Object Oriented Metrics Which Predict
Maintainability

Wei Li and Sallie Henry

TR 93-05

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

February 1, 1993

Object Oriented Metrics Which Predict Maintainability

Wei Li

Kollmorgen Industrial Drives
201 Rock Road

Radford, Virginia 24141
(703) 639-2495
li@csgrad.cs.vt.edu

Sallie Henry

Computer Science Department
Virginia Tech

Blacksburg, Virginia 24061
(703) 231-7584
henry@vtopus.cs.vt.edu

Abstract

Software metrics have been studied in the procedural paradigm as a quantitative means of
assessing the software development process as well as the quality of software products.
Several studies have validated that various metrics are useful indicators of maintenance
effort in the procedural paradigm. However, software metrics have rarely been studied in
the object oriented paradigm. Very few metrics have been proposed to measure object
oriented systems, and the proposed ones have not been validated. This research concentrates
on several object oriented software metrics and the validation of these metrics with
maintenance effort in two commercial systems. Statistical analyses of a prediction model
incorporating ten metrics are performed. In addition, a more compact model with fewer

metrics was sought, analyses performed, and also presented.

I Introduction

Software engineering involves the study of the means of producing high quality software
products with predictable costs and schedules. One of the major goals in software
engineering is (o control the software development process, thereby controlling costs and
schedules, as well as the quality of the software products. As a direct result of software
engineering research, software metrics have been brought to the attention of many software
engineers and researchers. As DeMarco points out, "you cannot control what you cannot
measure” [1]. Software metrics can provide a quantitative means to control the software
development process and the quality of software products. However, the effective use of

software metrics is dependent on the statistical validation of the metrics.

Software metrics have been studied in the procedural paradigm for more than a decade.
Various software metrics have been proposed and studied. Some examples of metrics are:
Halstead’s software science metrics [2], McCabe’s cyclomatic metric [3], Henry and
Kafura’s information flow metric [4], Robillard’s statement interconnection metric [5],
Bail’s HAC complexity [6], and Adamov’s hybrid metrics [7]. These metrics were proposed

primarily to measure software in the procedural paradigm.

Several attempts have been made to link software metrics with system maintainability in
the procedural paradigm. Rombach indicates that software maintainability can be predicted
using software metrics [8] [9]. Wake and Henry also show that software maintainability can
be predicted from software metrics [10]. All of these preliminary results about the
relationship of software metrics and system maintainability were obtained in the procedural

paradigm. These results have yet to be verified in the object oriented paradigm.

Object oriented programming is another focus of the software engineering community. This
paradigm claims a faster development pace and higher quality of software than the

procedural paradigm. However, the use of metrics in the object oriented paradigm has yet

to be studied. So far, very few object oriented metrics have been proposed [11], and the
proposed metrics need to be validated. One possible means to validate metrics is to conduct

statistical analyses of the metrics and measures of system maintainability.

Software maintenance is one of the most difficult and costly tasks in the software
development process. Among all the factors which have a potential influence on software
- maintainability, software metrics, especially those which measure the inter-connectivity of
system components, have been shown to have an impact on software system maintainability
in the procedural paradigm [9]. However, the relationship between metrics and system
maintainability in the object oriented paradigm is unclear. Furthermore, very little is known
about how and where different maintenance activities are performed in the object oriented

paradigm.

This study attempts to bring the research in software metrics and the research in object
oriented programming together. Specifically, this study 1) investigates proposed object
oriented software metrics, 2) proposes some additional object oriented metrics, and 3)

validates the metrics using the maintenance data collected from two commercial software

systems.

. Software Metrics

Software metrics measure certain aspects of software. Software metrics can be generally
divided into two categories: software product metrics and software process metrics.
Software product metrics measure software products such as source code or design
documents. Software process metrics measure the software development process such as
the number of man hours charged to the development activities in the design and coding

phases. This research focuses on software product metrics.

Software Metrics in the Procedural Paradigm

Several metrics have been proposed to measure the complexity of a procedure, a function,
or a program in the procedural paradigm. These metrics range from simple size metric such
as Lines of Code to very complicated program structure metrics such as Robillard’s
statement interconnectivity metrics. This section presents some sample metrics in the

procedural paradigm.

. Some of these metrics are lexical measures. The Iexical metrics count certain lexical tokens
in a program. These metrics include Halstead’s software science metrics [2] and Bail’s size

metric [6].

Other measures are based on the analysis of patterns in a graph when the graph is
constructed from the control flows of a program. One example of such a metric is McCabe’s
cyclomatic metric. McCabe defines the cyclomatic complexity measure based on the control
flows in a procedure/function [3]. A directed graph is derived based on the control flows of
a procedure/function. The cyclomatic complexity is based on the complexity of the directed
graph. For structural programs, an equivalent and simpler form of the cyclomatic
complexity is the count of simple boolean conditions in all control constructs (e.g. while, if,
case, loop, etc.). McCabe later extends the cyclomatic complexity to measure structure chart
design [12].

Another set of metrics measures the inter-connection of system components. The inter-
connection may be based on the statements or the components of a program such as
procedures or functions. Some examples of such metrics are McClure’s invocation metric
[13], Henry-Kafura’s information flow metric [4], Woodfield’s review metric [14],

Adamov’s hybrid metric {7], and Robillard’s statement inter-connection metric [5].

