A Query Language for Information Graphs®

Sangita C. Betrabet, Edward A. Fox, and QiFan Chen

TR 93-03

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

January 27,1993



A Query Language for Information Graphs *

Sangita C. Betrabet, Edward A. Fox
Department of Computer Science
Virginia Polyiechnic Institute and State University (Virginia Tech)
Blacksburg VA 24061-0106

and

QiFan Chen
Hal. Computer Systems, Inc,
8920 Business Park Dr. Suite 300
Austin TX 78759

CR Categories and Subject Descriptors: H.2.1
{Database Management]: Logical design - Data mod-
els ; H2.3 [Database Management]: Languages -
Query languages; H.3.3 [Information Storage and
Retrieval]: Information Scarch and Retrieval: Query
Sformulation; H.3.3 [Information Storage and Re-
trieval]: Systems and Software: Information Networks.

General Terms: Languages.

Additional Key Words and Phrases: Object-oriented
DBMS, graph theory, recursive queries, transitive clo-
sure.

1 Introduction

In this paper we propose a database model and query
language for information retrieval systems. The infor-
mation graph model and Graph Object Access Lan-
guage (GOAL) allow integrated handling of data, in-
formation and knowledge along with a variety of spe-
cialized objects (e.g., for geographic or multimedia in-
formation systems). There is flexible support for hyper-
bases, thesauri, lexicons, and both relational and object-
oriented types of DBMS applications.

While developing and experimenting with the COm-
posite Document Expert/extended/effective Retrieval
(CODER) system and extending it to better support

*This work was fanded in part by grants from the National Sci-
ence Foundation (TRI-§703580) and PRC Inc.

semantic network representations and hypermedia ap-
plications, we began specification of a reference model
and query language [6]. Next, the basic information
graph model was described, the Large External object-
oriented Network Database (LEND) system was imple-
mented around that model, and the LEND query lan-
guage was defined [4]. In this paper we give the first
published account of our new, powerful model and lan-
guage (GOAL), illustrate their use, and compare them
with related work.

2 Approach

Our goal is 1o provide a framework for large integrated
information systems, that will support objectives of effi-
ciency, usability, and ease of development. We assume
that a variety of simple and composite types must be
managed, and so allow objects of all sizes, with multi-.
ple inheritance.

Among those objects are tuples. Hence we subsume
the relational model, and include relevant operators and
expressions, as well as support for sets. However,
we eschew the philosophy of extending the relational
model, and instead of sets and relations use graph theory
as the real foundation,

The key concept is to allow links or arcs as first class
objects, so that we not only have efficiency gains as in
the network database model, but also can reason with
or have expressions involving (binary) relationships (as



needed for semantic networks and hypertext, respec-
tively). Beyond that we have paths, subgraphs, and a
variety of operators to manage them.

In working on GOAL we have also accepted two main
challenges. First, we strove to have a language that was
not only powerful and expressive but also “intuitive”
and usable. Second, we have been developing opti-
mization and implementation methods to go along with
the language, so efficiency concerns, especially those
related to information retrieval would not be forgotten.

Qur handling of these challenges can be clearly seen
in the following sections. Of particular importance is
that the query language allows us to easily and natu-
rally express linear recursive queries that are difficult
or impossible to express using traditional database Ian-
guages.

In the following section we describe the information
graph model and query language. In Section 4 we give
examples. Section 3 relates our work to other efforts,
and the Appendix gives additional details, Finally, in
Section 6 we describe our future plans.

3 Query
Model

Language and Database

In our model, data is stored in the nodes and arcs of an
information graph. GOAL variables have types graphs,
paths or nodes and can be assigned a set of graphs, paths
or nodes, respectively, A graph is a set of nodes and
arcs such that an arc is present in a graph only if the
two nodes it connects are present in the graph. A path
is a sequence of type nede1, arcy, ..., nodey, arcy,
noden 1 such that arc; links node; and node;y;. A
path can visit the same node more than once but cannot
repeat an arc (i.e., arc; # arc; for1 <4, 7 <n). A path
of length one is an arc. The first node in a path is called
its source and the last node is called its sink.

