL) A G = S(G).

Example 2 In Fig. 4, ' = ({¢o = 5,61 = 3}, A,(0,0), f), where A = { [(1,1),(1,2)}, [(1,1},(4,1)) }.
One illustration of the composition of set A is the following: Because process 0 performs P{a) and process
1 holds a in location 1, ¢ = {1} and (1,1) € ¢2. This in turn implies that Wy, = X, = Eogjgnt{; =1,
Wi = 3ocia # =1, and X; = Zogjguntg = 2. Thus generator [{1,1),(1,2)) € A. The figure

illustrates twelve instances of each constraint line generator. o

Recall that each timed transition diagram edge t} (for 0 < i < n,) with a non-empty condition must
have a positive delay and correspond to at most one P or V operation. Therefore no constraint lines
may overlap {see Fig. 6(a)), the final point of one constraint line can never lie on another constraint line

(see Fig. 6(b}), and the final point of all constraint lines must be distinct (see Fig. 6(c)).
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A point is nondeterministic iff the transition out of the point is not unique. All other points are

deterministic. A point is dead iff there is no transition (in the sense of function f) out of the point,

Definition. Consider a point G € R? — (00, 0). G is nondeterministic, denoted Cy(G), iff || f(G)|| > 1.

G is dead, denoted Cp(G), iff f(G) = 0.

In Fig. 5, (3,3) is dead and points (1,3) and (3,1) are nondeterministic. Informally, nondeterministic
points represent states in which both processes simultaneously perform a P operation on the same
semaphore. Dead points represents states in which both processes are blocked

“Execution” of a program is represented by a timed execution trajectory (TET). A TET is a point
or a directed continuous path consisting of a sequence of horizontal and diagonal rays. There may be

multiple TETs rooted at the same initial point.

Definition. A timed execution trajectory of @ TPG T rooted at any point G° € R? is either (1) a

point G°® or (2) a directed, continuous path rooted at G°. Case (1) holds iff F(G®) = 0. Case (2) holds

iff the path is a ray sequence [G°,GY), [GL, G, ..., [G*—L,G") (where n may be infinite) satisfying

(Vi:0<i<n:GH g f(G)).

Example 3 The heavy lines in Fig. 4 denote all possible TETs rooted at point {0,0) for the single

philosopher dining philosophers example: [(0,0},(1, 1)), [(1,1), (4,1)}, [(4,1),(7,4)), (7,4),(9,4)),...,

and [(0,0), (1,1)), [(1,1),(1,2)), [(1,2), (3,4, [(3,4),(4,4)), [(4,49),(7,7)),.... The point (0.75, 0.75)
Iepresents a remaining occupancy time of 0.25 time units for both processes in location zero. Each line
segment [G, G") satisfies G’ € f (G). Point (1,1) € f2(0, 0) because {0,0) does not lie on a constraint line
instance, and a slope one ray rooted at {0,0) first intersects a constraint line instance at point (1,1). As
a second example, Fig. 5(b) illustrates four TETs corresponding to four different choices for d[0] and
d[1]1: 4,0; 1,0; 0,1; and 0,4. Consider d[0]=0 and d[1]=4. Process 0 starts first, and rans for four time
units before process 1 starts. The initial ray of the corresponding TET should have length 4 and lies on
the process 0 axis. Therefore the point G¢, representing the earliest time at which both processes are

running, is (4,0). In general, G¢ = (d[1], d[0l). Point (3,1) is dead. Whereas all TETs in Fig. 4 are

of infinite length, a TET with initial point (0,1) in Fig. 5 has finite length because F2(0,1) = {(2,3)},
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f1(2’3) = {(3!3)}1 and f(3?3) = .

In Fig. 4, the TETs rooted at (3, 1), (3,4), and (8,4) are congruent. That is, adding the vector (0, 4,)
to all points on the trajectory rooted at (3,1) yields the trajectory rooted at (3,4). Furthermore, adding
vector (¢o, 1) to the trajectory rooted at (3,1) yields the trajectory rooted at (8,4). In general, TETs

rooted at congruent points are congruent, as the following Lemma establishes.

Lemma 1 Consider any two TETs v and v of a timed progress graph T' with initial points G and &,
respectively. IfG=G' A (3G:GevvGe v CN(G)) then y= 4.

Proof: See [2]. 0
4.3 Transient and Limit Cycle Execution Trajectories

In general, a TET consists of a fransient portion followed by an infinite number of repetitions of a limit
cycle execution trajectory. Either portion may be empty. The final point in the transient portion is the
mitial point of the first cycle of the trajectory portion corresponding to a limit cycle execution trajectory.

These concepts are fofmalized in the following definition and established in Theorem 1.

Definition. Consider ¢ TET v. A directed, continuous path 4 is a limit cycle execution trajectory

(LCET) of v iff VG : G €% :: G € YA-CN(G)) A 3.0 =4.F. 4.4 and 4.f are called the initial and

final points of the LCET, respectively. The transient execution trajectory is the portion of v consisting

of all points that do not lie on a LCET. The initial point of the transient execution trajectory is 4.i.

The final point of the transient execution trajectory is the smallest point of lying on any LCET, if the

TET contains a LCET.

Example 4 Figure 4 contains two TETs. The TET containing point (1, 2) contains a transient execution

trajectory with initial and final points (0,0) and (3,4), respectively, followed by an infinite number

of congruent LCETs. One is [(3,1),(4,1)), [(@, 1),(7,4)), [(7,4), (8,4)); another, congruent LCET is

[(4.4),(7,7)), [(7,7), (8, 7)), [(8,7), (9,7)). The two are congruent because the first, second, and third
rays of the first subtrajectory are congruent to the third, first, and second rays of the second subtrajectory,

respectively. |
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The following theorem, along with the equivalence of transition systems and TPGs, implies that any
TES that does not contain a dead point and contains a finite (possibly zero) number of nondeterministic

points reaches a limit cycle.

