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Abstract

The problem of finding a reduced order model, optimal in the H” sense, to a given
system model is a fundamental one in control system analysis and design. The addition
of a H® constraint to the H® optimal model reduction problem results in a more
practical yet computationally more difficult problem. Without the global convergence
of probability-one homotopy methods the combined H?/H> model reduction problem
is difficult to solve. Several approaches based on homotopy methods have been
proposed. The issues are the number of degrees of freedom, the well posedness of the
finite dimensional optimization problem, and the numerical robustness of the resulting
homotopy algorithm. Homotopy algorithins based on several formulations — input
normal form; Ly, Bryson, and Cannon’s 2x2 block parametrization; a new nonminimal
parametrization — are developed and compared here.

Keywords: reduced order model problem, #*° control, H? control, probability-one
homotopy algorithm. '
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1 Introduction

In a feedback control setting, order reduction techniques may be used
either to simplify the plant for control design or to simplify the controller
for ease of implementation. In either case, the resulting reduced-order
systems must be constructed with their closed loop role in mind. Although
numerons order reduction techniques have been proposed, it is clear from
small-gain type arguments that the order reduction procedure should be to
approximate the system frequency response to the greatest extent possible.

Several order reduction techniques have been proposed for approxi-
mating the frequency response of a given system. For example, frequency
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weighting has been studied in [5} in conjunction with balancing {12]. More-
over, Hankel norm reduction has been shown to have fundamental ramifi-
cations for frequency domain approximation (1], 2], [7}. An overview and
discussion of these ideas is given in [3]. :

In the present paper we follow the approach of (8], which is based
upon a state space H*® formulation. In particular, by using a Riccati
equation to enforce an H® constraint on the norm of the reduction error
in conjunction with an H 2 upper bound or entropy cost [13], it was shown
in [8] that H*® constrained reduced order systems can be characterized by
necessary conditions for optimality of the H? upper bound. The resulting
algebraic conditions, which are a generalization of the “pure” H? optimality
conditions given in [9], consist of nonstandard coupled Riccati and Lyapunov
type matrix equations.

The purpose of the present paper is to make significant progress in
developing novel, stable, globally convergent numerical algorithms for solving
the optimality conditions for H 2 /H> order reduction given in [8]. The
approach we take 1s based on the construction of probability-one homotopy
maps, similar to those developed for the H 2 yrder reduction problem in [6].

2  Statement of the Problem

Given the controllable and ohservable, time invariant, continuous time
system '
#(t) = Az(t) + B Du(t),
y(t) = Ca(t),

wheret € [0,00), A € R"™"is asymptotically stable, B € R O e RY*M,
D € R™*? (m < p) and the input Du(t) is white noise with symmetric and
positive definite intensity v = DDT, find a ng,-th order model (nm < n)

(1)

() = Am 2m(t) + Bm Du(t),

Ym(t) = Cr m(t), (2)

where A, € R**", By, € R *™m Oy € R!*7= . which satisfies the
following criteria:

(i) Am is asymptotically stable;

(ii) the transfer function of the reduced order model lies within 7 of the
transfer function of the full order model in the H® norm, lL.e.,

H(s) = Hm(s)llo =7 (3)
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where
H(s) = EC(sI, — AY'BD,  Hu(s) = ECn(sIn — Am)”' BmD,

v > 0 is a given constant, & ¢ R%! (¢ > 1) is a given constant matrix; and

(iii) the H? model reduction criterion
J(Am:Bm:Cm) = }E&g [(y —ym)TR(y—ym)] (4)

is minimized, where £ is the expected value and R = ETE is a symmetric
and positive definite weighting matrix.

3  The auxiliary minimization problem

Define

>

AE(O ;m), éz(i>, G=(C —Cun) (5)

cTrRC —CTRC,
—~CTRC CLRCn ) ’
BvBT BVBL

B,V BT BmVBg>'

REE’TE:C‘TRC’:(
- (6)
V-:“DDTzBVBT:<

The full order system (1) and the reduced order system (2) can be

written as a single augmented system

b(t) = A3(t) + Du(t),
j(1) = C (). (7)

4

Using this notation the cost J(Am, Bm,Cin) can be written as

J(Am, B, Cr) = lim € [(y = ym)" Ry —ym)] = Jim €(7" RY)
= lim £ETCTRCE) = lim £zT R&) =tr (QR),
(8)

where () satisfies

AQ+ QAT +V =0. (9)
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LeMMA 1 [8]. Let (Am,Bm,Cn) be given and assume there ezists
0O € R™M% satisfying

Q is symmetric and nonnegative definite (10)
and
AQ+ QAT + 4y *QRQ +V =0. (11)
Then o
(A,D) is stabilizable (12)

if and only if
A, is asymptotically stable.