Nodes, arcs, paths, and graphs are all objects in this
object-oriented database system. An object belongs
to a class and has the member variables and functions
defined for that class. A class can inherit the member
variables and functions of another class.

The value of any object or any of its components is
accessed using the dot () notation. A component of an
object is either a member variable of the object or the
value returned by a member function defined (by the
database administrator) for that object {or the class it is

derived from), and is an object in its own right.

GOAL statements can be classified into three types:
declaration statements, assignment statements and re-
trieval statements. It is possible to declare a variable
and assign a value to that variable in one statement. The
statements apply GOAL operators on sets of graphs,
paths and nodes 1o create new objecis of either of these
three types. Retrieval statements allow us to create a
set of objects and apply a member function to the set,
such as print(), which displays on the screen the objects
in the set.

Query language operators have arguments (beginning
with capital letters) that are sets of graphs, paths or
nodes. There are two types: GOAL set operators, used
to create sets of any of the three GOAL types, and GOAL
type operators, that only create sets of a particular type.

3.1 GOAL Set Operators

In the following list of GOAL set operators, “Set” can
be a sct of any of the three GOAL types, and a “SetList”
is a comma separated list containing one or more sets
of the same type.

o union(Set, SetList): This operator finds the sct
union of the sets in the list.

e intersect(Set, SetList): This operator finds the set
intersection of the sets in the list.

o diff(Set, Set): This operator finds the objects that
are in the first set but not in the second set.

» Set.select(Condition): The select operator retums
the set of objects satisfying the given condition,
which is made up of condition-terms connected
by Boolean operators. A condition-term is of
type (attribute-term relational-operator attribute-
value), for relational-operators ==, <, >, <=,
>=or! =. An attribute-term is an object or set of
objects, while an attribute-value is either an object,
a set of objects or a constant enclosed within two
quotes ("s),

» Set.aggregate([GroupList], PartName, Aggre-
gateFunction): Here, GroupList is a comma sep-
arated list of objects. PartName is the name of a
part that is added to the resulting objects, and Ag-
gregateFunction is the name of a function that can
be applied to sets of objects present in Set.



The aggregate operator first groups the objects in
the set into subsets having identical values for the
objects in GroupList. It then applies the aggregate
function to cach subset to create a resulting ob-
ject of the same type with an additional part called
PartName, whose value is determined by the Ag-
gregateFunction.

¢ ClassName: It is also possible to create new sets
by specifying the name of the class of an object.
The class name that is specified can be either a
graph, arc or node object and the resulting sets will
be of type graphs, paths and nodes, respectively.
The result will be all of the objects belonging to
that class in the information graph.

e SetVariableName: If the name of a varable is
specified, the resulting set will have the same set
of objects assigned to that variable. Note that a
variable must be defined and assigned a value be-
fore it can be used.

3.2 GOAL Type Operators

These operators create objects of one type vsing objects
of other types.

3.21 The Graph Operators

The following operators create sets of graphs.

¢ getGraphs(Paths): Each graph in the resulting
set of graphs created by this operator contains the
nodes and arcs present in a path from the given set
of paths.

» getGraphs(Nodes): Each graph in the set of
graphs created by this operator contains only one
node from the given set of nodes.

¢ gUnion(Graphs, Graphs): This operator takes
one graph at a time from each of the two sets of
graphs, and results in a graph containing the union
of the sets of nodes and arcs in the two graphs.

* gintersect(Graphs, Graphs): This operatortakes
one graph at a time from each of the two sets of
graphs and results in a graph containing the nodes
and arcs that are present in both of the graphs.

e gDiff(Graphs, Graphs): This operator finds the

graphs containing the difference of the sets of
nodes and arcs in a graph from the first set and
a graph in the second set.

3.2.2 The Path Operators

The following operators create sets of paths.

¢ getPaths(Nodes, PathsNodesList): Here, Path-

sNodesList is a comma separated list of alternating
path and node sets. This operator creates a set of
paths starting from the first set of nodes, comnected
by paths in the first set of paths to the nodes in the
next set of nodes, and so on.

pCompose(Paths, PathsList): This operator cre-
ates paths that are composed of the paths in the
comma separated list of paths. A path in the first
set in the list is joined to a path in the next set if the
sink node of the first path is the same as the source
node of the following path. Similarly the paths in
the second set are joined to the paths in the third
set (if present in the list), and so on.

allPaths(Nodes, Paths, Nodes): This operator
finds all paths that connect nodes in the first set
of nodes to those in the second set with paths from
the given set of paths. The resulting set of paths
may be of varying lengths.

