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Abstract

This paper describes and compares two methods for solving a generalized eigenvalue problem
T'z = ASz, where T and § are both real symmetric and tridiagonal, and S is positive definite,
and the target architecture is a shared memory multiprocessor. One method can be viewed as
a generalization of the treeql algorithm of Dongarra and Sorensen (10]. The second algorithm
is a straightforward parallel extension of the bisection/inverse iteration algorithm treps of Lo,
Philippe, and Sameh [21]. The two methods are representative of families of algorithms of quite
difterent character. We illustrate and compare sequential and parallel performance of the two
approaches with numerical examples.

1 Introduction

This paper describes and compares two parallel zﬂgorithms for solving a generalized eigenvalue

problem
Tx = ASx, (1)

where T and § are both symmetric and tridiagonal, and 5 is positive definite. Both of the algorithms
considered here are generalizations of well known algorithms for the standard symmetric tridiagonal
eigenvalue problem. In this section we briefly describe an application where a problem such as (1)
arises and survey related work in the literature.

Problems having such structure occur in higher order difference approximations of Sturm-
Liouville and radial Schrédinger equations. The approximation of eigenvalues and eigenfunctions
of such operators is a common problem in computational physics and often functions as a starting
point for complex multidimensional problems. As such there is a natural interest in such calcula-
tions being done efficiently and to reasonably high accuracy. Finite difference methods are reliable
and efficient in this setting and high accuracy formulations have appeared under various names
such as Mehrstellen methods {7), operator implicit methods [4], and HODIE methods [5]. Recent
work in this direction may also be found within the physics community [14].

The work reported in this paper draws heavily from two algorithms designed for the standard
symmetric tridiagonal eigenvalue problem. The first is a divide-and-conquer scheme, treegl, due
to Dongarra and Sorensen [10]. The second algorithm is treps, described by Lo, Philippe, and
Sameh [21], and based on bisection and inverse iteration. There are other families of methods
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which are of interest for this problem (e.g., Lanczos methods, Jacobi methods, homotopy methods,
etc.). Related references include Li and Rhee [19], Li, Zhang, and Sun [20], and Weston, Clint, and
Bleakney [28]. It is only gencralizations of the two algorithms treps and treeql that are compared
in this paper.

The treeql algorithm is based on a divide-and-conquer scheme proposed initially by Cuppen [9],
and uses results on rank-one updates and a special root-finding algorithm from Bunch, Nielsen,
and Sorensen [6]. Experimental results with treegl are given in [10] for shared memory machines.
Jessup {16] and Ipsen and Jessup [15] consider both divide-and-conquer and bisection approaches
for distributed memory architectures. Important details regarding the accuracy of divide-and-
conquer schemes have been studied by Barlow {1] and Sorensen and Tang [26]. Gates [12] uses
inverse iteration to improve the performance of a divide-and-conquer algorithm. A different appli-
cation of the divide-and-conquer idea to the standard symmetric eigenvalue problem is described
by Krishnakumar and Morf [18].

There are few references in the literature on efficient parallel algorithms for the generalized
symmetric eigenvalue problem. In the most common applications, T and S are banded ($ positive
definite) but not necessarily tridiagonal. Crawford [8] describes an efficient algorithm for reducing
such a problem to an ordinary symmetric (banded) problem. Kaufman [17] has proposed a vec-
torized version of Crawford’s algerithm. Ma, Patrick, and Szyld [22] and Pantazis and Szyld [24]
have described algorithms for the banded generalized problem which are based on bisection and
inverse (Rayleigh quotient) iteration. They also report results for shared memory multiprocessors.
Shougen and Shugin [25] have described an algorithm for the banded case which is based on a
generalized singular value decomposition and requires both § and 7" to be symmetric and positive
definite. The case were T and § are dense is considered by Natarajan {23].

The rest of the paper is organized as follows. Generalized versions of treeql and ireps are
described in §3 and 2, respectively. In §4 we use several numerical examples to illustrate and
compare the performance of the two algorithms. Finally, we conclude with some comments and
suggestions for further research in §5.

2 A divide-and-conquer approach

In this section we first summarize the theoretical framework of a divide-and-conquer scheme for
generalized symmetric tridiagonal eigenvalue problems, and then describe our algorithm and its
parallel implementation. See [3} for a complete discussion of the theoretical framework of the
algorithm and its performance, including error analysis.