The above pioneering work of defining software metrics has concentrated on the measures

of complexity in the procedural paradigm. Since the object oriented paradigm exhibits
different characteristics from the procedural paradigm, software metrics in the object
oriented paradigm need to be studied. The difference between the procedural paradigm and
the object oriented paradigm is due to the difference between the programming philosophies
in the two paradigms. For example, the object oriented concepts of inheritance, classes, and

message passing cannot be characterized by any of the metrics mentioned above.

The research of software metrics in the procedural paradigm lack justification for program
behaviors [15]. This research is designed to study the basic concepts of the object oriented

paradigm and the associated programming behaviors before proposing any metrics.
Software Metrics in the Object Oriented Paradigm

Understanding the object oriented paradigm is the first step toward the definition of metrics
for that paradigm. The study of the object oriented paradigm results in object oriented

concepts such as object, class, attributes, inheritance, method, and message passing.

The programming behaviors exhibited in the object oriented paradigm differs from that of
the procedural paradigm. For example, the creation of classes in the object oriented
paradigm is a distinguished programming behavior from the creation of procedure/functions
in the procedural paradigm. Each object oriented basic concept implies a programming
behavior. Therefore, each basic concept is studied, and a metric proposed for that particular

concept.
The second step towards the definition of the metrics in the object oriented paradigm is to
establish a theoretical foundation for the metrics. Chidamber and Kemerer present a

measurement theory base for measuring complexity in the object oriented paradigm [11].

Proposed object oriented metrics are not as numerous as those in the procedural paradigm,

Chidamber and Kemerer proposed a suite of six object oriented design metrics: Depth of the
Inheritance Tree (DIT), Number of Children (NOC), Coupling Between Objects (CBO),
Response For a Class (RFC), Lack of Cohesion of Methods (LCOM), and Weighted Method
per Class (WMC) [11]. Coupling between objects was not previously defined. Three
coupling metrics are presented. These metrics attempt to focus on different aspects of

coupling. Finally, two size metrics are presented.

IOI. Object Oriented Metrics Definitions

Three groups of object oriented metrics are investigated in this research. The first group
contains all the metrics proposed by Chidamber and Kemerer[11]. Some additional metrics
proposed by this research are discussed in the second group. The last group discusses some

size metrics in the object oriented paradigm.

Five Proposed Object Oriented Metrics

Chidamber and Kemerer propose six object oriented design metrics [11]. These metrics
include Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling Between
Objects (CBO), Response For Class (RFC), Lack of Cohesion Of Class (LCOM), and
Weighted Method per Class (WMC) [11]. All but CBO metrics were used in this research.

CBO is proposed to measure "non-inheritance related coupling” {11].

The DIT metric measures the position of a class in the inheritance hierarchy [11]. The DIT
metric addresses the inheritance concept discussed earlier. It seems logical that the lower
a class is in the inheritance tree, the more super-class properties this class may access due
to its inheritance. If the sub-class accesses the inherited properties from the super-
class without using the methods defined in the super-class, the encapsulation of the super-

class is violated. One may hypothesize that the larger the DIT metric, the harder it is to

maintain the class. The calculation of the DIT metric is the level number for a class in the

inheritance hierarchy. The root class’ DIT is zero:

DIT = inheritance level number; ranging from 0 to N; where N is a positive integer.

The NOC metric measures the number of direct children a class has [11]. This metric
addresses the inheritance concept mentioned earlier from a different perspective than DIT.
It seems logical that the more direct children a class has, the more classes it may potentially
affect due to inheritance. For example, if there are many sub-classes of the class who are
dependent on some methods or instance variables defined in the super-class, any changes
to these methods or variables may affect the sub-classes. One may intuit that the larger the

NOC metric, the harder it is to maintain the class. The calculation of NOC is as follows:

NOC = number of direct sub-classes; ranging from 0 to N; where N is a positive

integer.

The RFC metric measures the cardinality of the response set of a class. The response set
of a class consists of all local methods and all the methods called by local methods [11]. The
RFC metric addresses the method concept discussed earlier. It seems logical that the larger
the response set for a class, the more complex the class. One may intuit that the larger the
RFC metric, the harder it is to maintain the class since calling a large number of methods in

response to a message makes tracing an error difficult. The calculation of REC is;

RFEC = number of local methods + number of methods called by local methods;

ranging from 0 to N; where N is a positive integer.

The LCOM metric measures the lack of cohesion of a class [11]. The cohesion of a class
is characterized by how closely the local methods are related to the Iocal instance variables

inthe class. This metric addresses the class and method concepts discussed earlier. It seems

logical that the more cohesive a class, the easier the class is to maintain. One may intuit that
the larger the metric, the harder it is to maintain the class. Because, if all the methods
defined in a class access many independent sets of data structures encapsulated in the class,
the class may not be well designed and partitioned. The calculation of LCOM is the number
of disjoint sets of local methods. Disjoint sets are a collection of sets that do not intersect
with each other. Any two methods in one disjoint set access at least one common local

instance variable [11]:

LCOM = number of disjoint sets of local methods; no two sets intersect;” any two
methods in the same set share at least one local instance variable; ranging from 0 to

N; where N is a positive infeger.