Furthermore, if (12) holds, then
[H(s) = Hm(s)lleo <75 (13)
Q<Q (Q — () is nonnegative definite),

and

tr OR = J(Am, B, Cm) < T(Am, Bm,Cm) = tr QR.

Hence the H constraint is automatically enforced when a nonnegative
definite solution to (11) is known to exist. Furthermore, the solution Q
provides an upper bound for the actual state covariance () along with a
bound on the H? model reduction.

The satisfaction of (10)—(12) leads to (i) A, stable; (ii) a bound on the
H°° distance between the full order and reduced order systems; and (iii) an
upper bound for the H? model-reduction criterion. The auxiliary minimiza-
tion problem is to determine (A, , Bm, Crs) that minimizes J(Am, Bm,Cm)
and thus provides a bound for the actual H* criterion J(Am, Bm, Crm)-

(Am, Bm,Cr) is restricted to the set

S={(Am,Bm,Cm): A+ +v72QR is asymptotically stable,
Q is symmetric positive definite,

and (A, B, Cm) is controllable and observable }

4 A homotopy approach based on the input normal
form

THEOREM 1 [10]. Suppose A, is asymptotically stable. Then for every
minimal (Am, B, Cm), t.e., (Am,Bm) is controllable and (Am,C'm)
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ohservable, there ezist @ similarity transformation U and o positive defintte
matriz = dia,g(wl, e ,wnm) such that Am = UAU, B = U~iBnm,
and Cm = CU satisfy

14
0 :A?nQJrQAerchcm. (14)

In addition,

1
(Am);; = fa(BmVB:ﬂ)w

o (CLRCm),;
e (BmVBg;)i,;’ (15)
CTRC),. —wi(BnVBR)
(4n), = (CRRCm)y; =iV Br)y gy
k4 wj — Wi

DEFINITION 1. The triple (Am,Bm, C,) satistying (14) or (15) is sald
to be in input normal form.

To optimize J(Am, B, Cr) Over the open set S under the constraints
that symmetric positive definite Q satisfies (11), and (Am, myCm) 18112
input normal form, the following Lagrangian s formed:

L(AmsBm: Cmy it Q,P, M, Mo)
=tr [QR+(AQ+ 0AT + 4 2QRQ + V)P
+ (Am+ AL+ B, VBL)M. + (Al + QAm + CT RC ) M),

where the symmetric matrices Me, M,, and P € R**% are Lagrange
multipliers. @ = diag (W1, - wy.. ) is related to the input normal form
constraint. Setting 8£/0Q =0 yields

0= (A+y2QR) P HP(A+ +2QR) + R. (16)
Partition @, P € R™**® into
Q1 Qi Pr P2
o-(& %) G w) O
Q,{Q Q2 'Prlrz PE ( )

where @1, P1 € R™*"™ and @2, P2 € R *nm . Define

71 Z12
=7 = 18
Pe (221 Z ) (18)
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where

Zi=P1&1 + P12 0%, Zy = P1 Q12 + P12Q2,
Za1 E'PE;Q1+792Q’{Q, Zy E‘P?QQ12+7D2Q2-
dL[oY =0 and OL/BA, = 0 yield

0 = 2M, + 2QM, + 2(P, @12 +PyQ0), 0= (AnMo);;, 1515 nme

A straightforward calculation shows

oL _ = 2(PLBV + P2BnV) +2Me BmV,

6B
-diz(RC Q, — RCQia) +2RCn M
6Cm - m2 12 m 0 (19)
N [—RC(ZE” Oy + 25 Qs + Q1 Z12 + Qi2Z2)
© RO(QT, 7y + 233Q12 + Q222 T ZT Q9]
THEOREM 2 [4]. The matrices M. and M, in (19) satisfy
1
M, = -(—S + QM,),
(), = 2;<Am SO0 )
_(S)is — (S)Jz . ,
(MO)z‘j = 2w — wt) if w; # Wi,
where
S = 2(7’5@12 + P2Q2). (21)

A homotopy approach based on the input normal form is now described.
Let Ag, By, Cr, By, V¢, and vy denote A B, C,RV, and 7 in the above
and define