Theorem 1 A4 TET ~ in a timed progress graph consists of a transient execution trajectory followed by
an infinite number of congruent LCETs iff IHGIG € vy A Cn ()} < .

Proof: See [2]. ]

4.4 Timed Progress Graph Sets

The remainder of this paper solves for the set of LCETs in a TPG. However, the solution method is more
powerful than solving a single TPG: it yields the the set of all possible limit cycle execntion trajectories for
any initial condition in the corresponding timed transition diagram set (e.g., any process starting times
t5! and ! satisfying the conditions stated in Section 3). Therefore we henceforth consider a timed
progress graph set (TPGS), which has three components: (&, A, f). A point or a directed, continuous
path v is a TET in (@, A, f) iff (Ir,3GC : Gl =0A0< GE < ¢7 :yisa TET in (®,A,G°, f)). Given

a timed progress graph T, the timed progress graph that subsumes it is denoted T+

Example 5 Figure 7 shows a TPGS '+ — (@, A, f) for a program where ¢’ = {60 = ¢1 = 10} and A
represents five semaphores. Iff we consider any initial condition, the program corresponding to the TPG
portion shown in Fig. 7 may reach a nondeterministic state, a dead state, or a limit cycle execution
sequence as indicated in Table 1. (The terms “blocking” and “non-blocking” in Table 1 are defined in
Section 5.) The set of TETs in I'+ 1s shown by heavy lines and, in regions containing an infinite number

of TET rays, shading. Two portions of the shaded polygon are of infinite extent, indicated by the arrows

at edges (22, 30), (23, 30)], and [(30, 27), (30, 28))]. o

o Solving for TETs in TPG Sets

This section is the first of three sections that develops, through stepwise refinement, an algorithm that

outputs a representation of the set of LCETs in a TPGS. The algorithm exploits the fact that many
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LCETSs are congruent. Therefore the problem of representing all possible LCETs reduces to finding one
mermmber of each congruence class of LOETs.

LCETs may be characterized on the basis of whether they do or do not block, A bocking LCET
contains at least one nondiagonal ray, while a nonblocking LCET consists of a single slope one ray. The
explicit form of a blocking L.CET reveals the sequence and duration of waiting times that each process
encounters. This is of interest hecause some blocking LCET's require a process to wait for longer periods

than others. For example, by Example 4 and Fig. 4, philosopher 0 waits two time units (e.g., becaunse each
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For initial point: | TET contains:

on ((0,5), (0, 10)} | non-blocking limit cycle

{0, 5) nondeterministic point at (7, 12)
on ((0,2),(0,5)) | blocking Yimit cycle

0,2) nondeterministic point at (2, 4)
on ({(0,0),(0,2)) | dead state (3,4)

(0,0} nondeterministic point at {3, 3)
on ((0,0),(5,0)) | non-blocking limit cycle

(5,0) nondeterministic point at (7,2)
on ({6,0}, (8,0)) { blocking limit cycle

(8,0} nondeterministic point at (12,4)
on ((8,0),(10,0)) | dead point {13,4)

Table 1: Behaviors present in Fig. 7 TPGS.

LCET contains a line congruent to line [(7,7), (9, 7)), which is parallel to the process 0 axis) at each P
operation, and philosopher 1 never blocks at a P operation. In contrast, the explicit form of a nonblocking
LCET, representing only running states and hence no blocking, reveals little information. The number
of congruence classes of non-blocking limit cycles is at most infinite; and by the corollary to Theorem 4
below, the number of blocking limit cycle execution sequences is at most twice the number of semaphores.
Therefore 2 “solution” to a TPGS (1) reports whether any initial condition can lead to a TET containing
a dead state, an infinite number of nondeterministic states, a blocking limit cycle execution sequence, or
a non-blocking limit cycle sequence,* and (2) reports one member of each congruence class of blocking
LCETs. Presented in algorithm A0 below is a solution to {1); (2) is left as an open problem.

The algorithm uses the following notation. For any point G, if f(G) = G' A |F(G)]] = 1, we use
f(G) to denote not only a function whose domain is a set (e.g., {G'}), but also a function whose range
is a point: f(G) = G'. Further, if [|[F(G)|] = IF(F(GNI| = IF(F(FIGN)]| = ... =1, then the i-fold (for

def . .
= (7. For convenience, define a function

i > 0) composition of function f is denoted f*(G), and f°(G)
Af as follows: if {}|f(P)|| = 1 then A f(G)dg f(G) — G; Af(G) is a vector representing the transition

from the state represented by G to the state represented by f(G).

1Carson and Reynolds’ deadlock detection algorithm [10] cannot directly be applied, because a consequence of the
assumption in Section 3 that each process executes on a dedicated processor is that the set of all execution trajectories in
Carson and Reynolds’ UPG is a superset of all execution trajectories in a TP(Ss.
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{ Input: {®, A, f); Output: list of LCETs }
declare 8: set of points; { Set of points examined already for membership in a LCET }
Si=0 N = |IAllj €= {X |, X) €A };
for each X in ¢ do
if

(Fz:zeSuae=X) AMIFPX)=FX)]=...=IAX)I=1A
(Fm:me{l,2,.. N}: f"(X)=X)
then begin
output point X and state transition vector sequence

AS(R(X)), AFX)), ..., AJ(F1(X))
where n is the smallest natural satisfying f2*(X) = X;
S:=Su{ff(Xx)|i=0,1,...,n—1}
end
else §:=SU{X}

Figure 8: Algorithm A0, which outputs one member of each congruence class of blocking LCETs.