The WMC metric measures the static complexity of all the methods [11]. This metric
addresses the class and method concepts discussed above. It seems logical that the more
methods, the more complex the class. The more control flows a class’ methods have, the
harder it is to understand them, thus the harder it is to maintain them. The WMC is

calculated as the sum of McCabe’s cyclomatic complexity of each local method:

WMC = summation of the McCabe’s cyclomatic complexity of all local methods;

ranging from 0 to N; where N is a positive integer,

Definition of Additional Object Oriented Metrics

Two objects are coupled if they act upon each other [11]. Three types of object coupling are
identified in this research. The objects are coupled through certain communication
mechanisms provided by the object oriented paradigm. The forms of object coupling are
coupling through inheritance, coupling through message passing, and coupling through data

abstraction.

Coupling Through Inheritance

Inheritance promotes software reuse in the object oriented paradigm. However, it also
creates the possibility of violating encapsulation and information hiding. This violation
occurs because the propertics in the super-class are exposed to the sub-class for less
restrictive access. The use of inheritance which is not well designed may introduce extra
complexity to a system. The extra complexity is due to the attributes which are encapsulated
in the super-class but now are exposed to less restrictive accesses by the sub-class. The

more a class inherits, the more non-private attributes the class may access.

DIT (Depth of Inheritance Tree) and NOC (Number Of Children) are used to measure the
inheritance characterization. DIT indicates how many super-classes a class has, thus it
indicates how many classes the class is dependent on. NOC indicates how many classes may
be directly affected by the class. Both DIT and NOC metrics were discussed and defined

earlier.

Coupling Through.Message passing

One communication channel the object oriented paradigm allows is message passing. When
an object needs some service that other objects provide, messages are sent from that object
to the other objects. A message is usually composed of the object-1D, the service (method)
requested, and the parameter list for the method. Although messages are passed among
objects, the types of messages passed are defined in classes. Therefore, message passing is

calculated at the class level instead of the object level.

MPC (Message Passing Coupling) is used to measure the complexity of message passing
among classes in this research. Since the patiern of the message is defined by a class and
used by objects of the class, the MPC metric also gives an indication of how many messages

are passed among objects of the classes:

MPC = number of send-statements defined in a class.

The number of messages sent out from a class may indicate how dependent the
implementation of the local methods are upon the methods in other classes. This may not

be indicative of the number of messages received by the class.

Coupling Through ADT

The concept of an ADT (Abstract Data Type) is discussed in [16]. A class can be viewed
as an implementation of an ADT [16]. A variable declared within a class X may have a type
of ADT which is another class definition, thereby causing a particular type of coupling
between the X and the other class, since X can access the properties of the ADT class. This
type of coupling may cause a violation of encapsulation if the programming language
permits direct access to the private properties in the ADT. The metric which measures the

coupling complexity caused by ADTs is DAC (Data Abstraction Coupling):

PAC = number of ADTs defined in a class.

The number of variables having an ADT type may indicate the number of the data structures
dependent upon the definitions of other classes. The more ADTs a class has, the more

complex the coupling is of that class with other classes.

A Class Interface Increment Metric
Another metric used in this research is the Number of Methods (NOM) in a class. Since
the local methods in a class constitute the interface increment of the class, NOM serves the
best as an interface metric. NOM is easy to collect in most object oriented programming

languages.

NOM = number of local methods;

The number of local methods defined in a class may indicate the operation property of a

class. The more methods a class has, the more complex the class’ interface has incremented.

Two Size Metrics

Size has been used as a software metric for a long time. The Lines Of Code (LOC) metric
is used to measure a procedure or a function and the accumulated LOC of all procedures
and functions for measuring a program. However, the size factor in an object oriented

program has not been well established.
Besides the metrics discussed above, three size metrics are also used in this research. One

is the traditional LOC (Lines Of Code) metric which is calculated by counting the number

of semicolons in a class. The LOC metric is hereafter referred to as SIZE1L:

SIZE1 = number of semicolons in a class.

The second size metric used in this research is the number of properties (including the
attribuies and methods) defined in a class. This size metric is referred to as SIZE?2 and is

calculated as follows:

SIZE2 = number of attributes + number of local methods.

IV. Tools and Data

Classic-Ada™ is an object oriented design/programming language developed by Software
Productivity Solutions, Inc. The two commercial software products, UIMS™ (User Interface

System) and QUES™ (QUality Evaluation System), used in this research were designed and

developed with Classic-Ada !,

A Classic-Ada metric analyzer was constructed to collect the metrics from the Classic-
Ada design and source code. The analyzer was implemented using Lex and Yacc in UNIX™
environments 2. Maintenance effort data have been collected over the past three years from

the SPS™ environment,

Classic-Ada, which was developed by Software Productivity Solutions, Inc (SPS), is used
as the object oriented design/programming language in this research. The two commercial-

systems analyzed in this research were designed and implemented in Classic-Ada by SPS.

A Classic-Ada metric analyzer was designed and implemented on the Mach operating
system running on a NeXTstation using a GNU C compiler. The system was ported to an
Ultrix system running on a VAX station. ‘The analyzer uses LEX and YACC utilities with
C as their embedded language.

Classic-Ada Design/Programming Language

Classic-Ada is an object oriented design/programming language. It brings the capability of
object oriented programming to Ada by providing object oriented constructs in addition to

the Ada constructs.