2.1 Theoretical framework

The critical focus in generalizing the standard divide-and-conquer scheme involves dividing the task
of diagonalizing a tridiagonal matrix pencil, T~ AS, into subsidiary tasks that involve diagonalizing
two tridiagonal matrix pencils of roughly half the size. For example, we define subproblems of size
k and n ~ k by rewriting 7' and S as
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where #; and #; can be selected independently to minimize cancellation in the affected diagonal
entries as in [10].

Suppose now that 5 and 5, as defined in (3) are positive- ~definite and we have solved the
two smaller generalized eigenvalue problems T1X1 = 51X1D1 and TzX 9 = 52X~2D2, where X 1,X2
are matrices of eigenvectors for the respective systems (normalized so that X!$;X; = I) and
Dl,Dg are chagonal matrices containing eigenvalues of the respective systems. If we then denote
X = diag(X1, X,), D = dsag(Dl,Dg) y1= Xlep, and yu = Xiey, we find

XYT - A$)X = 4

D-+60e { 9;3;;2} vt 67'yi] - 2.8 [ 92—3;1”] vt 67y
Note that yi is the bottom row of X; and yi is the top row of Xj.

The main task remaining is to diagonalize the right hand side of (4), since if X and D =
diag(é,...,8,) contain the eigenvectors and eigenvalues, respectively, for (4), then Y = X X and
D satisfy YtT Y = D and Y*SY = I, as desired. If 8 = 0 then the problem reduces immediately
to calculating a rank-one update as in [9] and {10]. It is in the case 3 # 0 that we have our most
significant deviation from the Cuppen-Dongarra-Sorensen line of development. One may indeed
follow their pattern of reasoning to determine how to complete updates arising from the original
tearings—however notice that for 1ndependently determined values of ; and 8, (4) represents a
rank-two change on the unperturbed pencil £ — AJ. This has grave consequences for the ensuing
root-finding problem, since it will no longer be true in general that the eigenvalues of (4} interlace
the eigenvalues of D. Fortunately, we may recover most of what has been lost with a slight sacrifice
of generality.

Assume henceforth that § # 0 without loss of generality. The rank-two modification problem
implicit in (4) may be mapped to an equivalent rank-one restriction problem if the ranges of the
twin rank-one tearings are identical. This has an important consequence, namely the interlacing
of perturbed and unperturbed eigenvalues, and so leads to a root finding problem that is very
similar to what is found in [6]. The identification of ranges occurs if and only if 8; = 8,. This
may raise some concern, since #; and §; were chosen at least in part to guard against cancellation
errors during tearing. However, the analysis of ¢reegl by Barlow [1] suggests that the values of 6;
and #; are not likely to be critical in our situation, at least in circumstances where § is “safely”
positive-definite. This is borne out in the analysis of [3] (following Barlow’s line of argument) and
is consistent with our computational experience.

We shall assume henceforth that 6, = 8, = # = +1 and consider in detail the beneficial
consequences. The right-hand side of (4) becomes

D= AL+ 8(c ~ M)zt = I z]([-g H?IJ_AH 906])[;*] 5

where z* = [y{ 67 'yi]. The interior matrix pencil on the right-hand side of (5} is definite if
83 > 0, hence we take 8 = sgn(f).

Now absorb 83 = |§[ into the flanking matrices and define Z = /[8z and P = Ran[I ZJ’, an
n-dimensional subspace of R, For D = diag(D, a/B), the eigenvalues of (3) are precisely the
stationary values of the restricted Rayleigh quotient
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In this way the eigenvalues of T'— AS may be associated with the eigenvalues of a restricted matrix
eigenvalue problem (cf. [13] and [2]). The following is proved in [3].

Theorem 1 If D = diag(é,—) has only simple eigenvalues and no component of z is zero then either
(1) p=afB is an eigenvalue of T — AS and o/ = § for some k, or
(2) D has only simple eigenvalues and D — uI is nonsingular for every eigenvalue p of T — AS.

Deflation may be used as in [6] to eliminate multiple eigenvalues of D and zero entries of z,
thus ensuring that the hypotheses of the theorem always hold. The first case of the conclusion
corresponds to a further deflation step which is taken if o/8 is within a tiny tolerance of an
eigenvalue of D. The second case of the conclusion represents the fully deflated problem and leads
to a secular equation as described in the next paragraph.