5.1 Algorithm A0

Algorithm A0 (Fig. 8) examines N points, where N is the number of constraint line generators, namely
the final point of each constraint line generator (set £). Set S contains each point already examined that
1s either in set £ or is congruent to an element of £. Each iteration of the for each loop in A0 selects
an arbitrary point X in £ that is not congruent to any point in S and determines if X lies on a LCET
by finding n, the smallest integer in {0,1,..., N — 1} satisfying f¥(X) = X for each X € £, if such an
n exists. If n exists, then X does lie on a LCET that is then output, and X and all other end points of
non-collinear rays comprising the LCET rooted at X are added to S; otherwise only X is added to §.

AD does not explain how to compute (VX : X € £ : f(X)); this topic is addressed in Sections 6 and 7.

Example 6 The TPGS of Fig. 4 contains two constraint line generators, as stated in Example 2. Thus
¢ = {(41),(1,2)}. From Table 2, for X = (4,1), f3(X) = X. However, for X = (1,2), (Zm :
mé€ {1,2,...,N} :: f*™(X) = X}, which is because the TET rooted at (1,2) blocks once in its transient
execution trajectory at 0, but never again blocks at 0. Hence a single trajectory, congruent to those in

Example 4, is output: point X = (4,1} and vector sequence (3,3), (2, 0). O
5.2 Correctness of Algorithm AQ

Theorems 3 through 6 establish the correctness of algorithm A0. Appendix A contains omitted proofs.
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[ 7X)
X m=1 m=N=2
(4,1) | (94)" unnecessary
(12) | 44) (o7

Table 2: Quantities required by Algorithm A0 for Fig. 4.

Lemma 2 |[A]| < oo.

Proof: The definition of timed transition diagrams requires (Vr :: n, < oc). Therefore (Vi¥r : ( i<

7y 2 |lei[] < oo). Thus there exist a finite number of integers i and ¢ satisfying (¢,#') € ¢f, =

Theorem 2 Algorithm Ap terminates if each evaluation of function f terminates.

Proof: By Lemma. 2, Il and hence N is finite. Hence all quantifications are over finite sets and the

for loop iterates a finite number of times. ]
Theorem 3 Every trajectory output by algorithm AQ is a blocking LCE'T.

The following theorem establishes that examining the N points in set ¢ is sufficient to find all con-
gruence classes of blocking LCETs, The intuitjve Justification follows. Two TETs, rooted at ' and
G" converge iff the TETs contain a congruent point. Given that TETs with initial points ' and G*
converge, if we delete from each TET the subtrajectory with initial point equal to G’ or ' and a final,
congruent point, then the remaining trajectories are congruent by Lemma 1. For example, in Fig. 7 all
execution trajectories with initial points on line m converge because they all contain point
(8,12). Deleting the shaded polygon with vertices (0,2), (2,4), (2,6), (8,12}, (7,12), and (0,5) yields a
single trajectory common to all these TETS rooted at (8,12). An implication of convergence is that all
TETs in a TPGS that contain the final point of an instance of a constraint line generator must converge.
In addition, by definition, a blocking LCET must contain the final point of a constraint line. Therefore

examining just the final points of all generators in A is sufficient to find a]} blocking LCETs.

Theorem 4 Any blocking LCET is congruent to one of the trajectories output by algorithm AQ.

Corollary to Theorem 4 There are at most ||A|| congruence classes of blocking LCETSs in ¢ TPGS.
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Proof: By Theorem 4 the number of congruence classes of blocking LCETs cannot exceed the number

of constraint line generators, or, [[A]|. O
Theorem 5 None of the trajectories output by algorithm A( are congruent.

The following theorem shows that for each trajectory output by A0, either that trajectory or some

congruent trajectory is reachable, meaning it occurs in some TET that exists in a TPGS.

Theorem 6 For each trajectory outpuf by A, either that trajectory or some congruent trajectory is

contained in some TET rooted at a point either on line [(0,0), (¢o,0)) or on line [(0,0), (0, ¢1)).
6 First Refinement: Algorithm Al

Algorithm A0 leaves unanswered three questions:

1. When are (VX,: [W,X) € A =2 fO(X), FH{X), ..., V(X)) defined?

2. How can (VX : [W, X) € A 2 f2{X), FH{X),..., FA¥(X)) be computed?
3. Algorithm A0 evaluates f at worst O(N?) times; does a more efficient algorithin exist?

Questions 1 and 3 are addressed in algorithm Al (Fig. 9), which is the first of two refinements of AD.
Algorithm Al reformulates question 1 above in terms of two predicates, 'y, and Cg, defined below. A
method to efficiently decide when the predicates hold is given in Section 7. Al transforms the problem
of finding solutions to (VX :i = {1,2,...,N} :: f%(X) = X) to a problem of finding cycles in a graph
of N nodes, which reduces the worst case number of evaluations of f from G{N?) to O(N). (This will
be proven as a property of the second refinement, A2, in Section 8.) Answering question 3 appears to be
non-trivial, and is the subject of Section 7 and the second refinement, algorithm A2.

