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The flow in a trapezoidal cavity (including the rectanguiar and triangular cavities) with one moving wall is studied
numerically by finite differences with special treatment in the corners. It is found that streamlines and vorticity distributions
are sensitive to geometric changes. The mean square law for core vorticity is valid for the rectangle but ceases to be valid
for the triangular cavity,

1. INTRODUCTION

The study of the flow in an enclosure driven by the tangential motion of a segment of the
boundary is extremely important. Physically the flow represents recirculating viscous motion in
the wake of bluff bodies, behind abrupt constrictions in channel flow or flow inside ‘open cavities
on a wall due to outside disturbances. Owing to the nonlinearity of the Navier-Stokes equations,
the problem cannot be solved analytically, and only a “mean square law” governing the interior
circulation for infinite Reynolds numbers has been proposed [1). Since the enclosure geometry s
simple and finite, the problem has also been an important test case for numerical computational
schemes.

The most numerically studied case is the square cavity with three solid boundaries and the
fourth boundary moving at a constant speed, A variety of methods have been used—#finjte differ-
ences, false transients, multi-grid methods, etc. (e.g., Burggraf (2], Ghia et al. (3], Shreiber and
Keller [4], and reviews by Tuann and Olson [5], Gustafson and Halasi [6]). Although there are
still some minor discrepancies in the results, the square cavity problem is considered essentially
solved. In general there is a dominant recirculating eddy generated by the moving wall and two
smaller counter-rotating eddies at the stagnant corners. For high Reynolds numbers the vorticity
in confined to a boundary layer and the interior vorticity is approximately constant.

However, the result for a square cavity may not be applied to other important geometries
such as a trapezoidal cavity (including the triangular cavity). In fact the latter shapes are more
common in practice. For example, it is much easier to mill a trapezoidal groove, which is wider
at the opening, than a square one. Also, triangular grooves are necessary for flexible corrugated
tubes [7] and for heat transfer enhancement 18].

The aims of this paper are as follows. First, we would like to determine the effects of geometry
on the physics of cavity flow. In particular, we examine the continuous change of streamlines and
vorticity from the rectangle, through trapezoids, to the triangle. Second, nonrectangular geometry,
especially the triangle, requires special numerical treatment. We introduce a successful method
and discuss our experiences with the problems associated with other traditional methods,
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2. FORMULATION

Let € be the isosceles trapezoid with corners (6a,0), ((2v/3—6)a,0), (2v/3a, 3a), (0, 3a), where
0 < § <+/3, and let 8 be the boundary of Q. The two-dimensjonal steady Navier-Stokes equations
are

1
wug + v'ul, = —;p;, + v (g + Uiy}, (1)
1
u"l);:f + ’U"U;r = —Ep;f + v ('v:c!",:.i + ’U;.r,yr) ) (2)
’U;’x: + ’U;f =1. (3)

Here u', v' are velocity components in the Cartesian z', y' directions, p is the density, p’ is the
pressure, and v is the kinematic viscosity. The boundary conditions are that velocity is constant
U along the top (wider base) of the trapezoid, the velocity is zero on fixed sides, and velocities are
bounded inside 2. We normalize all velocities by U, the pressure by pU?, the lengths by a, and
drop primes. Define a stream function 4 by

U=y, v = =1, (4)
The governing equations in § become
V4T,b =R (¢yv2¢w - T/)mv2¢y) s . (5)

where V? is the Laplacian operator and R is the Reynolds number Ua/v. The boundary conditions
become
% = 0 on all four sides of £, (6)

and
|1, for the top side,
(Yy, =) - T = { 0, for the other three sides, ™

where T is a unit vector tangent to the boundary pointing in the direction of motion, (clockwise).
Equation (7) determines the magnitude of the velocity vector (i, —%z). The direction of the
velocity is already determined (up to sign) by (6), since ¢» = 0 on 9Q implies Vi = (4, %,) is
normal to a side; and thus the velocity, which is normal to Vb, must be tangent to the boundary.
For the isosceles trapezoid { considered here, equation (6) can be written

¥y, =1, on the top side,

¥y = 0, on the bottom side,
3tz — 81, = 0, on the right side, (8)
31 + 01, = 0, on the left side.