Notice that P+ = span [z’ 1] Every eigenpair (g, u) of {6) satisfies

(f)—p[)u:a[_i}

for some scalar o. If the second case of Theorem 1 holds then o # 0 and

u=o(D— ) [ Z ] . )
Since [2' — 1] u =0, p must satisfy
n+l C2
wlp) =3 = (8)
r-l

In (8), {87! list the increasingly ordered entries of D and {¢;}72 ?+1 list the entries of Z together
with 1 ordered consistently with the ordering of the é;s. Equatmn (8) is precisely the secular
equation given by Golub [13] for a rank-one restriction problem. Notice that the function w(A) has
many of the same qualitative features as its counterpart in [6] (e.g., root/singularity interlacing,
monotonicity) and so, the sophisticated root-finding scheme of [6] may be used with minor alter-
ations to find an eigenvalue of (5). Finally, given an eigenvalue y of (5) we know from Theorem 5
of [6] that an eigenvector x is given by

x=4(D - pI) 'z, (9)

where « is chosen to normalize x with respect to I + 68z2".

Just as for divide-and-conquer methods for the standard tridiagonal eigenvalue problem, con-
siderable savings can be realized in many circumstances from deflation, i.e., when an eigenpair is
inherited for almost no work from the unperturbed problem D — AI. The two ways in which this
may occur in the standard case have direct analogs in the generalized case. For example, it is
straightforward to see that if z'e; = 0 then (dj, eJ), the ith eigenpair of 1) — A, is also an eigenpair
of (5). Furthermore, one can easily show that if d is an eigenvalue of D of multiplicity = > 2 then
orthogonal transformations may be applied to (5) to introduce r — 1 zeros in 2, and thus reduce
to the first type of deflation. In the generalized case we have one further possibility for deflation,
as indicated by the first case of Theorem 1. If a/8 = d;, for some d; € M D), then (d;,e;) is an
eigenpair of (5).

See [3] for an extensive discussion of important details regarding error analysis, deflation criteria
in finite precision, and the algorithm for finding roots of the secular equation (8).
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Table 1: Time for rsg and crw, and their ratio, with and without eigenvector calculations on
Problem 1.

Full Computation Figenvalues Only
n rsg crw Ratio rsg crw Ratio
32 1.21 0.98  1.23 042 0.15 2.80
64 9.76 6.98  1.40 331 0.57 581
128 | 78.13 51.78 151 | 2741 224 12.24
256 | 620.47 396.74 1.56 | 221.54 8.84 25.06

2.2 The generalized algorithm

Given the matrix tearing scheme defined by (5), it is relatively easy to see how to apply the strategy
recursively to derive an efficient parallel algorithm. Our algorithm, gtreegl, is most easily described
as a generalization of the treegl algorithm of Dongarra and Sorensen [10]. A binary tree represents
the various levels of decomposition: the root corresponds to the first tear into two subproblems, the
nodes at the next level represent a split into four subproblems, etc. Each leaf of the tree represents
two small subproblems which are solved independently, and then combined using the updating
procedure. Thus, each node of the tree represents one rank-one update process, with nodes at
higher levels representing larger subproblems. The updating procedure consists of checking for
and exploiting deflation, computing the eigenvalue of the deflated problem by finding the roots
of the secular equation (8), and computing the new eigenvectors using (9). A parameter, nsmall,
determines the size of the problems that will be solved at a leaf node. Subproblems are recursively
split until the pieces are at most nsmall X nsmall.

An efficient solution method for the individual subproblems at the leaves is an important com-
ponent of gtreeql. The straightforward (EISPACK) approach would probably be to use rsg, which
transforms the problem to a dense standard problem, reduces to tridiagonal standard form using
Householder transformations, and then diagonalizes using QL iterations (tql2). A better strategy is
to use a reduction scheme described by Crawford [8] to first transform the problem to an ordinary
symmetric tridiagonal problem, and then use g2 to diagonalize (or tqll if only eigenvalues are
desired). Crawford’s algorithm uses elementary congruence transformations on 7' and § to reduce
§ to the identity matrix, and orthogonal similarity transformations to “chase” down the diagonal
the fill which results in 7', thus preserving the bandedness of T. Table 1 illustrates the superiority of
this approach. Crawford’s algorithm followed by tgl! (column crw in Table 1) is an O(n?) process
if eigenvectors are not required, while rsg is O(n?). Even if eigenvectors are desired, experiments
indicate that crw (in this case, Crawford reduction followed by tql?) is approximately 50% faster.
There are also considerable savings in storage in using erw instead of rsg.