We answer question 1 using the notion of a live and restricted point. Informally, a point G in a
TPG is live, denoted C(G), if G represents some deterministic and blocked state, called a live state, in
which exactly one process is blocked (call it r), and in all TESs containing the state, in some subsequent
state process » is running. (If in all subsequent states process r is blocked, then the TES would be

of finite length and its final state would be dead; hence the name “live.”) Formally, CL(G)dg(EIL :
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Step A1.1: Construct a directed graph with N nodes labeled 0,1,...,N —1 as follows. F?r each k €
[0, N}, if Cr(X*) ACL(f(X*)) then draw an edge from node & to node &’ satisfying X*' = f?(X*).

Step A1.2: If the graph contains no cycles, output “No blocking LCETs exist.” Otherwise, for each
cycle &y, ks, ..., kas in the graph (where k; = kar), output point X*1 and state transition vector
sequence Af(X*1), AF(f(X*)), Af(XF2), Af(f(X%2)), ..., Af(Xkn~1}, AF(f(XFkn-1)),

Figure 9: Algorithm A1, a refinement of algorithm AQ.

LeAN 2Gel AS(GL)=L.f). A point G is restricted, denoted Cg(G), if G represents some
deterministic state, called a restricted state, in which all processes are running, and in all TESs containing
the staie, in some subsequent state some process is block, (A diagonal ray rooted at a restricted point
intersects a constraint line and thus cannot have infinite length; hence the name “restricted.”) Formally,
CrG)E (AL LeA* =GelL) A 52(G) # (00, 00).

By the following lemma, question 1 is equivalent to (Vi:0<i< 2N = Cr(f (X)) vV Cr(f (X))).

Lemma 3 £(G) £0 A (G) £ (00, 00) ifl CL(G) V Cr(C).

Proof: Follows from the definition of I m]

Algorithm A1 uses the following notation. Let the N constraint line generators be denoted [Wo, X0},

Wi X1, ..., [WN=1, XN=1) Let k and &' denote integers in interval [0, V).

Example 7 Recall that the TPG of Fig. 4 contains two constraint line generators. Let W =
((1,1),(4,1)) and [WT, X1) = ((1,1),(1,2)). Step A1.1 of algorithm A1 ylelds a graph of two nodes, with
edges directed from both nodes zero and one towards node zero. Step A1.2 outputs point X° = (4,1)
and state transition vector sequence (3,3),(2,0), which is identical to the result of algorithm A0 in

Example 6. [}
7 Formulas for Cgx(X), CL(f(X)), g(X), g(f(X))

Let X represent the final point of a constraint line generator. Algorithm Al contains four unknown
quantities: Cr(X), C(f(X)) if Cr(X), Af(X) if Cr(X), and Af(f(X)) if Cr(X) A Cr(f(X)). To

simplify the presentation, we will reason about scalars rather than vectors, and hence define 9(G) to be
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Process 1
a(f(X))
_ f(X)
9(X)
W X
] —+ Process 0
9(X)

Figure 10: Nllustration of four unknowns in Algorithm A1: Cr(X), CL(f(X)) if Cr(X), g(X) it Cr(X),
and g(f(X)) if Cr(X) and Cr(f(X)).

a non-zero component of Af(G). (Af(G) corresponds to a horizontal, vertical, or diagonal ray. In the
first two cases, exactly one vector component is nonzero; in the last case both components are non-zero
and equal.) This notation is illustrated in Fig. 10.

"The interpretation of the unknowns in a TPGS and a timed transition system are reviewed below:

Cr(X) : Does a slope one ray rooted at X intersect a constraint line instance? (When the program

enters the state represented by X, does either (running) process ever block again?)

Cr(f(X)) : If Cr(X), is the final point of the initial ray in a TET rooted at f(X) the final point of
a constraint line instance? (If Cp(X }, when the program enters a state represented by f(X), in

which some process is blocked, does a blocked process eventually unblock?)

9(X) : If Cr(X), what is the length of the perpendicular projection on either axis of a slope one ray
rooted at X whose final point is G, such that ¢/ is the only point on the ray that lies on a constraint
line instance? (If Cp(X ), how long do both processes run in parallel before some process blocks at

the next semaphore?)

g(f(X)) : If Cr(X), then f(X) lies on a constraint line instance. Let X' denote the final point of this
constraint line instance. If Cy(f(X)), then the final point of the initial ray in a TET rooted at
f(X) is X’. What is the length of the perpendicular projection of the ray with initial point. f(X)

and final point X’ on the axis parallel to the ray? (If Cp(X) ACL(f(X)), how long does a process



27

block when the program enters the state represented by f(X )?)

We solve the more general problem of how to compute Cr(G) and C(G) for any point G in a TPGS,
as well as how to compute f(G) and 9(f(G)) for any point G in a TP set satisfying Cr(G)ACy, (F(G)).

This is because restricting (7 does not appear to simplify the problem.

Solution Alternatives: Three solution methods are an analytic method, computational geometry,
and integer programming. We use here a predominately analytic method, The method is not purely
analytic because the formula for Cr{f(X)) is based on a list of constraint line intersections, obtained from
a computational geometric algorithm. A purely computational geometric method is given in [2], based
on ray shooting, Finding g(G) is equivalent to the following integer programming problem: minimize
the length of a slope one diagonal ray rooted at subject to the constraint that the final ray point
lies on some constraint line generaled by an element of A. We rule out the use of integer programming
based on two drawbacks. First, integer programming examines a, potentially infinite search space, and
only terminates if Cr(G) holds. Second, integer Programming wastes time searching infeasible points,

because each constraint line generated by an element of A may or may not contain a feasible solution.
7.1 Formula for CL(G)

By definition, evaluating C7(G) for point G on line L € A* requires evaluating 5,(G, L). However,
S1(G, L) is defined in terms of set A*, which contains an infinite number of elements. The following

theorem provides a way to compute C(G) in terms of finite set A,

Theorem 7 CL(G) is true in TPGS (3, A, f) iff (3BL:LeA:: mod(GY e L A G2 Li A ~(3G*, 31’ .
VeANLAL =G elnl A > mod(G))).