3. NUMERICAL METHODS

We apply a Newton-like iteration to equation (5). It is well known that if Newton’s method
converges to the root of a nonlinear equation, it does so rapidly. However, a good initial guess
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is usually needed for convergence to occur. We use a very simple initial guess, namely a quartic
polynomial constructed to he zero on 8. For the isosceles trapezoid we choose

¥z, 9) = y(3 - y)(3z — by — 6v/3 + 36)(3z + 6y — 36), (9)
while for the unit square discussed in Section 3.2 below we use

P2, y) = 2y(1 - 2)(y — 1). (10)

Rapid convergence is achieved for R = 1 in all cases with sufficiently fine grids. Solutions for higher
Reynolds number in a given case are computed by using as initial guess a solution for a slightly
smaller B for the same case.

A Newton-like linearization of the nonlinear operator in Equation (5) results in the following
linear fourth order PDE to be solved at each iteration:

V=R (8090 + V2, — gDV, - v2yp.) = —k (#9209 — pv2y) | (11)

where () is the approximate solution from the previous step. See Ribbens et al. [9] for a more
detailed derivation of (11). At each step of the outer iteration we must solve the linear problem
defined by Equations (6), (8), and (11). Notice that linearization precedes discretization. One
could also discretize first and then deal with the resulting system of nonlinear equations, but the
two approaches are essentially equivalent,

3.1 Finite difference methods for the limiting cases

The limiting case of our trapezoid as § — 0 is a 2v/3 % 3 rectangle, which is nearly, but not
identical with, the square case. The parametric mapping that goes exactly from an equilateral
triangle through isosceles trapezoids to a square is more complicated than our mapping, which
preserves the moving side to depth aspect ratio (2/v/3). An efficient numerical technique for
solving the related driven square cavity problem is described by Schreiber and Keller [4]. The
classical driven cavity problem describes steady viscous incompressible flow in the wunit square,
with one side moving. The technique employed in [4] is based on central differences and a uniform
rectangular grid, yielding a discretization with second order accuracy. The difference formulas used
to approximate the derivative terms in both the PDE and the boundary conditions are centered.
A 13 point stencil is required for the fourth-order derivatives. In order to impose the PDE at grid
points just inside the region, “fictional” grid points just exterior to the boundary are required,
but the unknown 1 values at these exterior grid points are determined by imposing the normal
derivative boundary condition at nearby boundary grid points. The technique in [4] also includes
continuation in the Reynolds number, a special sparse direct factorization scheme for the resulting
linear systems, and Richardson extrapolation for improved accuracy. The numerical method for
our limiting rectangle case is essentially the same as that of [4] for the square, and need not be
described further.

The other limiting case as § — /3 of a triangle is entirely different. The triangle, unlike a
trapezoid, cannot be mapped onto a square without a singularity. We considered modifying the
approach of Schreiber and Keller for the triangle problem. Urnfortunately, the equilateral triangle
presents considerable difficulties under such an approach. As in [4], we can introduce grid points
Just external to the region and then eliminate them by hand by imposing the derivative boundary
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condition (8) at boundary grid points. The corners require special treatment, and also force the use
of nonsymmetric 18 point stencils for the PDE at the interior points nearest all three corners. For
the remaining interior grid points the standard 13 point finite difference stencil suffices. Pictures
of these stencils and complete details for the triangle case are in {11].

Despite our relatively straightforward generalization of the technique of Schreiber and Keller,
the linear systems generated by the method just described are so ill conditioned that accurate
numerical solutions are virtually impossible. In fact, for moderately fine grids (e.g., 49 vertical grid
lines and 25 horizontal grid lines) the systems are numerically singular, with condition numbers in
excess of 101%. The problem is related to the special treatment required in the corners and to the
overlapping stencils needed for the derivative boundary equations along the left and right sides. On
a test problem, if we assume the external solution values are known, so that neither the one-sided
stencils nor the derivative boundary equations are needed, the linear systems become quite well
conditioned (e.g., 10° for the case mentioned above). We did not pursue further the causes of the
ill conditioning or seek remedies, as the approach described in {11] proved successful. However, it
is interesting to note the significant problems that arise in modifying the straightforward difference
method of Schreiber and Keller for the triangle,

In a previous paper [9] we described a numerical technique for solving the related problem of
flow induced in an elliptic region by the boundary moving at constant velocity. In that work our
numerical approach was based on collocation with Hermite cubic basis functions, and we defined
the problem as a coupled system of two second order equations in two unknowns (stream function
and vorticity). This strategy proved quite successful and yielded accurate solutions for Reynolds
number up to 1000 and for ellipses with aspect ratio up to 5.