Graphs.getArcs(ArcClassName): This operator
returns a set of paths made up of only one arc,
that are of the type ArcClassName. The arcs are
preceded and succeeded by the nodes that they
link.

Paths.getArcs(ArcClassName,[DigitsSeq)):
This operator returns the set of paths of length
one that are made up of the arcs in the given set of
paths of the type ArcClassName, occurring at the
designated positions in the digits sequence. The
digits sequence is a sequence of digits that can
be specified either as Digiti—Digit, or Digity,
Digity or Digit.

«—(Paths) or reverseArrow: This operator cre-
ates a set of paths that run in the opposite direction
as the paths in the given set. The mumber of paths
in the result is the same as that in the given set.




3.23 TheNode Operators

The following operators create scts of nodes,

o Paths.source(): This operator returns the set of
nodes that are the source nodes (first nodes) of the
paths in the given set.

e Paths.sink(): This operator returns the set of
nodes that are the sink nodes (last nodes) of the
paths in the given set.

e Graphs.getNodes(NodeClassName): This oper-
ator retumns the set of nodes in the given graph that
belong to the given class.

¢ Paths.getNodes(NodeClassName, [DigitsSeq]):
This operator returns the set of arcs in the given
paths that belong to the given class occurring at the
designated positions in the digits sequence. The
digits sequence is a sequence of digits that can be
specified either as Digit!-Digit2 or Digitl, Digit2
or Digit.

4 Examples

Since our model and langeage were developed to help
with information systems, we give an example of a
bibliographic database that illustrates the data modeling
and querying possibilities.

We use in our examples an information graph made
up of Document, Author and Keyword nodes (see
Figure 1). A document node is connected to another
document node with an arc of type Cites if the first
document has cited the second document. A document
node is connected to an author node with an arc of
type HasAuthor if the document has been written
by the particular author. Finally, a document node is
connected to a keyword node with a HasKeywordarc
if the document is relevant with respect to the keyword.
The HasKeywoxrd arc contains the document weight
(DocwWt) of the document with respect to the keyword.
The nodes in the graph are also made up of different
parts as shown in the figure.

We now give examples of queries on this database,
along with the corresponding GOAL query state-
meni(s).

1. Display the documeni(s) with title XXX,

Cites

Doecument
{Title,
Date}

HasAutheor Author
(Name)

: Keyword
(Name)

Figure 1: Sample Information Graph

HasKeyword
(Doclht)

Document.select(Title == "XXX").print();

This statement selects the document with the given
title from the set of document nodes and prints its
contents. It is possible t0 omit the print() func-
tion because it is the default function that will be
applied on the objects that are retrieved. ‘We will
omit this function in the following examples.

2. List all documents that cite the document with title

XXX.

paths P = getPaths(

Document.select(Title == "XXX"),
«— (Cites), Document);
P.sink();

The first GOAL statement finds all paths that start
from the given document and are connected to an-
other document node with arcs of type Cites, We
have used the reverseArrow operator becauses we
want to follow the links in the opposite direction
of the Cites arcs. The sink nodes of these paths
are the required documents.

3. Listthe documents written by the authors that have

cited the document with title XXX,

paths P = get Paths(
Document.select(Title === "XYX"),
+— (Cites), Document,
HasAuthor, Author,
« (HasAuthor), Document);
P.sink();

In this example, we find the paths starting from
the given document to the documents that cite it;



following the arcs to the authors that haye written
those documents we then go another step further
to the documents written by these authors.

. List the title of the documents written inJan. 1988
and the name of the corresponding author,

nodes D =
Document.select(Date == "Jan.1988");

getPaths(D, HasAuthor, Author),
print(D.Title, Author.Name);

Here, we find the paths linking the required doc-
uments to the authors who have written them and
then print only the title and the name of the author
instead of the whole path object,

. List all documents that can be reached in at most 3
steps from the document with title XXX, following
a path of arcs of type Cites.

paths P = all Puths(
Document.select(Title == "XXX"},
Cites, Document).
select(Length() <= "3");
P.source();

In this example we start from the given document
and follow arcs of type Cites and find all the
documents that can be reached in three or fewer
steps. In this example we have assumed that a
path object has a member function Length ()
that returns the length of the paih.