Proof:

CL(G) = ~Cn(G) A (3L : LeAAmod(G) e I - S1(G, L) = 6)

» by the definition of A* and CL

(VL,YL': LEAAL € (A* — A) s LOL =)

; by the definition of A and A*
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CLG)=~Cn(G) A (3L - LeAn mod(G) e L = {G' |G e LNA - {L}AG > mod(G)} = ¢

» by last two deductions and definition of S;

Applying the definition of Cy and simplifying yields the expression for Cy, in the theorer. 0

Known computational geometric algorithms for reporting intersections of line segments may be used
to compute (VL,VL' : LEAALCAAL # L' LN LY, which is required in Theorem 7; see for example

Bentley and Ottmann f8}.

7.2 Analytic Solution of Cr(G), g(G), and gf(@))

The solution method Presented here requires the following assumption.
Assumption 1 Constants b0 and ¢ represent rational quantities.

An equivalent assumption, which is the one used in this section, follows.
Assumption 2 Constants @0 and ¢; represent relatively prime infegers.

"To demonstrate the equivalence, let L(dg, ¢1) denote the least common denominator of @o and ¢;. Let
G(¢do, $1) denote the greatest common divisor of Bo0L(po, $1) and ¢, L(o, ¢1). Multiplying rational do
and ¢; by L(gq, $1)/G{do, ¢1) yields relatively prime quantities, to which the solution method below is
applied to calculate Cr(G) and ¢(G). The resulting (real) value of 9(G) multipled by G(so, 61)/L(do, 1)
corresponds to the solution for the original, rational ¢y and &1,

The analytic solution for Cr(G), 9(G), and g( F(G)) is based on a simplified version of a TPGS which

has constraint lines generated by only one generator in set A.

Definition. Given (®,A, ), Cr(G,W,X) and 9(G, W, X) are defined as Cr(G) and 9(G), respectively,
in TPGS (2, W XJ, /).

Therefore:

Cr(G) = \V Cr(G,W,X) and (1)
{WX)en}
9@ = min{g(a,mX)jmjeA/\cR(G,mX)} if Cr(G). (2)
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The minimization in equation (2) arises because ¢ 4 (9(G), 9(@)) is the point closest to the origin at

discussion derives formulas for Cr(G, W, X), 9(G, W, X), and 9(f(@), W, X), to which equations (1) and
(2) can be applied to obtain Cr(G), 9(@), 2(f(@)).

Notation conventions: The remainder of this section agsumes without loss of generality that the
generator in TPGS (®, { WX)}) 5, isa horizontal Line; that is, Wy < X, A Wi = X;. (The case of

vertical lines follows by interchanging subscripts 0 and 1 in the subsequent text.)

7.2.1 Formula for CRr(G)

a constraint line generated by an element of sef A, Each point on the slope one diagonal ray rooted at

GisG+(y,y), fory e R. Therefore Cr(G, W, X) holds iff

(3y,d0,i1 : ye R, 4y €EZ,46€7 G+(y,y) € [W-l-(ioﬁﬁo,ilﬁﬁl), X + (fogho, 1161)) ).

The relationship above is rewritten below as two equations, each corresponding to ope component
of a point. This requires the binary relationship € to be transformed to an equality relationship by

mtroducing a slack variable, denoted s. The resulting equations are illustrated in Fig. 11.

Go+y+s= Xy +ighy and 3)

Gi+y = X1 +i14,, (4)
where

s € (0, X0 — W) (5)

Letting s’ = 5 + X, — Xo — G + Gy and I(G, W, X) denote the set of integers in the interval

(X1 —Xo -G + Go, X1 -Gy + G, — W], variable y may be eliminated from system {3) to (5):

Q¢ —dogo +5' = 0, (6)
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Process 1
Xl + 261 't .—‘~‘——e ._‘_‘ﬁ-—-e
261 T la y L't s
X+t —
it ¥
Wi = X1 | -—
P]_ i P
P
W(} Xy Py cy Xo+ Cp 26‘0 racess 0

Figure 11: One possible relationship of G, y, and s in a TPQS with constraint lines generated by a single
generator, {W, X). In general, there are either zero or an infinite number of points of intersection of g
slope one diagonal ray with instances of 3 single constraint line generator, corresponding to zero or an
infinite number of values of y, respectively. In the figure, ip = 4; = 1 yields ¢(G, W, x )=1y.

where s’ must lie in the interval
s € I(q, W, X). (7)

Therefore Cr(G, W, X) holds iff there exists a solution to equation (6). Because ¢o and ¢ are
relatively prime integers, s’ must be an integer by equation {6). Therefore equation (6) is a Diophantine
equation. A necessary and sufficient condition for a solution to equation (6) to exist is that the greatest
common divisor of ¢, and $o divides s', by Jones’ Theorem 3.3 [23]. Therefore a solution exists iff

interval 1(G, W, X ) contains an integer valye. Applying equation {1) establishes the following theorem.
Theorem 8 Cr(G) is true in TPGS (@A, ) iff (AW, Xy : W, X) e A (X1 —Xo -G, + Gol <
(X1 -G+ G, — Wal).