An analogous strategy for the present problem is not successful, however. As in the finite
difference method described above, special problems near the corners lead to nearly singular linear
systems, and in fact o exactly singular systems if the collocation points are not chosen carefully.
Our experience is that this extreme ill conditioning causes inaccuracies in the approximate solution,
and prevents the Newton iteration from converging for all but the smallest Reynolds numbers. Nej-
ther collocation nor centered finite differences applied to the system of two second order equations
was successful.

The ultimate resolution of the numerical difficulties for the triangle case is to map the equilat-
eral triangle to an isosceles right triangle, and develop new nonsymmetric finite difference stencils
for the right triangle. In particular, we introduced a change of variables

E=z+(y+2)/v3 and 7 =2(1- y}//3,

so that our computational region is a right triangle with corners (0,0), (2\/?_),0), and (0,2+/3).
Fortunately, this transformation preserves the Neumann nature of the boundary conditions (8)
(not true if the triangle is scalene!), and the resulting linear systems are well conditioned. Further
details of this transformation and the necessary skewed finite difference stencils are in [11].

3.2. Finite differences for the trapezoid

The generic trapezoid case is considerably simpler than the limiting triangle case. The trape-
zoid can be mapped smoothly onto the unit square by

_ by+3z—35
 2(éy+ 3V/3 — 36)

4

and n= g,



FIG, 1. Cavity flow in a square, R=115.47.

so that the computational region is the unjt square 2 with lower left corner (0,0). The transformed
PDF. operator in ¢, n is a very general one indeed, since the chain rule produces terms of up to

straightforward, however, using the symbolic computational facilities of Mathematica [12].

The transformed derivative boundary conditions are still simply normal derivative conditions
on %, the unknown in 0 (i.e., 2 Neumann condition). As long as § is not too close to V'3, the
resulting linear systems are well conditioned and the solution of the transformed PDE on Q can
broceed as in [4]. There are several possibilities for second order accurate finite difference stencils
in the interior of the region. We chose to use the stencils developed in [11] rather than those from
[4); both are second order accurate,

To test the accuracy of our algorithm, we computed the streamlines for z 2v/3 square for
R = 115.47, which is equivalent to B = 400 in the usual definition of Reynolds number, using the
entire length of one side. Fig. 1 shows that our results, using a mesh size of 101, are identical to
those of Schreiber and Keller [4].

4. THE STREAMLINES

Using our algorithm, the streamlines are computed for a variety of Reynolds numbers and
cavity shapes. In Figs. 2-5 the streamline contour spacing is 0.02. Fig. 2 shows the streamlines for
a2v3 x 3 rectangle (6 = 0 case). The motion of the top boundary is from left to right, thus the
primary eddy is clockwise. For R = 1 lateral symmetry exists, implying that nonlinear effects are

moves to the right, then down and towards the center. For larger R the secondary eddies at the
stagnant corners become larger, and tertiary eddies begin to appear.
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TABLE 1

Properties of the center of the primary eddy, located at
(:rc, yc) with stream function value e and vorticity (.

R Te Ye Pe Ce
Triangle (§ = 1/3)
1 1.749 2.480 233 1.363
50 2.078 2,445 237 1.464
100 2.061 2.355 247 1.373
200 1.940 2.280 .260 1.272
350 1.905 2.265 .268 1.232
500 1.905 2.265 269 1.250

Trapezoid (§ = (2/3)v/3)
1 1.747 2.382 .267 1.200
50 2.110 2.319 276 1.247
100 2.023 2.193 290 1.105
200 1.907 2.105 305 1.019

400 1.848 2.067 315 970
500 1.848 2.055 317 964

Trapezoid (§ = (1/3)v/3)
1 1.747 2.294 .304 1.062
50 2.125 2.155 321 1.018

100 1.965 1.954 339 873
206 1.878 1.853 353 789
400 1.834 1.777 361 741
500 1.819 1.765 363 730
Rectangle (6 = 0)