The basic structure of the update procedure and the root-finder from treegl remains the same
in gireeql. We observe the same convergence behavior in the root-finder as described in {16];
i.e., given an initial guess to the left of the root, convergence is monotonic and asymptotically
quadratic. Choosing an initial guess and solving for a new estimate of the root at each step are
also straightforward to generalize. '

We also made a few modifications to the treegl code which are not directly related to the
generalized problem. In particular, we modified the rank-one update procedure to exploit the
block-diagonal structure of the matrix of eigenvectors. This results in time savings of nearly a



factor of two. We also implemented a version of gireeq! that computes eigenvalues only. In order
to carry out the rank-one updating procedure in this case, it is still necessary to compute the first
and last components of the eigenvectors. This can be done cheaply in the updating step, but we
must carry out the full eigenvector calculation for the smallest subproblems. It is clear that using
only a few levels of decomposition is a mistake for the eigenvalue-only case, since the subproblems
at the leaves would still be relatively large. Finally, we mention that for the eigenvalue-only case it
is best to replace the general O(n?) eigenvalue sorting routine in treeq! by an O(n) merge routine,
again exploiting the special structure of the divide-and-conquer setting.

2.3 Parallel implementation

Qur parallel implementation of gtreegl uses the SCHEDULE package [11] in exactly the same way
as ireeql does. SCHEDULE is a set of FORTRAN-callable routines which allows programmers
to define parallel tasks and a control flow graph indicating which tasks may execute when. The
SCHEDULE software maintains a queue of the tasks ready to execute, and assigns these tasks to
processors as they become available. While the basic control flow graph must be defined statically
(i.e., before user-defined tasks begin execution), SCHEDULE does allow some dynamic spawning
of tasks as well. SCHEDULE has been implemented on many shared memory architectures, and
hence provides some portability for parallel programs.

The static control flow graph for gtreegl is the binary tree described above. Each node represents
a single rank-one update process in which the solutions to two subproblems are combined into the
solution to a problem of roughly twice the size. An update task may proceed as soon as its two
immediate descendents in the tree have completed; it is completely independent of any other update
node in the tree. Recall that a leaf node corresponds to an update also, but that its two subproblems
are solved directly by c¢rw. These crw solves at the leaves are independent tasks as well. Finally,
during a rank-one update each eigenpair of the larger problem may be computed independently.
This relatively fine-grained parallelism is only exploited, however, if there are not enough rank-
one update steps available to keep all processors busy. As we move up the tree, this will clearly
be the case, since there are fewer and fewer update nodes at higher levels in the tree. Thus, if
granularity requirements warrant it, the eigenpair computations—a root-solve and a few matrix-
vector operations to compute the eigenvector—are dynamically spawned by the update process as
further independent tasks. In summary, parallelism in gtreeq! is exploited primarily in three steps:

1. Independent crw solves at the leaves.
2. Independent rank-one update computations at each node.

3. Within a rank-one update step, independent eigenpair calculations.

3 An approach based on bisection and inverse iteration

We describe gireps, a generalization of treps. Although the work of Szyld and colleagues |22, 24] rep-
resents a more sophisticated generalization of treps in many respects, our relatively straightforward
generalization is sufficient for making good comparisons with other approaches. We proceed by
first reviewing treps itself and then describing the modifications required for gireps and discussing

its parallel implementation.



3.1 Review of treps

The ireps algorithm proposed by Lo, Philippe, and Sameh [21] computes the eigenvalues in a given
interval, and associated eigenvectors, of a symmetric tridiagonal matrix 7. It can be viewed as
a variant of the EISPACK routine fsfurm, since it is based on bisection and inverse iteration. In
treps, multisection is used rather than bisection, and there is some re-organization of the code to
enhance vectorization and parallelization. The results reported in [21] from experiments on two
vector multiprocessors (an Alliant FX/8 and a CRAY X-MP/48) indicate that treps can be a very
efficient algorithm on such architectures.

For completeness, and in anticipation of our discussion of the generalized algorithm below, we

list the four basic steps in {reps:

—

. Isolation of eigenvalue clusters by multisection.

2. Extraction of an eigenvalue cluster by bisection (frepsI) or the Zeroin method (treps2).
3. Computation of eigenvectors by inverse iteration.