Classic-Ada supports all the standard constructs defined in ANSI/MIL-STD-1815A. In
addition to the standard Ada constructs, Classic-Ada supports the object oriented features

with nine new constructs. The nine new constructs are class, method, instance, superclass,

* SPS, Classic-Ada, UIMS, and QUES are trademarks of Software Productivity
Solutions, Inc.

2 UNIX is a trademark of Bell Laboratory,

send, self, super, instantiate, and destroy. Classic-Ada supports data encapsulation,

information hiding, and inheritance,
Classic-Ada Metric Analyzer

A metric analyzer was constructed to collect metrics from the Classic-Ada designs and
source code. The metrics analyzer contains two passes. The first pass parses Classic-
Ada definitions and generates an intermediate language file. The second pass parses the

intermediate language file and calculates the metrics.
The Maintenance Data

The maintenance effort data have been collected from two commercial systems designed
and implemented using Classic-Ada. The two systems are UIMS (User Interface
Management System) and QUES (QUality Evaluation System). The data have been
collecied over the past three years. The maintenance effort is measured by the number of
lines changed per class. A line change could be an addition or a deletion. A change of the
content of a line is counted as a deletion and an addition. This measurement is used in this

study to estimate the maintainability of the object oriented systems.
The metrics discussed in this paper are abbreviated as follows:

dit =Depth in the Inheritance Tree

noc = Number of Children

mpc = Message Passing Coupling

rfc = Response For Class

lcom =Lack of Cohesion Of Methods

dac = Data Abstraction Coupling (cls_object_d)
wme = Weighted Method Complexity

nom = Number of Methods
sizel =number of semicolons per class

size2 = number of methods plus number of attributes
The maintenance effort used in the study is (collected for each class maintained):
change = number of lines changed per class in its maintenance history

The appendix shows the data collected from UTMS and QUES systems. For a more detailed

discussion of the data and the two systems, reference [17].

V. The Relationship Between Metrics and Maintenance Effort

Rombach has suggested that in the procedural paradigm, software maintainability has a
strong correlation with software metrics [8] [9]. However, the knowledge of the relationship
between software maintainability and software metrics in the object oriented paradigm is
sparse. The goals of the statistical analyses are: 1) To identify any relationship between
metrics and maintenance effort; and 2) To find a compact model that performs essentially

as adequate a job as the full model.

There are some terms used in this paper that require definitions. These terms are defined as

follows:

Jull model : a regression model containing all of the metrics discussed; the independent
variables are DIT, NOC, MPC, LCOM, RFC, DAC, WMC, NOM, SIZE1, and SIZE2.
size model : a regression model containing only the SIZE1 and SIZE2 metrics.

sample : a set of classes drawn from a commercial environment - SPS.

population : the set of all the classes existing in a commercial environment - SPS.

dependent variable : a random variable with value to be predicted.

independent variable : a predictor variable.

R-Square : the percentage of the variance in the dependent variable accounted for by the
independent variables in a regression model based on the sample data.

adjusted R-Square : the percentage of the variance in the dependent variable accounted for
by the independent variables in a regression model in the population.

sum of squares of regression : the variability of the dependent variable explained by the
regression model.

sum of squares of residual : the unexplained variability in the dependent variable,

mean squares of residual : the sum of squares of the residual divided by the degrees of

freedom of the residual,

There are two main hypotheses which are tested in the statistical analyses. The first
hypothesis states: there is a strong relationship between the object oriented metrics and the
maintenance effort as measured. This hypothesis is tested in the Preliminary Analyses
section. The second hypothesis states: there is redundancy among all the metrics used in
the Preliminary Analyses section. The second hypothesis is tested in the Refined Analyses

section.
Preliminary Analyses

The results of the preliminary analyses are presented in Analysis 1, Analysis 2, and Analysis
3. These analyses are designed to 1) determine if the maintenance effort can be predicted
from metrics 'and to 2) determine if the size metrics are the sole major predictors. The
maintenance effort "change" is measured as "the number of lines changed per class." The

"change" is used as a dependent variable in this study.

Analysis 1 shows the regression analysis using "change" as the dependent variable and all

the metrics discussed in this study as the independent variables, The high R-Square (0.9096

in UIMS and 0.8773 in QUES) and adjusted R-Square (0.8773 in UIMS and 0.8550 in
QUES) and the high significance level (0.0001 in both UIMS and QUES) show with high
conﬁdencé that the majority of the variance in the dependent variable "change" is accounted
for by the meirics used in the test. The analysis concludes that the prediction of the

maintenance effort as measured by “change" is possible from the metrics.

Analysis 2 shows the regression analysis using "change” as the dependent variable and the
two size metrics as the independent variables, Along with Analysis 3, this test is designed
to determine the effect of size metrics in the regression analysis. The R-Square (0.6617 in
UIMS and 0.6282 in QUES) and adjusied R-Square (0.6429 in UIMS and 0.6172 in QUES)
demonstrate with high confidence (0.0001 significance Ievel in both UIMS and QUES) that
a large portion of the variance in the maintenance effort can be predicted from the size

metrics. Analysis 2 concludes that the size metrics are important predictors.