A()\) = Ag + A(Af - A()), R()\) = RU + )\(Rf - Rg),
B(X\) = Bo + MBj — Bo), V(A=W -+ MV = Vo), (22)
C(x) = Co + MCy — Co), ~(A) = 70 + Avs — v0)-



For brevity, A(X), B(A), C(A), R()), V(X), and ~v{ )} will be denoted by A,
B, C,R,V,and vy respectively in the following. Let

L

oL
Hcm(91 }\) = _a—cf- == 2R(CmQQ - CQl?) + chmMo

44 2 [~RC(ZT Quz + 251 Q2 + Qi Zu2 ¥ Q1272)
+ RCm(Q’{QZm + ZLQ1p 4 Q@222+ ZQTQ;:)],

9= Vee (Bm)
= \ Vee {Cn)
denotes the independent variables Bp and Cm, Mo and M, satisfy (20),

and O and P satisfy respectively (11) and (16) with partitioned forms (17).
Vec(P) for a matrix P € RP*? is the concatenation of its columns:

where

Py

P,
Vec(PY=]| . | € R7.

P,

The homotopy map is defined as

_ Vec [Hgm((?,)\)]
P8, A) = (Vec [Hcm((?,)\)]) ’ (23)
and its Jacobian matrix is

Dp(6,)) = (Dap(6, 1), Dxpl8,2))- (24)

Define
frp (PO, MY =2(PL VB + PP B,V + 2MP BV,
fe (W, 29, MP)) = 2R(Cn Qs - Q) + 2RCa MY
2 RO(Z D Qi + 25D Qa4 2] O 4 22 0
£ 00z, + 0178 + QR 2 + 22)
b RO (250 Qsa + ZHQY + Q1 7 + QLY
097+ 2500+ 2278 + 27 0Y).
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where the superscript (7) means 8/88;: Y = 9Y/86;. Using the above
definitions, we have for 6; = (Bm),,,

OHp _ gy (pO), MDY + 2(Py + M) BRIV,
O(Bm )k (25)
O0He - : - :
——Zm_ — He. Q(J)’Z(J),M(EJ) ,
5B~ o )
and for §; = (Cm)kl,

OHp - - :

——Pfm _ g p(])’M(J) :

I(Com )ri B )

OH P : : ; .

B(CC;M = He. (Q(J)’ JASS MCEJ)) + QRE(LJ)(QZ + M,) (26)

+ 4 2RE®D (L0102 + QT 215 + QF Z2 + 25 Q2),

where E(*:D is a matrix of the appropriate dimension whose only nonzero
element is eg; = 1. P and QU can be obtained by solving the Lyapunov
equations

0=(A+772QR)QY + QW (A 44 7?QR)" + V1
+ AV @+ QAT + 4P QRUIQ,

0= (A+~?QR)"PY + PO (4 +472QR) + RV (27)
+ (AD 4 42D R 4472 QRNTP
+ P(AD 44 2QUWR + 42 QRY).

Similarly for X, using a dot to denote 0/9A,

OH . oo . . .
—5;% = Hp, (P,M,) +2PL(BV + BV) + 2(P; + M.) BV,
oOH . L . . .
af\jm = He,, (Q,2,M,) + 2RCpn (Qz + M,) —2{RC+ RC) Q12 (9g)
+ 7_2R by —2v 4R hy,
— fy_QRC"(Z?Qm + 25 Q2+ Q1712 + Qu272),
where

ha = ~C(ZF Qs + 25 Q2 + Q1212 + Q12722)
4 Con(QG 21y + Z5, 01 + Qa2 + 21 Qa)
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and P and Q are obtained by solving the Lyapunov equations

0= (A+7?QR)O+ 0(A++2QR) + 7
+AQ+ QAT + y?QRQ - 27734QRQ,

0= (A++2QR)" P +P(A++72QR) + R (29)
+(A+420R+4720R — 2y~%QR) TP
+P(A++720R +772QR — 2y*5QR).

5 Numerical algorithm for input normal form
homotopy

The initial point (6,A) = (6p,0) = ((Bm)o,(Cm)g,O) is ideally chosen
so that the triple ((Am)(,, (Bm o, (C’m)o) is in input normal form and
satisfies p(fg,0) = 0.

THEOREM 3 [12]. Suppose A is asymptotically stable. Then for every
minimal (4,B,C), i.e., (A,B) is controllable and (4,C) is observable,
there exist a similarity transformation T and a positive definite matriz
A = diag (di,ds, -, dn) withd; > diyq such that A=TAT, B=T"'B,
and C = CT satisfy

0=AA+AA" + BVBT,
0=ATA +A4+CTRC.