. Find the documents that are relevant to the key-
words A and B or C. This is an example of a
boolean query.

nodes Docsh =
getPaths(Document, HasKeyword,
Keyword.select(Name == "A"),
source();
nodes DocsB =
getlPaths(Document, HasKeyword,
Keyword.select(Name == "B").
sourece{);
nodes DocsC =
getPaths(Document, HasKeyword,

Keyword.select(Name == "C"),
source();
union(intersect(DocsA, DocsB), DocsC);

The first three statements given above find the doc-
uments that are connected to the keywords A, B
and C respectively. The last statement then ap-
plies the intersect and union set operations to find
the required set of documents.

. List the documents based on their inner product

similarity with respect to the keywords A, B and C
with weights 0.1, 0.2 and 0.3.

paths Pathsl =
getPaths(Document, HasKeyword,
Keyword. select(Name == "A");
paths PathaB ==
getPaths(Document, HasKeyword,
Keyword.select(Name == "B");
puths PathsC =
getlaths(Document, HasKeyword,
Keyword.select(Name == "c"y;
union(PathsA, PathsB, PathsC).
aggregate([Sourcel, Sim, Sum(
Product(
pathsd.HasKeyword.DocWt, 0.1},
Product(
pathsB.HasKeyword.DocWt, 0.2),
Product(
pathsC.HasKeyword.DocWt, 0.3)
)).print(Document.Tit1le, Sim);

The first three statements for this example find the
paths that link the documents 1o the required key-
words. The next statement first finds the union of
the three sets of paths and then applies the aggre-
gale operator. While aggregating the information,
it first partitions the set of paths into subsets con-
taining paths leading to the same document, and
then compuies the inner product similarity by first
finding the product of the document weights on
the paths and the given keyword weights, and then
adding the results. This similarity is assigned to a
new part Sim that is added to the path.

The resulting set of paths after applying the aggre-
gale operator will have one path from each docu-
ment. This path will go to any of the keywords A, B



or Cdepending onthe de finition of the Sum(} func-
tion. The inner product similarity will be stored in
Sim,

Finally, the title and the similarity are printed.

In this example, we make use of the fact that the
inner product similarity is the aggregation of the
document weight information onthe paths. Tnstead
of the inner product similarity we can compute any
other similarity measure as long as we have defined
the functions necessary to compute the similarity.

5 Related Work

The most popular databases and query languages are
based on Codd’s [5]relational algebra and calculus, with
the extensions made by Klug [8] to include the aggregate
functions, that make it easier o generate reports and
extract information.

However, the relational model is not adequate when
dealing with large and complex objects such as multi-
media or CAD, CAM and CASE data. Object-oriented
databases were introduced as a method of dealing with
these complex objects, and are based on the object-
oriented paradigm popular in programming language
theory. An object-oriented database is made up of ob-
jects instead of tuples. Details about the components
of the object and the procedures to manipulate them are
stored with the object, Object-oriented DBMSs also
allow objects to inherit properties of other objects, and
assign unique identifiers for the objects, so users are not
Tesponsible for assigning primary keys. Our model and
language subsume the capabilities of both relational and
object-oriented DBMSs.

In addition, as can be seen in the Appendix, GOAL
easily handles a special but important class of querics
that cannot be supported by a pure relational language.

6 Summary and Future Extensions

This paper has outlined our information graph model
and query language. The GOAL interpreter will be
completed and demonstrable for SIGIR ’93, since we
are extending the earlier working version developed for
LEND. Experimental studies with GOAL will make use
ofthe CACM-3204 test collection, Princeton’s WordNet
data, and alarge collection of Library catalog data Ioaded

into LEND for use with the library catalog system being
developed at Virginia Tech.