In order to decide scientifically if the size metrics are the sole major predictors in the
regression model, Analysis 3 is used to test the Nuil hypothesis (H0), which states "the size
model is not essentially as good as the fullmodel" or "there is no difference between the full
model and the size model." Analysis 3 shows the result of a partial F-test to decide if the
size model is essentially as good as the full model. The rejection of the Null hypothesis at
0.005 significance level in UIMS and 0.001 in QUES shows that the size metrics are not the
sole predictors in the models. The analysis concludes that the metrics (DIT, NOC, MPC,
RFC, LCOM, DAC, WMC, NOM) contribute to the prediction of the maintenance effort

above and beyond what can be predicted from the size metrics alone.

Analysis 1: The Full Model Regression of Maintenance Effort in UIMS and QUES

This analysis is designed to answer the question "Are there object oriented metrics that can

predict maintenance effort?".

dependent variable = change

independent variables = SIZE] +SIZE2+DIT+NOC+MPC+RFC+LCOM+DAT+WM+
NOM

Probability > F =0.0001 in UIMS (0.0001 in QUES)

R-Square = 0.9096 in UIMS (0.8737 in QUES)

Adjusted R-Square = 0.8773 in UIMS (0.8550 in QUES)

MS Residual = 462.59501 in UIMS (59.51347 in QUES)

There is one dependent variable and ten independent variables in the full model. The
dependent variable "change" is a measure of maintenance effort. All the independent

variables are metric values.

The "probability > F", commonly known as the "p-value", gives an indication of the
significance of aregression. The smaller the probability, the more significant the regression.
The "probability > F" in both the UIMS and QUES regressions are at 0,0001 level. This

small value indicates, with a high confidence level, that some prediction is possible.

R-Square is a regression quality indicator which measures the quality of predictions; that is,
how much variance in the dependent variable is accounted for by the independent variables
in the sample. Adjusted R-Square measures the same aspect as R-Square but in the
population, with the adjustment depending on both sample size and the number of

independent variables,

In the UIMS system, more than 90% of the total variance in the maintenance effort is

accounted for by the metrics in the sample and more than 87% in the population. In the

QUES system, more than 87% of the variance in the maintenance effort is accounted for by

the metrics in the sample and more than 85% in the population.

Conclusion : the prediction of maintenance effort from metrics is possible.

Analysis 2 : The Size Model Regression of Maintenance Effort in UIMS and QUES

This analysis is a supplement to Analysis 1. This analysis is designed to examine the effect

of the size metrics in predicting the maintenance effort.

dependent variable = change

independent variables = SIZE] + SIZE2

Probability > F = 0.0001 in UIMS (in QUES)

R-Square = 0.6617 in UIMS (0.6282 in QUES)
Adjusted R-Square = 0.6429 in UIMS (0.6172 in QUES)
MS.Residual =1346.14155 in UIMS (157.16593 in QUES)

There is one dependent variable and two independent variables. The dependent variable
“change” is the same as in Analysis 1. The purpose of this analysis is to determine if the
size metrics alone can predict maintenance effort. The high significance level ("Probability
>F" = 0.0001 in both UIMS and QUES) displays a high confidence that this prediction is
possible. The R-Square values (0.6617 in UIMS and 0.6282 in QUES) demonstrate that a
significant portion of the variance in the maintenance effort is accounted for by the size

metrics.

Conclusion : the size metrics can account for a large portion of the total variance in the

maintenance effort.

Analysis 3 : Comparison of Full Models With the Size Model

This analysis is designed to determine if the size metrics are the only major predictors in the

full model. The Null hypothesis (HO) and the alternative hypothesis (H1) are as follows:

HO : there is no difference between the full model and the size-model.

H1 : there is a difference between the full model and the size-model,

Partial F (Observed) =9.594898351 (16.9396491 in QUES)
n =39 (71 in QUES)

F (Critical) in UIMS =F (8, 28) =6.5, at alpha = 0.005

F (Critical) in QUES =F(8,60) = 9.92, at alpha = 0.001

HO is rejected since F (Observed) > F (Critical) at alpha = 0.005 in UIMS, alpha = 0.001 in
QUES

Partial F tests are formed for comparing the full model with the size model for UTMS and
QUES. Since the observed F values (9.59in UIMS and 16.94 in QUES) are greater than the
critical F values (6.5 in QUES and 9.92 in QUES), the Null hypothesis (HO) is rejected at
0.005 significance level in UIMS and 0.001 in QUES. The rejection of the Null hypothesis
means that the size metrics are not the sole major predictors in the full model. Thus, the
metrics (DIT, NOC, MPC, RFC, LCOM, DAC, WMC, and NOM) contribute to the
prediction of the maintenance effort above and beyond what can be predicted using the size

metrics alone,

Conclusion : the metrics are useful predictors of the maintenance effort.

The Refined Analyses

This section discusses the refined regression analyses of the maintenance effort using fewer
metrics than the preliminary analyses. The preliminary analyses concluded that the
prediction of the maintenance effort is possible. However, not all the independent variables
used in the previous analyses are necessary. The criterion used to eliminate redundant
predictors is the Variation Inflation Factor (VIF) of each predictor. If the VIE fora predictor
is t00 high, then the predictor should be eliminated from the prediction equation. The
criterion for the final set of metrics to be used in the analyses is that no one metric has a VIE

value higher than fifty. Table 1 gives the VIF for each predictor used in Analysis 1.