DEFINITION 2. The triple (4, B, (') in the above theorem is balanced.
According to Moore [12], under certain conditions, the leading principal
Nm X N, block of A4, the leading principal n,, x m block of B, and the leading
principal [ X n,, block of C in balanced form are good approximations to
the reduced order model. This suggests that the initial point (6;,0) be
chosen as follows:
1) Transform the given triple (A, By, Cf) to balanced form (4, By, Cy).
2) Partition (A, By, Ch) as

T

o, . o
{(An 4 { (B
__ Pm 11 12 My 1 _
Ab-—- (A21 A22>, Bb-—- (Bg)’ Cbﬁ (C] 02)
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3} (Ao, B, Cy) is chosen as

A 0 B
o 2) me=(2) amcon

4) The initial point for the reduced order model is chosen as
i - Vec (Br)o\ _ [ Vec By
0= Vec (Cm)O - Vec Cl ’
and (A_m)g = Aj; by construction.

5) Transform the initial point ((An )0, (Bm o, (Cim)o) to input normal
form so that the initial reduced order model is

((Am )07 (Bm)(); (Om)()) = (T_l (Am)ﬂ T, T_l (Bm)U, (ém)o T)

The initial point for the homotopy map is then {(6y,0), where
g — (Vec (Bm)g)
U7\ Vee (Cwmdo /-
(In general, the truncation to obtain the approximate reduced order model
should be based on the component costs instead of on the sizes of the
balanced gains d; as done above [14]. This explains why in some cases the
above algorithm for choosing the initial points did not lead to a reduced
order model with a minimal cost.)

The above method for choosing the initial point will not give a zero
value for the homotopy at A = 0 unless the initial v is chosen so that the
term v 2QR is negligible. The initial v can be chosen as a sufficiently large
positive number (y(0) = oo corresponds to p(fy,0) = 0 exactly).

Once the initial point is chosen, the rest of the computation is as
follows:

1) Set A = 0, g := 90.
2) Calculate A,, from B,, and C,,, R, V, and compute @ and P according

to (11) and (16).

3) Evaluate § from (21) and M, and M. according to (20).
4) Evaluate the homotopy map p(#, }) in (23) and Dp(d, X) in (24).
5) Predict the next point Z(9) = (9(0),A(0)) on the homotopy zero curve

using, e.g., a Hermite cubic interpolant.
6) For k:=0,1,2,--- until convergence do

Z*+Y = [Dp(zMy)] Tp(z(k))J
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where [Dp(Z )] Mis the Moore-Penrose inverse of Dp(Z). Let (6, Ar) =
lim Z(),
k—oo

7) If Ay < 1, then set 6 := b1, A := Ay, and go to step 2).

8) If A; > 1, compute the solution 8 at )\ —= 1. Ay, is then obtained from
B, and C,,.

An alternative strategy for choosing an initial point is as follows:

1) Modify As to A} =1 + oAy, where ¢; <0 and ce > 0.

1) Transform (A, B £:Cr) to balanced form and choose (A, B, Ch) as
before.

3) Compute the initial reduced order model ({40, (Bm)o, (Cm)o) from
the triple (A{, B, C}) as before.

When ¢; = 0, ¢y = 1, this strategy reduces to the previous one. For
some problems, our numerical experiments show that HOMPACK reaches
A > 11in fewer steps with ¢; # 0 than with ¢; = 0. A modification to the
homotopy map p(8, A) in (23) is

P1(8,0) = Ap(8,7) + (1 — A6 — 8y),

where fy denotes the initial value of 8 at A = 0. For some problems this
homotopy map can be more efficient than the one in (23), while in other
cases it can be less efficient.