7.2.2 Formulas for g(G) and g(f(@)) if Cr(G)A Cr, (@)

¥ Cr(G,W, x ), 9(G,W, X ) by definition is the minimum nonnegative integer value of y satisfying either

(3) or (4). Therefore, from (4),
g(G’, I/V,X) = min{z'1¢1 +X; — G ]2'1 cZ A 1161 + Xy — Gy > 0} (8)

The right hand side of equation (8) requires the minimum element of a set containing an infinite

mumber of elements, The right hand side will be reexpressed as a set containing a finite number of
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elements to permit an algorithm to compute the minimmum by exhaustive search. The rewritting is done
by expressing unknown i; in terms of unknown s’ and an mteger parameter a by applying the solution
technique for three variable Diophantine equations in [23], pp. 67-68. There are an infinite mumber of

solutions, which parameter a expresses. The solution to (6) is
il = US’ +¢00’, (9)
where u is an integer satisfying ¢;u =1 (mod o). Combining equations (8) and (9) yields

9(G, W, X) = min{(us’ + doa)¢, + X1 — Gy | (10}
a€Zns € {G,W, X} A (us’ + doa)dy + X1 — Gy > 0}.
The right hand side of equation (10) still requires the minimnm value of an infinite set of elements.

However, o can be rewritten in terms of s'. Solving (us’ + ¢pa)é1 + X1 — G > 0 for the value of « that

ields, for a given value of &', the minimum, nonnegative value of {us’ + dpr)dy + X1 — G1, we obtain
¥ » E 2

o = _ [¢1U5’—G1+X1]' (1)

¢1do
Theorem 9 In TPGS (D, A, f), where o and ¢, are relatively prime, given a point G such that Cg (G)A

CL (f(G)))

9(G) = min{ (¢1us’ + X1 — G1) mod ¢yé, [ [W, X} € AACr(G, W, X)As € I(G,W, X))} (12)

where u satisfies $1u =1 (mod ¢o). Furthermore, Q) =s* (X1 - Xo -G + Glo), where s* is

the value of s' that yields the minimum ¢(G) in equation (12).

Proof: The expression for g(G) follows by combining equations (2}, (10), and (11). The expression
for g(£(G)) follows because, by definition, g(f(G, W, X }) is the value of s satisfying equation (3) when

¥=g(G, W, X) and from equation (11). o

The fact that Theorem 9 requires the minimum of a set containing a finite number of elements permits
computation of g(G) and g(f(G)) by exhaustively examining all set elements. The second refinement of

algorithm AQ, presented in the following section, exploits this fact.
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8 Second Refinement: Algorithm A2

This section refines algorithm A1 by incorporating the formulas for CL(G), Cr(G), and g(G) given in
Theorems 7 to 9. The result is algorithm A2 (Fig. 12). For TPGS (&, A, f), algorithm A2 stores the
cycle times, ¢g and #1, as the two elements of array C and the constraint line generator set, A, as an
N x 2 array of initial points (W) and an N x 9 array of final points (X). For example, the initial point
WN=1 of constraint line generator (WHN=1, XN-1) is stored in (W[N-1,0, W[N-1,1]). The edges of the
graph algorithm A1 generates are stored in N x I array E; if E[0]=3 then an edge exists from node 0 to
node 3. The state transition vectors output by algorithm A1 are stored in N x 1 arrays G0 and Q1.
We next consider the time and space Requirements of algorithm A2. The time required by algorithm
A2 is dominated by the time required to evaluate the minimization in Theorem 9, as the following
theorem establishes. Let Iy (G, W, X) denote the number of integers in interval 7(G, W, X ). Let D =

max{In(X*, W, X*) [k, ¥ € {0,1, .. N - 1}}.

Theorem 10 Algorithm A2 requires at worst time O(N?D), excluding the time to compute the Le.d,
and g.c.d. of two rational numbers (in function LG ), and the time to solve the congruence for u.

Proof: Consider the time required by each step of algorithm A2.
Step A2.0: The for loop iterates N times; therefore step A2.0 requires Q(N) time.

Step A2.1: The intersection may be computed using an algorithm that reports the points of intersection
of horizontal and vertical line segments, such as Bentley and Ottman’s algorithm 4.1 in [8]. Rather
than reporting ail intersections, the algorithm is modified to store in ML[K] the intersection point
furthest from the origin found so far for the instance of constraint line K that the algorithm
considers. The algorithm requires time O(Nlog N + K), where K is the number of intersecting
pairs. In our case, half the constraint lines in A are vertical and half are horizontal, At worst,
every horizontal line intersects every vertical line, and K = O(N?). Thus step A2.1 requires time

O(N?).

Step A2.2: The inner loop of step A2.2 is iterated at most O(N?D) times. At worst the if test in the

inner loop is true in each of O(N?D) iterations. The if test bedy requires constant time.
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var
N,K,K’: integer;

T,LG,U,S’: real;

C: array [0..1] of rational; {Cl0]=4s; Cl1]=¢4;}

W, X: array [0..N-1,0..1] of real; {(WKLX[K])=(Ww*, x*)}

E:  array [0..N-1] of integer; {E[K]=c0, if J2(X*) exists, else E[K])=k’, where X*' = FAHX5)}

G:  array [0..1] of real; {a point}

GO:  array [0..N-1] of real; {GO[K]=¢(X*¥) if Cr(XX)}

Gl array [0.N-1]of real;  {G1[K]=g(f(X¥ ) if CR(XF) A CL(F(XE))}

MI:  array [0..N-1,0..1] of real; {MI[K]=max{G|G € [WIK], X[K])n A — ([W]K], XIKDH