Table 1 : Variation Inflation Factor For The Independent Variables

Variable VIF in UIMS VIFE in QUES
SIZE1 40.1969 11.4987
SIZE2 - 946.8073 - 380.6639
DIT 2.0607 1.9530

NOC 1.5209 not available
MPC 8.7454 4.0227

RFC 54.5136 14.0011
LCOM 4.0603 13.8002
DAC 77.3646 30.7386
WMC 38.1128 8.7724
NOM 599.0342 241.4471

Table 1 shows that SIZE2 and NOM have very high VIF values (over 100). But this does
not mean that both of them should be eliminated, because the elimination of one predictor
would have impact on the VIFs for the remainin g predictors. Some other factors considered
in the elimination of the predictors are 1) the ease of collecting the metrics and 2) the
previous research results showing the correlations of some metrics in the procedural
paradigm. For example, a high correlation of McCabe’s complexity and several other

metrics is found in [10]. NOM is easier to collect than SIZE2: therefore, SIZE2 is

eliminated. The traditional size metric SIZE1 correlates high with the McCabe’s metric
(WMCQ); therefore, SIZE1 is eliminated. The final prediction model contains fewer
predictors. The predictors in the final compact code model and their VIF values are listed
in Table 2. Note that the VIF for REC is reduced to a tolerable level by the deletion of
SIZE1 and SIZE2, since RFC was relatively strongly correlated with SIZE1 and SIZE?.

Table 2 : Variable Inflation Factors For The Final Independent Variables

Yariable VIF in UIMS YIF in QUES
DIT 1.6524 1.8642

NOC 1.5093 not available
MPC 5.2090 2.7611

RFC 33.0560 11.3295
LCOM 3.2991 12.1277
DAC 5.2037 7.4529
WMC 7.7585 3.1365

NOM 27.8300 21.3158

Since there is no predictor which has a VIF value over fifty, all of the predictors in Table
2 are used in the refined regression analyses. Therefore, a compact model has been
identified and the results of the refined regression analyses of the compact model are shown
in Analysis 4. Analysis 5 shows the bi-directional cross validations of the prediction

equations obtained from Analysis 4.

Analysis 4 is designed to examine if the compact model of metrics would predict
maintenance effort. Analysis 5 is designed to cross validate the results obtained from
Analysis 4.

The small p-values (p=0.0001 for both UIMS and QUES) confirm, with a high confidence
level, that the maintenance effort can be predicted from this compact model. The high R-
Square values (0.9030 in UIMS and 0.8680 in QUES) and adjusted R-Square (0.8771 in

UIMS and 0.8533 in QUES) show that the quality of the prediction is quite reliable.

The prediction equation for UIMS was cross validated by using it to predict the maintenance
effort on the QUES data, while the prediction equation derived from QUES was checked by
applying it to the UIMS data. In each case, the correlation between predicied maintenance
effort and actual maintenance effort was computed. Relatively strong correlations (0.65082
in UIMS and 0.6782 in QUES) confirm that predictions are reasonably accurate. Since a
positive correlation is expected, 2 one-sided t-test is performed. This test indicates that the

prediction equations are valid throughout the population with high confidence.

Analysis 4 : The Compact Model Regression of Maintenance Effort in UIMS and
QUES

This analysis is designed again to answer the question -- "Are there object oriented metrics
that can predict the maintenance effort?" -- but using amore compact model than in Analysis
1.

dependent variable = change
independent variables = DIT + NOC + MPC + RFC + LCOM + DAC + WMC + NOM
Probability > F = 0.0001 in UIMS (0.0001 in QUES)
R-Square =0.9030 in UIMS (0.8680 in QUES)
Adjusted R-Square =0.8771 in UIMS (0.8533 in QUES)

There is one dependent variable and eight independent variables in the model. The
dependent variable "change" is the measure of maintenance effort, The small p-values
(p=0.0001 for both UIMS and QUES) confirm, with high confidence, that the maintenance
effort can be predicted from this compact model. The high R-Square values {0.9030 in
UIMS and 0.8680 in QUES) and adjusted R-Square (0.8771 in UTMS and 0.8533 in QUES)
show that the quality of the prediction is quite reliable.

conclusion : the prediction of the maintenance effort is possible from the compact code

model,

Analysis 5 : Cross Validation of Compact Prediction Models

This analysis is a supplement to Analysis 4. This analysis is designed to determine if the

conclusion from Analysis 4 is valid in the entire SPS software development environment.

Prediction Models

Predictor Coefficient in UIMS Coefficient in QUES
intercept -2.20372 6.808372
dit 2.,495030 -2.151131
noc 5.368791 0.0

mpc -2.58682 0.169582
ric 1.797583 -0.14156
Icom 2.762436 -2.195476
dac 1292241 -(.950382
WImC 2.523366 0.886097
nom -6.78521 1.94425

The Null hypothesis (H0) and the alternative hypothesis (H1) are as follows:
HO : there is no relationship between the predicted change and the observed change

HI : there is a positive relationship between the predicted change and the observed change

r =0.65082 in UIMS (0.6782 in QUES)
tobs =7.12051 in UIMS (5.61363 in QUES)
terit =3.232, at alpha = 0.001 in UIMS
terit =3.385, at alpha = 0.001 in QUES

HO rejected at alpha = 0.001 in both UIMS and QUES.