6 Homotopy algorithm based on Ly’s formulation

Ly et al. [11] introduced another canonical form also with n,,m + Nl
parameters as in the input normal form formulation. The reduced order
model 1s represented with respect to a basis such that Am is a2 x 2 block-
diagonal matrix (2 x 2 blocks with an additional 1 x 1 block if ny, is odd)
with 2 x 2 blocks in the form

)
* % [

Cm:((cm)l (Cm)s -+ (Cm)r )

emi=(y 1)

11

B is a full matrix, and
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It is assumed that (Am,Bm,C’m) 1s in Ly’s form. Let 7 be the set of
indices of those elements of A, which are parameters, i.e.,

Z={(2,1),(2 2);- o (R, )}

To optimize 7 (Am, B, C') over the open set § under the constraint that
symmetric positive definite Q satisfies (11), and (Am, By, Cm) is in Ly’s
form, the following Lagrangian is formed:

L(Am,Bm,Crn, P, Q) = tr [QR+(AQ + QAT + 4200 + VP,

where P € R*¥% g 5 Lagrange multiplier. Setting 9L£/0Q = 0 yields (16).
Partition Q, P € R**#% ¢ ip (17) and define PQ = Z as in (18). The
partial derivatives of £ can be computed as

oL _ T
m = 2(7912 Q12+ P, Qz;)

oL
25 = 2(PLBV + P2Bm V),

oL (30)
m = Q(RCsz — RCQML—ﬁ'

+472 [*RC(ZlTle + 250, O Zye + Q127Z,)
T ECm(Q 2 + 2500 + @2, + 27 Q)]
Let Ay, By, Cy, Ry, V¢, and Vs denote 4, B, C, R, V, and 4 in the

above and define 4()), B(A), C(X), R()), V(}), and 4(X) as in (22) and
denote them by A, B,C,R,V, and ~ respectively in the following. Let

oc

g’

HAm(g,/\) = 'ﬂ“ = 2(791’1;@12 + P2Q2)7
oL .
Hg, (6,)) = 35 = 2(PLB+P,B,)V,

oL
e, (6,)) = o = 2R(CnQs - COy)

+y T -RO(Z] Qs + 280y + 0124, + Q1275)
+ RCm(Q’iFme + Zf;; Qia + @27, + ZgT-Qz)},

where in H, only those elements corresponding to the parameter elements
of A, are of interest and

6= Vec(B) (31)
Vee (Cr)7.
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denotes the independent variables, @ and P satisly respectively (11) and
(16), (An )z is a vector consisting of those elements in Ar with indices in
the set 7, i.e.,

(Am)z = ((Am)21, (Am)os, -, (A )T,

and (Cr )7. is the matrix obtained from rows T = {2,... 1} of C,,.
The homotopy map is defined as

[HAm (67 /\)} z
PO,A) =1 Vec [Hg,, (6, A, (32)
Vec {Hcm (8, A)] 7.

and its Jacobian matrix is

Dp(a, )\) = (.Dgp(g, /\),D,\p(g, )‘))
Define

ﬁAm (7)(3"), Q(J')) - 2(7917;0)912 - 7)17; Qgé) . 732(J') Q) + P, ng)),

He, (@D, 29) = 2R(C,, 0% - c@W)

“YTRC(2 Q1+ 2590, 4 270 4 2500 (33)

+02124+0121 + 097, 1 0,2
T RC (20,7 Qi + 250 + 010 74, 1 QT 2
+92:4 2]V 0, 1 0,28 4 77 o)

where the superscript (j) means 8/06;.

Using the above definitions, we
have for §; = (Am)kl’ where (k,1) € T,

OH 4 . L
——fam  _F 'P(JJ;Z(J) ,
Ay~ Hm )
OHpg 5 .
T = Ay (PW), 34
D)y = HBa (PY) (34)

8He . : -
o= = He (QW, 70) ’
N Am )i o )
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for 8; = (Bm)kl’

m_ Pl Ql)
3 Boin A ( QW)
OHp . : '
m_ = Hp_ (PW) 4 2P, EFDY, 35
OHc

(Crm)rt (36)
m__ }:}Cm (Q(i), Z(j)) + 2RE(U)Q9

+ 7 2RE®D (2501 + QT 210 + 0F 7, + 21 Qs),

where PU) and QW) can be obtained by solving the Lyapunov equation
(27). Similarly for A, using a dot to denote 3/8A,

OH 4

ax = ﬁAm (/'Da Q):
0Hg,, - : T /4 . y
—= = 4s, (P) + 2P, (BV + BV) 4+ 2P, B, V,
OH N .. X ) . 37

+ "}/_2Rh)\ — 2’}’_3")’1:4’.}?,)\
— Y ERC(ZLQis + 25 Qs + Q1710 + Q122,),
where
ha = —C(Z{ Quz + 75, Q2 + @1 Z12 + Q1225)
+ Co(Q5, 215 + 2L, Q12 + Q220 1+ 27 Q,)
and P and Q are obtained by solving (29).
Choose the initial v so that ~;* is approximately zero. The initial

point {6, A) = (8y,0) is chosen so that the triple ((Am)o,(Bm)os (Cm)o) is
in Ly’s form and satisfies p(6y,0) = 0. This can be done as follows:

14



1) Obtain the initial reduced order model ((Am)o, (Bum)o, (Cm)o), in bal-
anced form in the same way as for the input normal form approach.
2) Transform the balanced ((Am)o, (Bm)o, (Cm)g)b to Ly’s form, and build
8y as described in (31).
The homotopy curve tracking computation is the same as described in
Section 5.