M:  array [0..N-1] of real; {M[K] = s* (from Theorem 9)}

{Interval I{XX' WK xk ) is represented as [ IL(K,K’), IH(K,K’) ) using the following two functions. }
function IL(K K :integer):real begin return X{K’,1}—X[K’,0]—X[K,1]+X[K,O] end
fanction IH(K K’:integer):real  begin return X[K’1]-X[K,1]+X[K,0-W[K’,0] end

function LG(Y0,Y1:rational):integer
var L: integer;
begin L. := l.c.d. of Y0 and Y1; return g.c.d. of L¥Y( and L*Y1 end

begin
{Step A2.0; initialization}
input C[0], C[1], N;
LG:=LG(C[0],C[1]); C0]:=C[0]+LG; C[1]:=C[1]+LG: solve ClJ*U=1 (mod C[0]) for U;
for K:=0 to N-1 do begin
E[K]:=G0[K]:=c0;
input W(K,0], W[K,1], X[K,0], X[K,1};
WIK,0):=W[K,0]+LG; X[K,O]::X[K,O]*LG;W[K,l]::W[K,I]*LG; X[K,1]:=X{K,1]+LG

end

{Step A2.1 (Steps A2.1 and A2.2 together correspond to step All}})
for K:=0 to N-1 do MI[K]:= max{G|G ¢ [WIK], X{K]) n A - {{W[K], XK}

{Step A2.2}
for K:=0 to N-1 do begin for K’:=0 to N-1 do
if [IL(K,K')] < [IH(K,K’)| then begin {Cr(X™) holds; compute GO[K]}

for §":=[IL(K,K')] to | TH(KK’) | do begin
T:=(C[1] * U » 8’ + X[K’, 1] — X[K, 1]) mod (C[0] + C1]);
if T<GO[K] then begin E[K]:=K’: GO[K]:=T; MIK]:=$’ end
end

if MI[K] < (XX + GO[K]) then {CL{X*¥) holds; compute G1[K]} G1[K]:=M[K]-IL(K K 9!

end end

{Step A2.3; corresponds to step A1.2}
for each cycle kq,ky, ..., ky in graph in array E (where k; = knm) do begin
output point (X[k;, 0]/LG, X[k, 1]/LG); for K:=1 to M-1 do output GO[K]/LG, G1[K]/LG
end end

Figure 12: Algorithm A2
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Step A2.3: The graph represented by array E has at most one outgoing edge from each node. Hence the

graph has at most NV edges, and all cycles can be detected in time O(N). a

Theorem 11 Algorithm A2 requires QQ(N) storage, excluding the storage to required compute .

Proof: Follows from the array dimensions in declaration portion of algorithm A2 (Fig. 12). 0O

Theorems 10 and 11 show that algorithm A2 requires space §2(N) and time O(N2D), where D is
related to the precision with which measurements of program timings are desired. Consider the time
requirement. In practice, the N2 term is not prohibitive, because two-process Drograms usnally use a
small number of semaphores. The D term, however, may force us to make approximations. As discussed
in Section 7.2, we map any rational cycle time ¢y or #1 to relatively prime integers by multiplying both
cycle times by LG, where L& is the least common denominator of #o and ¢; divided by the greatest
common divisor of 3 multiple of ¢y and ¢1. Thus, D will grow with the product L¢7. ®o or LG - ¢1, which
is the ratio of the cycle time to the resolution of the measurement clock. For example, if we rmeasure an
algorithm to microsecond resolution, LG is at most 106, If %0 = ¢1 = 100 seconds, then D — 300 - 108,
However, we may be willing to trade accuracy for computation time by approximating measurements by

milliseconds, so that D = 300 . 103,

9 Conclusions

consisting of a repetition of states, termed the limit cyele ezecution sequence. There may be several
congruence classes of limit cycle execution sequences; the initial Program condition (i.e., the relative
times at which processes start exccution) determines which class which the program reaches,

There is some similarity between parallel programs and classical dynamic systems, such as electrica)
circuits with feedback. Dynamic systerns may reach a limit cycle behavior, analogous to the repetitions
of limit cycle execution trajectories studied here. Furthermore, we have some experimental evidence of
the similarity from two sets of experitments. The first [5] uses a dining philosophers program similar

to Fig. 5, except that spinlocks rather than binary semaphores are used, and the order of acquiring
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and releasing spinlocks differs from the order of semaphores shown in the figure. The program was
executed on a shared memory multiprocessor (a Sequent Symmetry), and produces a LCES with up to
nine philosophers. The second (1, Ch. 6] uses a dining philosophers algorithm in which each resotrce is
controlled by a separate monitor process that runs on a dedicated processor. [ts execution with between
four and 64 processors on a multicomputer with interprocess communication done by message passing
shows that for small numbers of brocesses, the global-state transition sequence js deterministic. Starting
at about nine processors, small perturbations occur i the limit cycle for short instances of time, after
which the program returns to a limit cycle,

However, parallel programs are dissimilar from dynamic systems because of discontinuities. If we

program, because a Programmer is unaware of the discontinuity locations. This causes counterintui.tive
behavior, such as when one process 1s speeded up, the overa]l program performance is degraded,

Any model requires assumptions that are usually not strictly met by the systems they model. For
- example, the delay of each edge in a timed transition diagram must be an independent constant, Drift
among processor clocks and contention for resources (e.g., a bus, a network, or a memory cell) prevent
programs from strictly meeting this assumption. One may ask how accurately the TPGs of this paper
model programs that are otherwise representable as timed transition diagrams. Our experience so far
indicates that the model is highly accurate [1, 4].