1 1.747 2.206 340 950
a0 2.140 1.979 365 .856
100 1.994 L777 383 742
200 1.907 1.702 .396 687
400 1.878 1.651 403 .658
500 1.863 1.639 405 650

Fig. 3 shows the § = 1/+/3 trapezoid. There are several eflects of shortening the lower
boundary. The center of the primary eddy is now closer to the moving boundary. At higher R the
two secondary eddies at the stagnant corners tend to coalesce. Most important is the appearance
of the third secondary eddy near the upper left corner. Fig. 4 shows a trapezoid with the lower
base further shortened. The two lower secondary eddies easily coalesce into one.

Fig. 5 shows the streamlines for the triangle. Note that secondary and tertiary eddies exist
at the lower corner even at low R. For higher R even quaternary eddies appear. These eddies
alternate in sense and rapidly decrease in strength, not unlike those found in deep rectangular
cavities [13].

8, THE VORTICITY DISTRIBUTION

The vorticity contonr spacing.in Figs. 6-9 is 0.5. Fig. 6 shows the vorticity distribution for
the rectangle. For low R vorticity diffuses from the corners of the top boundary, where velocity
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FIG. 2. Streamline patterns for the rectangle, §=0, for R=1 (a), R=50 {(b), R=100 (c), and R=500 (d).

discontinuities exist. As R is increased the vorticity is transported downstream, and concentrated
near the top and right boundaries. At 2 = 500 vorticity in the core of the primary eddy hecomes
approximately constant. The vorticity distributions for trapezoids and the triangle are shown in
Figs. 7-9. Notice that the constant vorticity core becomes smaller as § increases.

Table 1 shows the location of the center of the primary eddy and the corresponding vorticity
Ce- Note that ¢, generally decreases with decreased § and with increased B. At R = 500, ¢, would
represent the vorticity of the large core region.

In order to verify the mean square law, we derived the theoretical values for (, at large
Reynolds numbers (see Appendix II). Results are obtained only for the rectangle and equilateral
triangle, since the general trapezoidal shape does not yield analytic solutions. For the rectangle
we find the theoretical value Ce = 0.6071, which differs by about 6.5% from our computed value of
0.650. For the triangle we obtain a theoretical value {, = 1,054, while the computed value is 1.25(.
The difference of 15.7% is unacceptable,
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FIG. 3. Streamline patterns for the trapezoid, §=1/+/3, for R=1 (2}, R=50 (b), R=100 {c), and R=500 (d).

6. DISCUSSION AND CONCLUSIONS

We find the streamlines are altered as the geometry changes from a rectangle, through a
series of trapezoids, to a triangle. The primary eddy becomes smaller, only partially filling the
cavity. Due to its sharper and larger stagnant region, the triangle exhibits secondary, tertiary and
quaternary eddies. Thus a triangular cavity would be comparatively less effective in the transport
of mass and energy by convection.

The triangle is qualitatively different from the rectangle and trapezoid because, unlike the
latter two, it cannot be mapped onto a square without a singularity. This necessitates a different
numerical algorithm for the triangle case, and new finite difference stencils as in Appendix I. The
same numerical approach and finite difference stencils as used for the trapezoid fail completely for
the triangle.

The mean square law for vorticity at high Reynolds numbers seems to be valid for the square
[14], the ellipse [9], and the rectangle studied in this paper, but fails for the triangle. The reason
lies in the vorticity distribution. For the rectangle the vorticity is concentrated along the boundary
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FIG. 4. Streamline patterns for the trapezoid, §=2//3, for R=1 (a), R=50 (b), BR=100 (<), and R=500 (d).

(Fig. 6d), thus fulfilling Batchelor’s thin boundary layer assumption. For the triangle (and some
trapezoids) the vorticity is no longer confined to a thin boundary layer (Figs. 8d and 9d) and
thus the mean square law fails. We conclude that the vorticity picture, ignored in most published
reports, is essential in the understanding of cavity flow.
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FIG. 7. Vorticity distributi

on for the trapezoid, §=1/v/3, for R=1 {a), R=50 (b), R=100 (¢), and R=500 (d).
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FIG. 8, Vorticity distr

ibution for the trapezoid, §=2/v3, for R=1 (a), B=50 (b), R=100 (¢), and R=500 (d).