7 Homotopy algorithm based on
over-parametrization formulation

To optimize J(Am, B, Cr) over the open set & under the constraint
that symmetric positive definite Q satisfies (11), the following Lagrangian
is formed:

L(Am, B, Crn, P, Q) =tr [QR+(AQ + QAT + v~2QR0 + V)Pl

where P € R**" is a Lagrange multiplier. Setting 0L£/0Q = 0 yields (16).
Partition @, P € R™? as in (17) and define PO = Z as in (18). A
straightforward calculation shows

ac

‘5:4: = 2(7311; Q2+ P2 Qz),
ar

3B = 2(PLBV + PyBLV),
oL

3. = 2(RCrn Q2 — RCQyy)

+v7?[-RC(28 Q12 + ZHQ+ Q171 + Q127Z3)
+ RCm(Q;:lrngz + ZE;Q& + @22, + ZQTQ2)]-

Let Ay, By, Cy , Ry, V4, and vf denote A, B, C, R, V, and + in the
above and define A(A), B(A), C(}), R()\), V(A), and (1)) as in (22) and
denote them by A, B, C, R, V, and 7 respectively in the following. Let

oL

Hpn(8,8) = 22— = 2(P Qs + P2 Qy),
oL -

Hp,(0,0) = 5= = 2(PLB + P; B}V,
oL

He, (8,2) = 50— = 2R(CnQ: -~ C Q)

+ 7_2 [—'RC(ZITQIZ + Zg; Q2 + Q:{Z12 + ngZ'g)

+ RCn(Q1,Z12 + 25,012 + Q25 + 27 Q3)],
(38)
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where

(Vec (Am))
=] Vec (Bn) (39)
Vee (Crn)
denotes the independent variables, @ and P satisfy respectively (11) and
(16).

Define

Vec [HAm(B, )\)}
p(8,\) = | Vec [Hg,.(6,))] |, (40)
Vec [Hcm(G,)\)]

whose Jacobian matrix is
DP(Ga )‘) = (DGP(E)a A)a D)\JO(‘97 )‘)) :

Note that 8 in (39) has n2, +nmm+nm! components, more than the minimal
number ng,m + nml of the input normal form and Ly formulations. Because
of this over-parametrization, the Jacobian matrix of p is rank deficient. The

homotopy map is thus defined as
56, 3) = 06, 1) + (1 = N)(8 — o), (41)

which guarantees a well conditioned full rank J acobian matrix along the
whole path except at the solution corresponding to A = 1. The Jacobian

matrix of p is given by
DA6.N) = (\Dap(6,0) + (L= NI, p(8, 1)+ ADrp(8,3) = (8—80)). (42)

To find Dyp(8, \), define A4 (P, QW)), Hp_ (PV), and He, (QW), 20
as in (33). For §; = (Am)kl,

OH 4 - : ,

Am g 'p(J), (5) ’

DA i A ( QU
O0Hpg . :

B gy, (PY), 43
oA )n B (PY) (43)
OH¢ . : ,

Zm . H S AN

I Am)r cn (@ )
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for 9j == (Bm)kl’

OH 4 . C
= = H, (P ol) ,
B(Bm)kl Am( Q )

0Hp,
8(Bom )i
0Hc,
3 Bmri

= Hg, (PV) + 2p, Dy, (44)
He,, (@, 20),
and for 8; = (Cy, )i,

OH 4 N : :
——f4m _F 73(3)7 (j) :
B(Criy — Tm (P27

—Bm  _F " ) :
HCm)ur " (7) (45)

I lm ﬁcm (Q(j), Z(J’)) +2RE®ED g,
+ fy_ZRE(k’n (Zl"'; Q12 + Q%ZIZ + Q%ﬂZz + ZzTQQ)J

where P} and Q) can be obtained by solving the Lyapunov equation
(27). The derivative of the homotopy map with respect to A is given by
(37) and (42).