4. Orthogonalization of eigenvectors in a group by the Modified Gram-Schmidt process.

A cluster is one or more computationally coincident eigenvalue. In the case of a computationally
simple eigenvalue, Step 1 computes an interval known to contain only that eigenvalue. Step 2 then
computes the eigenvalue to the required precision. If a cluster contains more than one eigenvalue,
Step 1 generally stops only when the interval containing the cluster is so small that Step 2 is
skipped. The only difference between the two algorithm variants, treps! and treps2, is the root-
finding scheme used for extracting eigenvalues in Step 2. The groups of eigenvectors mentioned
in Step 4 are defined in terms of their associated eigenvalues. Let Ay < Ay < -+- < A, be the
eigenvalues of T'. Then Ag,...,A; form a group if £ < and

N e e =103 . . . _
Ajip1 —Aj<e=10 lxg%}%(lt1,|+|t,_1,z|),forj k... l—1,

but A1 — A > € and Ap — Ap—y > . In other words, two adjacent eigenvalues are placed in
different groups if they have a gap of at least € separating them. Since the Gram-Schmidt process
is only run on eigenvectors within a group, the size of these groups (or, equivalently, the degree of
separation among the eigenvalues) has a tremendous impact on the overall cost of the algorithm.

3.2 The generalized algorithm

Modifying treps for the generalized symmetric tridiagonal eigenvalue problem Tz = ASz is fairly
straightforward. The main ingredients of the algorithm-—Sturm sequences, multisection, inverse
iteration, Gram Schmidt orihogonalization—all have direct analogs in the generalized case. As
with treps, there are two versions of the algorithm, depending on how eigenvalues are extracted:
gtreps] uses bisection and gireps?2 uses Zeroin.

If pp(A) = det(T — AS), then it is well known that the Sturm sequence defined by

po(A) = 1
pl(A) = tn - )\Su (10)
pi(A) = (fi = dsi)pioa(N) — (fic1i — Asic1)?pi2(A), i=2,...m,



may be used to evaluate p,(A), and furthermore, that the number of sign changes in the sequence
{p:(A)} is equal to the number of eigenvalues smaller than M. It is also well known that the linear
recurrence (10} is more likely to suffer from overflow than the sequence

(i1 — Asic1,)?

(A =t — Asy — i=2,...,n, 11
() gi-1(A) (D)
where )
Pi .
i = , =1,...,n
ai{A) PEY)

Hence, the nonlinear recurrence (11) is usually used in bisection algorithms, with the number of
negative terms in the sequence {¢:(A)} giving the number of eigenvalues less than A. Note however
that in order to use a root finder such as Zeroin to extract an isolated eigenvalue, the recurrence
(10) must be used because one needs a function p,(A) that is zero at the root. If bisection is
used to extract A then the recurrence (11) may be used throughout. Note also that the term
(i1, — A8i~17)? in both (10) and (11) must be re-computed for each A. In the standard eigenvalue
case, the analogous term is simply t?——l,z’ and thus can be computed once and for all and saved in
an extra n-vector.

As stated, the major components of treps remain the same in our generalized algorithm. We
follow exactly the four steps listed in §3.1. The grouping criterion used by [21] is ad hoc though
effective and seeks to group eigenvalues together if a perturbation of the matrix roughly of order
1073||T|| could bring the eigenvalues together. Following this idea, we choose to group eigenvalues
together if a perturbation of T on the order of 1073||T| ||S|| or less could bring the eigenvalues
together. So, A; and A; will be members of the same group if |A; — A;| < [|SY/2ES~1/2|| where
IIE] < 10~2)|T|| ||S]|. This is implied by the criterion |A; — A;] < 1073||T{|condy(S). In our code
we actually use Gershgorin bounds for condz(S) and a cheap estimate for [|T]| (similar to [21]).

3.3 Parallel implementation

The original freps algorithm was developed for vector multiprocessors, so considerable attention
was paid to vectorization issues. Since our first target machine is a shared memory multiprocessor
without vector capability, our parallelization of gtreps is somewhat simpler. Vectorization could be
added in a manner completely analogous to what is done in treps. We exploit parallelism in three
ways in gireps:

1. Independent Sturm sequences are evaluated in parallel during a multisection step. FEach
multisection step generally divides a given interval into P 4+ 1 subintervals (requiring P new
Sturm sequences), where P is the number of available processors. Each resulting subinterval
that still contains more than one eigenvalue (and has not collapsed into a cluster of coincident
eigenvalues) is multisectioned again.

2. Extraction of a single eigenvalue and computation of an associated eigenvector by inverse
iteration is a single independent task. Obviously, these can be done for different eigenvalues
at the same time.

3. The orthogonalization step for a group of m eigenvectors requires O{mn?) operations. The
dominant loops can easily be parallelized so that the granularity of a single task is O(mn/P).