Several open problems remain:
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to avoid a naive generalization of the solution presented here to more than two dimensions. ); and

* model analysis for irrational cycle times ¢y and #1. (Chaotic behavior may exist for these values.)
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A Proofs of Correctness of Algorithm AQ

All TETs in this appendix are presumed to consist of ejther live or restricted points. {This excludes

dead, nondeterministic, and free points, becanse they never arise in a blocking LCET.) We first prove

FLICVi V), i€ ZAj <i, f%(X) and FHX) ate defined, then f%(X) € ¢ and CL{F¥+1(X)).

F2: Let G be any point congruent to X that ljes on the TET rooted at X. If FHi>0,X = JH (X,

then 35,5 > 0,G = FH(X).
F3: 3,i>0,x = f%(x) o 35,7 €{1,2, N} Xy = X,

Proof of F1: Follows by induction on i. Note that all running points are restricted, and all blocked

points are [ive,
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Hi=0then f¥(X)c¢

, from premise that X €&
7> 0 then f%-1(X) lies on a constraint line

» by inductive hypothesis Cr(f*-Y(x )) and definition of Fa
Hi>0then f¥(X) ¢

» by applying definition of J1 to last deduction
Vi,i>0,/%(X) e

; comnbine first and last deductions

FP+X) lies on a constraint line

» by last deduction and the definition of f;
Culf1(x))
, by last deduction and assumption that al] points in a TET are live or restricted. ]
Proof of F2:
3,i>0,G= fj(X) y by Theorem 1
3,i20,G=p% (X) » combine last deduction with ¥F1 o
Proof of F3:
Vi,i> 0, f%(X)ee
, by F1
F,i>0,X= FH(X)
; hypothesis
d,ie{1,2,.. SNLAXY =X

» by last two deductions and because ¢ contajns N elements 0

Theorem 3 Buery trajectory output by algorithm AQ is ¢ blocking LCET
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Proof of (1):
F(X}) is defined

, because AD outputs a trajectory with initial point X

Cr(f(X))
, by F1 and last deduction

f(X) lies on a constraint line
» by definition of live point and last deduction

Proof of (2): Follows from definition of f.

Proof of (3):

Initial, final points of trajectories ontput are congruent,

» because X = fon(x ) in algorithm A

Trajectory contains a subtrajectory with initial point G and final point (& that is LCET
; by last deduction

X <G <@ < for(x)
» by last deduction

¢’ = fin(x)

» by Theorem 1 and because n is smallest natural satisfying f2n (X)=x
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Lemma 4 Consider 4 LCET 8 representing only deterministic points. There exists q LCET rooted at
any point congruent to q point on S,
Proof: Let the initia] and final points of § be G and ¥, respectively. Let ¥ pe any point on S. The

proof first demonstrates that there exists a LOET rooted at ¥,

LCET rooted at ¥ exists; denote its final point by Y/

, by Theorem 1 and Lemma 1

Subtrajectory with initial and fina] points G and Y s congruent to subtrajectory with initial and
final points G* and v’ » Tespectively

; because G = » Y=Y, and by Lemma 1

S'is congruent, to LCET rooted at v

» by last deduction and because trajectory with initia] point ¥ and final point ¥ ig a subtrajectory

of both S and the trajectory rooted at v’

S is congruent to LCET rooted at any point congruent to v

» by last deduction and Lemma 1 |

Theorem 4 Any blocking I,CET is congruent to one of the trajectories output by algorithm Ag.

Proof: Consider some blocking LCET, denoted ¥.

Y contains ray with itg initial point on a constraint line

, because LCET blocks

Final point of ray in last deduction is final point of some constraint line

» because LCET does hot contain dead points, and by the definition of h

X €&, where X is congruent to final point in Jast deduction

, by definition of constraint line
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, by Lemma 4

Jm,me {1,2,...,N},f2'”(X} =X

, by F3 and Iast deduction

AQ outputs v

y by last deduction and Theorem 3 O

Lemma 5 Given q point, all LOETs containing that point are congruent.

Proof: Follows from Lemma 4. (]
Theorem 5 None of the trajectories output by algorithm Al are congruent,

Proof: Consider any two trajectories output by A0. Let X! (respectively, X 2) be the initial point of
the first (respectively, second) of these trajectories. Let St denote the set of all end i)oints of non-collineay
Tays comprising the first of these trajectories. Let 2 be the smallest natura} satisfying f2» (X?) = x2.
Proving that there exists 5 single point (namely, X?) on the second trajectory that is not congruent o

any point on the first trajectory ig sufficient to establish Theorerm 5.

F¥(X?) must be end point of two non-collinear rays in any LCET on which it Jies

, by Lemma 5

» because X2 = F(x?)

S C 8 when Ag applies if test to X2

;5 is set to S U S2 after point X! ig output in A(

,Z.:a:',:ceS',:::‘-:“X2

i X* is output they if test in A0 was true
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» combine last two deductions

et X denote the nitial point of Y. Let n be the
smallest natura) satisfying f2n (X) =X, Let iy and 4, denote naturals,
" (X) ey

, by definition of b

Fio, 344, ff(xXy=x + (oo, t1¢1)

, becanse f2n (X?) = X, where n>()

3G, G e v, 3?,r€{0,1},X§G<f2”(X) A Grmod ¢, =

» by last deduction apd because X ¢ 5 (X)es

G = (Go mod ¢, &4 mog $1)

» by definition of congruent pointg

Execution trajectory rooted at (Go mod ¢0, G mod #1} contains 5 Point congruent to r(x

)

» by Lemma 1 ang last deductjon

Execution trajectory rooted ai (Go mod &g,

G mod #1) contains a trajectory congruent to -y
» by Lemma 4 and last two deductiong