Choose the initial ¥ so that Yo ? is approximately zero. The initial
point (8, A) = (6y,0) is chosen so that the triple (Ao, (Bm)o, (Cim)o) is
in balanced form and satisfies p(6y,0) = 0. This can be done as follows:

1} Obtain the initial reduced order model ((Am Yo, (Bm o, (Cm)g)b in bal-
anced form in the same way as for the input normal form approach.
2} Build 8y from ((Am)o, (Bm)o, (Cm)[))b as described in (39).

The homotopy curve tracking computation is the same as described in

Section 3.

8 Numerical Results

The following systems are solved by the homotopy algorithms discussed

in the previous sections. The homotopy curve tracking was done with
HOMPACK [16].

Systems with transfer functions of the form

_ (s—1)f
H(s) = m,

17




where ¢ = 0,---,4, are studied. For these systems, controller canonical
form realizations are given by

-1¢ —-45 -120 -210 -=250 -210 -—-120 —-45 -10 -1

i

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 6 0 0
4| 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 o o0 o0 |’
0 .0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
\ o 0 0 0 0 0 0 0 Y,
B=(1 00000000 0).
Forg=0,C=(0 0 0 0 0 0 0 0 0 1).
Forg=1,C=(0 0 0 0 0 0 0 0 -1 1).
Forg=2C=(0 0 0 0 0 0 0 1 -2 1).
Forg=3,C=(0 0 0 0 0 0 1 -3 3 -1).
Forg=4,C=(0 0 0 0 0 1 -4 6 -4 1).

The H* error ||H(s) — H,,($)||co for the balanced reduced model of
order 4 and the corresponding Enns-Glover bounds [5] [7] are:

H> error Enns-Glover bound
0.017251178 0.021958271
(0.031901448 0.042197266
0.057214882 0.079880388
0.098520472 0.14841709
0.16125935 0.27001110

H L2 b = SO

For n,, = 4 and g = 0, solutions of the auxiliary minimization problem
are obtained for v > 0.0178 using the input normal form approach. For
¥ < Ymin = 0.0178, the Riccati equation solver fails and therefore no solution
can be found. Let Hp,(s) be the transfer function of the reduced order model
obtained by minimizing 7. In Fig. 1, |H(s) ~ Hpn(s)lleo (solid line}, 100 .7
(dotted line), and 100 J (dashed line) are plotted against . As shownin the
figure, as v decreases, || H(3) — Hm(s)||oo also decreases while both 7 and
J increase. As can be seen from the figure, 7 is a close bound for J until
~ becomes very small. To show the tradeoff between the H? cost and the
H®™ error ||H(s) — Hm(3)| oo, it is useful to plot ||H(s) — Hn(s)||« against

18



0.0175— : : . . : ; ;
oot7t
0.0165F
0.016}
0.0155F
0.015}

'€ 0.01451

H-infinity error, H-2 cost

0.014

0.0135

k3
-
1

0.013 ST .

O'0121'35.01 0.02 0.03 0.04 005 0.06 007 008 008 0.1

gamma

Fig., 1. [[H(s) — Hm(8)] co(so0lid), 100 T (dotted), and 100 J(dashed)

versus 7.

0-0175 T T T T T T T

0.017 .

0.0165 T

0.016F ]

H-infinity error

[
(=]
s
(8]
n

T

1

0.015r N

0.0145 5

T

0.014 4

0.01 315.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44

H-2 cost X1 0-4

Fig. 2. [[H(s) — Hm(s)!|o versus J for ¢ = 0, balanced model at “x”.
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0.033 1 T T . T

0.032 % -

0.031 .

o
fom )
O
T
'

£0.029 i

H-infinity error

0.028 ’

0.027} §

.02 : : :
0.026; 4.1 4.2 4.3 4.4 45 46

H-2 cost « 1 0-4

Fig. 3. |[H(s) — Hu(s)||eo versus J for ¢ = 1, balanced model at “x”.

0.94 Y T T

0.92

0.9

0.88

ratio

0.86

0.84

0.82

0'80 1 2 3 4

exponent

Fig. 4. Ratio of H® error at v = Ymin to that at v = co versus
exponent ¢.
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Fig. 5. Bode plots of H(s) — Hp(s) for H2JH> (solid), H*(dashed),
and balanced (dotted) models with ¢ = 0.