4 Numerical experiments

In this section we give numerical results to illustrate the performance of gireegl, gtreps!, and gtreps?2.
In addition to parallel performance on a single large problem, we report the accuracy and sequential
performance for each method as problem size varies. For the purposes of comparison, sequential
data for crw is also included. _

Three test problems T'x = ASx are used. Problem 1 is a model problem (e.g., representing a
simple finite element model for longitudinal vibration of an elastic bar), with T' = tridiag(—1,2, —1)
and S = tridiag(1,4,1). Problem 2 is a perturbation of Problem 1, with the main diagonals of T
and 5, and the off-diagonals of T', perturbed by a random variable uniformly distributed in [-.5,.5].
Problem 3 uses a random T with #; and ¢;_;; drawn from a uniform distribution in [—1,1], and
§ = tridag(1/4,1,1/4). Most of the data reported is based on the first two test problems. In
Section 4.3 we report performance on up to 100 different cases of of Problem 3.

Both methods we consider here construct explicit eigenvector bases and hence are sensitive to
the conditioning of the right hand matrix S. In order to avoid spurious ill-conditioning due to
scaling, we first diagonally scale the matrix pencil T — AS so that s; = 1. This guarantees that
condz(§) is within a factor of 2 of the minimal possible over all diagonal scalings of § [27]. In turn
this would yield a final eigenvector basis that is nearly as well-conditioned as is feasible over all
diagonal scalings of the original matrix pencil.

All the experiments reported here were performed on a Sequent Symmetry $81. Double preci-
sion, under the ATS FORTRAN compiler, was used throughout. All times reported in the tables
below are in seconds, and each represents the average of at least three runs. Variation from run
to run was small: never more than 5%. The gireeql parameter nsmall is set to 32 unless otherwise
indicated. For gtreps! and gtreps2 we force all eigenvalues to be in a single group for the pur-
pose of orthogonalization, unless otherwise indicated. Section 4.5 looks specifically at the issue of
orthogonalization in gtreps.

The remainder of this section is organized as follows. Section 4.1 summarizes the accuracy
of each method, reporting measures of the size of the residual and of the orthogonality of the
eigenvectors. Sequential performance is discussed in §4.2, and parallel performance of the basic
methods is reported in §4.4. Finally, in §84.5-4.7 we discuss three important issues which can have

a significant effect on the performance of these algorithms.

4.1 Accuracy

It is important that accuracy—measured in the residual and in orthogonality of the eigenvectors——
be preserved as problem size grows.  Tables 2 and 3 show that both measures of accuracy are
quite good for the problem sizes considered. There does appear to be a slight loss of orthogonality
with gireeql and crw. We are currently investigating ways to improve the orthogonality of the
eigenvectors computed by gireegl (e.g., by improving deflation criteria and the accuracy of the root
solver). Note that orthogonality for the gtreps methods is very good, but this depends entirely
on the orthogonalization step mentioned in §3. Below (in §4.5) we consider the effect of changing
the logic used in deciding which eigenvectors belong in the same group. Finally, we remark that
without diagonal scaling gireps2 fails for the largest case of Problem 2. As mentioned above, the
linear recurrence on which gireps? is based suffers from the possibility of overflow, and that is
exactly what happens in this case. With scaling we can avoid overflow for this problem, but itis a

concern for other problems.



Problem 1

Problem 2

Table 3: Orthogonality, max; ; [xtSx; —

Problem 1

Problem 2

Table 2: Residual, max; ||Tx; — XA 5%;|]>.

n

crie

gtreegl

gtreps!

gireps?

32
64
128
256
512

9.0x10~18
1.4x1071
2.4x10714
4.0x10™1
7.3x10~14

9.0x10-15
7.9x10713
8.6x10715
9.4x10"1°
9.8x10~158

4.5x1071*
2.2x10~1
5.2x10~13
7.0x10713
1.3x10712

3.8x10715
1.0x10™14
1.2x10~14
3.0x10~1¢
1.9x10~12

32
64
128
256
512

7.5x10715
1.3x10™14
2.4x10~14
5.3x10~14
8.2x10~14

7.5x1071°
1.1x1074
1.2x10714
1.2x10-14
2.1x10-14

1.1x10714
2.1x10714
5.3x10714
1.7x10713
9.0x10712

3.2x10™1
4.0x10"13
8.0x10-1°
1.4x10-1
1.0x10712

éijl'

n

cri

gtreegl

gtrepsl

gireps?