The correlation of the predicted change and the observed change is represented by "r". An
“r" value of (.65082 in UIMS and 0.6782 in QUES represents reasonably high correlations
for a cross validation. The number of observations in the sample is indicated by "n". The
"t" values are represented by "t.obs” for the observed "t" and "t.crit" for the critical "t", The

significance level of a cross validation is indicated by an "alpha" value. A commonly

accepted alpha value is 0.05. An “alpha" value of 0.001 in both cross validations shows
high confidence towards the successful validations.

Conclusion : the compact code model prediction equation is valid in the population.

YL Conclusions
The aim of this research was to:

1. Implement the proposed metrics for the object oriented paradigm.

2. Propose and implement additional metrics for the object oriented paradigm.

3. Investigate these metrics and their relationship with the maintenance effort.

4. Derive a prediction model for the maintenance effort measure using the object
oriented metrics.

5. Validate the model on two object oriented systems,

Various statistical analysis procedures were employed in this study. Multiple Linear

Regression was the dominate statistical tool used.
The results of the analyses of the two object oriented systerns show that:

1. There is a strong relationship between the metrics and the maintenance effort in
the object oriented systems.
2. The maintenance effort can be predicted from the combinations of metrics
collected from source code.

3. The prediction is successfully cross validated.

Bibliography

[1] DeMarco, Tom, "Controlling Software Projects: Management, Measurement &
Estimation," Yourdon Press, New Tersey, 1982,

[2] Halstead, Maurice H., "Elements of Software Science," Elsevier North-Holland, New
York, 1977.

[3] McCabe, Thomas J. "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. 2, No. 4, December 1976, pp. 308-320.

[4] Henry, Sallie and Dennis Kafura, "Software Structure Metrics Based on Information
Flow," IEEE Transactions on Software Engineering, Vol. 7, No. 5, September 1981, pp.
510-518.

[5] Robillard, Pierre, and Germinal Boloix, "The Interconnectivity Metrics: A New Meiric
Showing How a Program is Organized," Journal of Systems and Software, 10,29-39,
October, 1989, pp.29-39,

[6] Bail, William, G. and Marvin V. Zelkowitz, "Program Complexity Using Hierarchical
Abstract Computers," Computer Language, Vol.13, No. 3/4, March/April, 1988, pp.109-123.

[7} Adamov, Rade and Lutz Richter, "A Proposal for Measuring the Structural Complexity
of Programs," Journal of Systems and Software, September, 1990, pp.55-70.

[8] Rombach, H. Dieter, "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on Software Engineering, Vol. SE-13, No. 3, March
1987, pp. 89-94.

[9] Rombach, H. Dieter, "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990, pp.17-25.

[10] Wake, Steve and Sallie Henry, "A Model Based on Software Quality Factors Which
Predicts Maintainability," Proceedings: Conference on Software Maintenance, October,
1988, pp.382-387.

[11] Chidamber, Shyam R. and Chris F. Kemerer, "Towards a Metrics Suite For Object
Oriented Design," Proceedings: OOPSLA '91 » July, 1991, pp.197-211.

[12] McCabe, T. and C. Butler, "Design Complexity Measurement and Testing,"
Communication of the ACM, December, 1989, pp. 1415-1424.

[13] McClure, Carma L. "A Model for Program Complexity Analysis," Proceedings: 3rd
International Conference on Software Engineering, May 1978, pp. 149-157.

[14] Woodficld, S. N., "Enhanced Effort Estimation by Extending Basic Programming
Models to Include Modularity Factors," Ph.D Dissertation, Computer Science Department,
Purdue University, December 1980,

[15] Kearney, J. K., R, L., Sedlmeyer, W. B, Thompson, M. A. Gray, and M. A. Adler, -

"Software Complexity Measurement," Communication of ACM, November, 1986, pp.1044-
1050.

[16] Korson, Tim and John D. McGregor, "Understanding Object-Oriented: A unifying
Paradigm," Communication the ACM, September 1990, Vol.33, No.9, pp.41-60.

[17] Li, Wei, "Applying Software Maintenance Metrics in the Object Oriented Software
Development Life Cycle,” Ph.D Dissertation, Computer Science Department, Virginia
Polytechnic Institute and State University, 1992.

Appendix

UIMS System Data

Class

action

alert
boolean_data
cancel

context

data

dialog
dictionary
done
enumeration_
rendering
float_data
float_rendering
graphic
horizontal _view
indented_list
integer _data
integer_rendering
line

list_data
menu_title
name_dialog
object
offset_ratio
popup_menu
popup_window
quit

ratio

rectangle
selector

screen
string80_data
string80_rendering
tf_boolean_
rendering

ree

uims
vertical_view
view

window
yn_boolean_
rendering

l\JMmr—awwmeg

MNHmwmwmwmo-&mwmwmmmmwmm

WO N W

8]

OOHOOOOOOUJE

O\DOOOHO#DOO\OOOOOOODAOOO

_—R oo o

<

(V] HHN»—ID—!HHQ\.&E

=}

Chl\)'—‘?—'-l-\\.lmmwn—-h.\oh-mn—n

Uli-lh—s\,ou.)r—-lnd
o

o AD ON
j=-3N o)

N

24
12
17
67
30
12
12

17
46
29
10
12
12

29

15
11
25
46
11
40

17
54
32
30
101
57

17

Hqc\msu—t&c\mg

WNMMMO\&-&OOJL‘QS\J\DM&O\\DO\O\AM

— U
e

8&&\0\10\0\

O\HMWOMONOHWOWNNOHOONWHH

el B N N
5 jamd

[

OHHHOOOHNHE.