1 T T T ¥ 1 o T
0.8} :
0.6t 4
X z
0.4 .
P X i
X% :
o 0_.................._.A......: ................................................................. o
[1+] .
£ X i'
-0.2F : 1
0.4} : :
% :
0.6 _
0.8t 1
_ 1 I 1 3 L 2 1
da -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

Fig. 6. Poles (“x”) and zeros (“0”) of the transfer function of the
reduced order model for ¢ = 0, n, =4 at v =0.0178.
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J (with v as the parameter of the curve), as shown in Fig. 2. In Fig. 2, the
point marked by “x” corresponds to the balanced reduced model, which has
both large H? cost and large H* error ||H{s) — Hp,(s)|l«, relative to the
H?/H* reduced order model. The ratio of H® error at ¥ = Y, to that
at v = oo is 0.8071, which indicates that there is about 20% improvement
of the reduced order model with v = v, over the reduced order model
without the H*® constraint. The reduced order models of order 2, 3, 6 were
also found, and have qualitative behavior similar to the n,, = 4 case.

For ¢ = 1,---,4, the same calculations are carried out. Fig. 3 shows
similar results to those in Fig. 2 for ¢ = 1 with an improvement of about
19%. As g increases, the improvement of the optimal reduced order model
over the balanced reduced order model decreases. In Fig. 4, the ratio of
H™ error at v = i to that at v = oo is plotted against ¢ forg = 0,---,4.
The H* norm improvement of the optimal reduced order model with the
H® constraint over that without the H® constraint is 1 — ratio. As ¢
increases, the improvement decreases.

In Fig. 5, the Bode plots of H(s) — Hy,(s) for the system with ¢ =0,
N = 4, and 7 = Ymin = 0.0178 are shown. The reduced order model with
the H® constraint at v = ymin is shown by the solid line; the balanced
reduced order model is shown by the dotted line; the reduced order model
without the H® constraint is shown by the dashed line. The magnitude
plots show that as ~ goes to Ymin, the H® error becomes increasingly
“all pass”, that is, flat over a wide frequency range, which indicates ™
optimality of the reduced order model. Fig. 6 shows the poles and zeros of
the transfer function of the reduced order model for the system with ¢ = 0
and n,;, =4 at ¥ = Ymin-

As another example, consider the system defined by

(-2 -8 (2 e
(2 2. 5=(2). c=pr

It is easy to verify that the system is balanced and the singular values are
all equal to 1, i.e.,

A+ AT +BBT =0,

ATy 44 CcTC=0.
The H® error of the balanced reduced model of order 1 is 2 and the
Enns-Glover bound is also 2. Optimal reduced models of order 1 are found

by the input normal form homotopy approach for v > v, = 1.011. Fig.
7 shows the H™ error versus the H? cost. The point X corresponds to
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the balanced reduced order model. The ratio of the H* error at Y = Ymin
to that at v = oo is 0.6249, which indicates that there is about 37.5%
improvement of the reduced order model with Y = Ymin Over the reduced
order model without the H>™ constraint, and a 50% umprovement over the
balanced reduced order model.

In Fig. 8, 50| H(s) — Hun(s)l|oo (solid line), J (dotted line); and J
(dashed line) are plotted against . Unlike the previous systems, even
for small v, the actual error ||H(s) — Hp,(s)|loo is very close to its bound
Y, and J is a very close bound for the H? error J. The Bode plots of
H(s) — Hp(s) are shown in Fig. 9, where the reduced order model with
the H° constraint at ¥ = Y, is shown by the solid line; the balanced
reduced order model is shown by the dotted line; the reduced order model
without the H* constraint is shown by the dashed line. Again the reduced
order model for v = Yyu:,, indicates close to all pass model reduction error.
The reduced order model transfer function at Y = Ymin has a single pole
at s = ~-129.1642.

9 Conclusion

One of the main conclusions for this study is that the more degrees of
freedom that a formulation uses, the more robust is the resulting numerical
algorithm. Both the input normal form and Ly form homotopies are very
efficient for both the H? optimal and the combined H? /H® model reduction
problems. However, they may fail to exist or be very ill conditioned [6].
The over-parametrization formulation solves the ill conditioning issue, but
introduces singularity at the solution and may fail for a high dimensional .
system, which will inevitably have a high order singularity at the solution.

Solving the H? optimal model order reduction problem may be well
worth the effort (compared to simple balancing), as shown by the last exam-
ple above. The examples also proved the worth of adding the H constraint,
resulting in a difficult combined H2/H> problem. Finally, globally con-
vergent homotopy methods are a viable approach to the computationally
very difficult combined H?/H* model order reduction problem.
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