32
64
128
256
512

6.4x10°15
1.2x10~4
2.0x10~14
3.8x10~1
7.1x10714

6.4x10™18
1.8x10-14
3.6x10~14
2.5x10713
5.9x10712

6.7x10"16
1.1x10~15
1.1x10~15
1.6x10715
3.1x10718

6.7x10716
6.7x10716
1.7x10718
1.7x10~15
2.4x10718

32
64
128
256
512

3.3x10~18
9.8x10-15
1.8x10-14
3.8x107 14
5.7x10714

3.3x10-15
6.7x1071%
1.4x10°14
1.3x1071
8.2x10714

6.7x10"16
6.7x10718
1.4x10715
2.0x10715
4.2x10715

4.4x10716
6.7x10716
1.6x10"15
1.7x10718
3.1x10718
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Table 4: Sequential performance: time and speedup over erw.

n crw gtreeg! gtreps! gireps2

32 0.98 1.02 1.0 1.50 0.7 0.63 1.6
64 6.98 270 2.6 6.90 1.0 3.56 2.0
Problem 1 | 128 51.78 | 11.55 4.5 37.08 14 2428 2.1
256 | 396.74| 60.49 661 228.02 1.7 179.35 2.2
512 | 3051.32 | 390.44 7.8 | 1586.16 1.9 1374.09 2.2
32 0.99 1.02 1.0 1.49 0.7 0.65 1.5
64 6.88 3.72 1.8 6.85 1.0 3.65 1.9
Problem 2 | 128 50.99: 1691 3.0 36.96 1.4 2473 2.1
256 | 392.35| 89.17 447 227.89 1.7 180.41 2.2
512 1 3044.46 | 509.37 6.0 | 1569.31 1.9 | 1375.21 2.2

4.2 Sequential performance

When comparing two parallel algorithms it is important to know how much of the advantage of one
over the other is due to parallelization and how much is simply due to better sequential performance.
Hence, before turning to parallel results, we briefly discuss performance on a single processor.

The data in Table 4 indicate a strong advantage for gtreeql over the other methods when all
the eigenvalues and eigenvectors are computed. The advantage is greater for Problem 1 than for
Problem 2 because of the significant amount of deflation occurring in this problem. For example,
when n = 512 there are 549 deflations with Problem 1 but only 124 with Problem 2. Recall that each
time a deflation occurs, an eigenpair is computed at essentially no cost. The other three methods
take no advantage of deflation, so their results are essentially the same for the two problems. Even
without substantial deflation, the computational complexity of gtreegl appears to be something less
than O(n3), so that its advantage over the other methods increases with n. This parallels the results
obtained by Dongarra and Sorensen with treegl, where as a sequential algorithm it outperformed
tql2. _

It must be pointed out that the time required by gtrepsi and gireps? is dominated by the
orthogonalization step as n grows. For example, on Problem 1 with n = 128, 256, and 512,
the percentage of time spent in orthogonalization is 23.7%, 66.1%, and 94.5%, respectively. We
comment briefly on the effect of changing orthogonalization strategies in §4.5 below. Note also
that the performance of gireegl can be sensitive to nsmall, the size of the leaf problems. This
value is fixed at 32 for the data in Table 4, which means that no splitting occurs at all for the
smallest case (i.e., gireegl reduces to crw with some extra overhead). Varying nsmall can improve
the performance of gireeql slightly for small n. We comment on the effect of changing nsmall in
§4.7.

Turning to the case where only the eigenvalues are computed, we see from Table 5 that crw
is consistently the fastest sequential method. It enjoys an advantage of at least a factor of two
over gtreeql and of nearly ten over girepsl; gireps? is somewhat more competitive due to its more
efficient root finder, but still is slower than crw by about 20%. There is some evidence that gfreegl
becomes more competitive as n grows, when the relative cost of the leaf solves becomes smaller.
For an even larger problem (n = 1024) the ratio of erw time to gireeql time on Problem 2 is 0.52.
Recall that even when eigenvectors of the full problem are not required, gtreeql must still compute
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Table 5: Sequential performance (eigenvalues only): time and speedup over crw.