APPENDIX
Linear Recursive Queries

Aho and Ullman [2] described a class of queries
called least fixed point queries or general recursive
queries that cannot be expressed using relational al-
gebra and calculus. In orderto process these queries we
need to apply a relational algebra expression f() first on
arelation R, and then on the resulting relation obtained, . .
till the resulting relation ceases 10 change. General re-
cursive queries are Very expensive to evaluate because
in order 10 express them we need the expressive power
of a programming language.

Bancilhon and Ramakrishnan identified an important
subclass of general recursive queries called linear re-
cursive queries [3], that can be executed efficiently; the
relation R occurs exactly once in the relational alge-
bra expression for these queries. They conjectured that
linear recursive queries occur more often and are more
useful than other general recursive queries,

Jagadish, Agrawal and Ness [7] showed that every
linear recursive query can be expressed as a transitive
closure operation possibly preceded and followed by a
relational algebra expression,

A transitive closure Operation can be defined as fol-
Tows: Assume Ris a relation having two attributes k1
and k; belonging to the same domain X, and a graph
Ggr corresponding to the relation 12 has nodes belong-
ing to the domain X » Such that an arc &, — k; exists
in the graph if and only if there is a tuple (ki k4) in
the relation R, Then the resulting relation R* of the
transitive closure operation on R will correspond to a
graph g+, which will have arcs k; — k; if and only if
it is possible to reach k; from F; following arcs in G R

The allPaths(Nodes, Paths, Nodes) operator in
GOAL finds all the paths connecting the nodes in the
first set of Nodes to those in the second set of Nodes,
considering only links of type Paths.

It is difficult to extend the relational algebra and cal-
culus to find relations that store the path information as
we do using the allPaths(Nodes, Paths) operator, be-
cause the paths can be of variahle length and the nodes



and arcs in the paths are ordered. The definition of a
relation expects the number of columns in the relation
to be fixed and unordered,

A number of atlempts have been made to extend re-
lational algebra or calculus to include linear recuisive
qQueries (see [1]). These atempts either limit the types
of queries that can be executed or limit the type of op-
erations that can he performed on the resulting paths
obiazined. These limitations are imposed primarily to
retain the initial definitions of relations and ensure that
the result is normalised.

GOAL uses a path 1o store the result of the transitive
closure operation. A path object captures the semantics
of the result and hence is a natural representation,

References

[1} Agrawal, R. “ALPHA: An Extension of Relational
Algebra to Express a Class of Recursive Queries™,
Proceedings of IEEE 3rd International Confer-
ence on Datg Engineering, Los Angeles, Califor-
nia, Feb. 1987, 580-590, Also in IEEE Transac-
tions on Software Engineering. 14, 7 (July 1988),
879-885.

[2] Aho, A. V., and Ullman, J. D, “Universality of
DataRetrieval Languages™, Proceedings of the 61h
ACM Symposium on Principles of Programming
Languages, San-Antonio, Texas, Jan 1979, 110-
120.

[31 Bancilhon, F,, and Ramakrishnan, R., “An Ama-
teur’s Introduction to Recursive Query Processing
Strategies”, Proceedings of the ACM ST GMOD In-
ternational Conference on Management of Data,
Washington DC, May 1986, 1652,

(4] Chen, Q. E “Object-Oriented Database System
for Efficient Information Retrieval Applications”,
Computer Science Dept., Virginia Polytechnic In-
stitute and State University, 1992, Ph.D. Disseria-
tion.

[5] Codd,E.E <A Relational Model of Data for Large
Shared Data Banks”, Communications of the ACM
13, 6 (June 1970), 377-387.

[6] Fox, E. A., Chen, Q. F and France, R. K. *
General Reference Model for Hypermedia and

(7]

[8]

Information Retrieval and its Implementation in
CODER /LEND”. In Emily Berk and Peter Mor-
ley, editors, Hypertext / Hypermedia Handbook
329-355. McGraw-Hill, Inc., 1991,

Jagadish, H. v, Agrawal R., and Ness, 1. “
Study of Transitive Closure As a Recursion Mech-
anism”, Proceedings of the ACM SIGMOD Inger-
national Conference on Management of Datg, San
Francisco, 331-344., May, 1987.

Klug, A. “Equivalence of Relational Algebra and
Relational Caiculus Query Languages having Ag-
gregate Functions,” Journgl of ACM 29, 3 (July
1982), 699--717.