—

L3 e B D) W s Uny oo Ll L B V)
&P o & - ee E

-quao—a\.oc:.—noocoown-a

LY GO
=~

i

10
45
10
16
69
41

10

[y
Mc\Lh quhgr—lO\\J\lE

ﬂgsu@wzkaghmﬁ\omc\m\og

8

32
14

39
32

size? sizel
9 37
9 94
7 26
1 4
26 60
5 12
7 26
3 59

1 4

6 81
7 26
15 74
61 194
9 143
6 79
7 26
5 33
11 83
33 283.
16 90
6 61
13 7
7 34
4 26
13 86
1 6
1n 4
5 45
14 131
26 296
8 27
26 315
6 76
34 3338
13 84
9 142
44 439
45 419
6 76

14
18

10
16
16
18

16

48
205
30
30

12
50
26

39
15
289

18
26

48
34
93

168

30
17
27
30
253
192

20

QUES System Data

Class dit noc mpc rfc Jcom
core_list_data 0 0 2 27 5
data_select_window2 0 18 39 3
description_ window 2 0 11 29 4
equation_data 2 0 20 9 2
equation node data2 0 8 62 10
fw_abstract data. 2 0 27 150 19
fw_abstract_

node_data 2 0 14 68 18
fw_abstract_

window 2 0 38 59 4
framework_

definition_data 2 0 18 8 14
fw_definition_

window 2 0 24 4 4
fw_level data 2 0 8 54 14
fw_level_select

window 2 0 18 38 4
fw_phase action 1 ¢ 10 22 4
fw_phase_data 2 0 13 68 14
fw_phase_window 2 0 16 32 4
fw_specific data 2 0 23 110 18
fw_specific_

window 2 0 20 41 5
gio_action 1 0 12 22 4
gio_definition_

selector 2 0 13 2 3
2io_definition_

window 2 0 16 4 5
gio_view_action 1 0 17 38 6
gio_view_window 2 0 32 55 5
list_looker 3 0 5 24 11
main_action 2 0 20 38 3
main_window 2 0 41 50 4
personnel_window 2 0 29 13§ 3
proj_abstract data 2 0 21 149 23
proj_abstract_

window 2 0 23 41 4
project_data 2 0 21 95 15
proj_definition_

action 1 0 38 9 7
proj_definition_

window 2 0 42 58 4
proj_level_data 2 0 8 54 14
proj_level _

window 2 0 19 40 3
proj_role_data 2 0 8 3 12
proj roles window 2 0 21 42 4
proj_specific data 2 0 17 118 24

C0 th
5 HNHE.

il * = b

[Y

ol S e A N e L) ot

-t

Lo <

00 = W N

[¥ 5]
NAOOE

W Lh o co

AMA:O\O\G\ £

2
wn

size? sizel change
25 365 12
9 174 85
7 122 38
36 485 g1
37 310 355
49 648 1
31 260 38
7 365 157
32 37 68
8 4 26
24 211 24
7 230 386
4 121 26
23 45 47
9 174 78
53 534 88
10 250 14
4 172 28
8 142 62
10 210 35
6 168 41
11 259 49
16 128 9
7 499 70
7 162 46
6 181 42
46 613 02
7 184 48
33 356 56
8 854 217
8 238 45
24 211 24
9 200 85
19 146 10
7 233 100
4 505 72

proj_specific_
window
property_dialog
ques_data
ques_persistent_
string80_data
role_select_window
report_constraint_
window
report_definition_
action
report_definition_
window
report_field
report_field
rendering
report_selector
1eport_view
window
son_of_abstract_
data
son_of_abstract_
node_data
son_of_abstract_
window
son_of_definition_
window
son_of_equation_
data
son_of_equation_
node_data

son_of level
select_window
son_of phase_data
son_of_phase
window
son_of_specific_
data
son_of_specific_
window
template_abstract_
window
template_definition_
window
template_level_
select_

window
template_phase
window
teinplate_specific_
window

2
4
2

1
2

2

1

1
3

3
2

1

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

=N

16
16

33
21

12
17

23
18
27
21
18

it

15
11

15
23
24
20

18

i6
15

20

40
37
35

35

39
43

62
169

37
30

48
156
125
41
34
47
56

34
88

31
121
45
39

34

35
32

39

15

20

12

40

15
62

46

35

10

12

37
32

19

26

15
18

10

11
82

(e Ve

10

45

38

22

30

46

10

183
188
149

176
183

204
354

349
1009

236
164

199
558
540
252
135
177
206

217
314

153
481
327
216

135

216
153

258

48
24
16

14
82

39
98

56
146

25
68

48
170
80
143
30
28
35

77
45

52
70
188
79

30

75

107

tool_data 2
tool_element 2
tools_action 1
tools_window 2
user_data 2
user_role_data 2
user_roles_window 2

SCOoOooooo

14
10
18
11
17

33
30
27
17
78
62
40

12
12

14
13

D W) W

14

22
27

15
14

21
26
5

20
18

11
31
34

134
115
194
115
333
285
183

8

52
38
41
94