13



14



APPENDIX I
The (7,j) entry in the templates below is the coefficient a; of W(x + ik, y + jh) in the finite
difference approximation Ef‘ i=—2 ¥(z +ih,y + jh) to a particular partial derivative of ¥ at (z, ¥).

0 0 0 0
Lo 0 0o L1001 0
\Iim'%O—lOlO,\Ify:%-UOO{]O,
0 0 0 0 0 -1 0 0
0 0 0 0
0 0 0 0 1
;o0 0 o Lo -1 0 1
Uoo: 7 [0 1 -2 1 of, Voy: 5|0 0 0 0 o),
0 0 0 0 1 0 -1 ¢
0 0 i 0 0
0 o 0 0 -
L]o0 1o Lo 00 o
Yooz [0 0 =2 0 0f,  Wup:io—|-1 2 0 —2 1],
h 0 1 0 0 2h 00 0 o
0 0 i 0 o
0 0 0 0
L1001 =2 1 L0 -1 0 1
‘I’mryi——g 0 0 0 0 0 , z-yyl—"é* 0 2 0 -2 0 s
2k 1 2 -1 ¢ 2h 10 1 o
0 0 0 0
0 1 0 0
L lo0 =20 Lo 0 0 o
Vs [000 0 0 0f, Vowso g [1 =4 6 -4 1],
0 2 0 90 0 0 0 o0
-1 0 0 0
0 0 - T0 0
L= 3 -3 L1001 =2 1
Voooyigrg | 1 =4 6 —4 1|, Voo 177 [0 =2 4 -2 0,
1 -3 3 _i 1 -2 1 0
0 0 ] I 0 0
-1 1 - To0 1
L R L1000 —4 0
‘I'wyw:ﬁz 0 -3 6 -3 0}, Www:h—4 0 0 6 0 0
1 —4 3 9 0 —4 0 0
1 -1 I 1 0

APPENDIX II

At high Reynolds numbers the vorticity of the core of the eddy is approximately constant,

Batchelor [1] proposed a mean square law to relate core vorticity with boundary velocities. The
flow in the core is governed by

Vi = C, (A1)
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where C' is the constant vorticity value. The method is to solve equation {Al) analytically for a
specific geometry. The constant ¢! is obtained from the relation

$ 160"+ 67) ds = $ 775 a, (42)
where s is the arc length along the boundary and U is the boundary velocity.

A. The rectangle of size 24/3 x 3.

The Poisson equation-for a rectangle has-been- solved: before (e.g:, in Timoshenko and Goodier
[15]), using a simpler formulation. Let Cartesian axes (£, ) be located at the center of the rectangle,

The boundary conditions are P =0on ¢ =43, 7= 23/2. Set ¥ = C'¢, where
2 0
_7 9 _ 120 _1, 2
&€, ) = 55t ;Ancos [(n sir 3 J cosh [(n shr 2 (A3)

which satisfies equation (Al) and the boundary conditions on 7 = £3/2. The other boundary
conditions yield

g — %i = gAn cosh [(n - %)%J cos [(n - %)?7932] (A4)

The constants A,, are obtained by Fourier inversion

9(—1)r+1 27 1
A'n, = WSQCh [ﬁ(n ~ 5 ] . (A5)
From equation (A2) we find
, V3 3/2 3 V3 \ =1
=22 { | s3] an+ | ute 32y d&} . (46)

The value of C is computed by truncating the infinite series in equation (A3) to a finite number of

terms and using a symbolic algorithm (e.g., Mathematica) for equation (A6). Four-digit accuracy
is obtained for 10 terms. We find ¢ = 0.6071,

B. The equilateral triangle with sides 2+/3.
An exact solution exists for the equilateral triangle:

%= —g (7= 1)(n+2~v38)(n+ 2 +3¢). (47)
Using symmetry, equation (A2) reduces to
Vi ) /i
, dé = .
3/_\/5 [¢n(&, 1)]° dé = 243 (A48)

This gives C' = +/10/3 = 1.054.
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