n crw gtreegl girepsi gireps2

321 0.15| 1.02 0.15 1.09 0.14 | 0.22 0.68
64 | 0571 2.29 0.25 410 0.14 | 0.78 0.73
Problem 1] 128 | 2.24 | 6.56 0.34 ] 1561 0.14 | 2.82 0.79
256 | 8.84 | 19.65 0.45| 60.29 0.1510.96 0.81
512 | 34.71 | 64.64 0.54 | 240.38 0.14 | 42.52 0.82
327 0.14| 102 0.14 1.10 0.13 | 0.24 0.58
64 | 0.56 | 2.87 0.20 408 0.14 | 0.85 0.66
Problem 2 | 128 | 2.17| 852 0.25| 15.50 0.14 | 3.14 0.69
256 | 8.64 | 26.84 032 59.96 0.14 | 12.02 0.72
512 | 34.38 | 84.64 0.41 | 235.59 0.15 | 47.14 0.73

Table 6: Performance of the methods on a set of random matrices: residual and orthogonality.

Residual Orthogonality
Method Min Max Ave Min Max Ave
crw 2.6x1071  5.5x107H 3.7x107% | 2.3x1071%  3.6x10° 1 3.0x10-1°

gtreegl | 3.7x10"1*  1.9x10711 6.7x10713 | 2.3x10"¢  1.5x10"1 5.4x10-13
girepsl { 4.0x1071  7.5x1071% 2.6x10~1% | 7.8x1071% 1.8x1071% 1.1x10713
gireps2 | 1.8x10711  5.9x10713  1.1x10-1% | 8.9x1071%  1.6x1071% 1.1x10-1%3

eigenvectors for the leaf problems, since the first and last components of each eigenvector are needed
in order to perform the update step. Hence, it is likely that splitting the problem down to smaller
leaf problems (i.e., using more divide-and-conquer levels) would improve the performance of gtreegl
for the eigenvalue-only case. Section 4.7 looks briefly at this possibility.

4.3 Performance on a set of random matrices

In order to compare the performance of the methods considered here on a slightly wider set of
problems, we tested each method on a set of matrix pencils 7' ~ AS, where t; and #;_;; are
randomly distributed in [-1,1], § = tridag(1/4,1,1/4), and n = 256. Tables 6 and 7 give the
results. Table 7 also lists the number of problems that were solved by each method. Of the
100 cases tried, gtreegl got very poor answers on four of them due to a failure to converge in the
root-finder. These are not reflected in the tables. We are working on a more robust strategy to
handle cases such as these (see [3]). Notice that the accuracy for the current version of gtreegl is not
as good as for the other methods, but that the time is substantially better. There is considerable
deflation with these problems, and that accounts for the significant savings in time with gtreegl.
The parallel performance of the methods on this set of problems is the same as on the other two

test problems.

4.4 Parallel performance
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Table 7: Performance of the methods on a set of random matrices: time.

Time
Method nprobs | Min Max Ave
crw 25 | 420.7 441.2 4325
gireegl 96 | 25.5 33.2 295
gtrepsi 100 | 227.2 2284 227.8
gtreps2 100 | 179.2 180.2 179.8

Table 8: Parallel performance: time, speedup over one processor time, and parallel efficiency.

gtreeql gtrepsl gireps?

P | Time Spd Eff | Time Spd Eff | Time Spd Ef

13904 - - 1586.2 - - 113741 - -

21978 1.97 0.99| 7v90.7 2.01 1.00| 6923 198 0.99

Problem 1| 4 | 101.5 3.85 0.96 | 394.4 4.02 1.01! 3459 3.97 0.99
8| 340 7.23 090 1994 7.95 0.99| 1772 7.76 0.97

16 | 32.0 12.22 0.76 | 1014 15.64 0.98 89.7 15.32 0.96

1| 509.4 - - i 1569.3 - - | 1375.2 - -

' 21259.0 1.97 098 | 7883 199 1.00| 687.0 2.00 1.00
Problem 2| 4 | 131.6 3.87 097 3955 3.97 0.99! 3470 3.96 0.99
8| 669 7.61 095 | 2003 7.8 098 177.1 177 0.97

16 | 36.6 13.93 0.87 | 102.7 15.28 (.95 90.8 15.15 0.95

Table 9: Paralle] performance (eigenvalues only): time, speedup over one processor time, and
parallel efficiency.

1.8  7.19 090} 309 7.63 0.95 74 636 0.80
6.1 13.88 0.87 | 164 14.39 0.90 4.5 1047 0.65

gtreeql girepsl gireps?
PiTime Spd Eff | Time Spd Eff | Time Spd Eff
1] 64.0 - - 12404 - - 42.5 - -
2] 343 1.87 0931194 201 1.01| 213 2.00 1.00
Problem 1| 4| 187 3.42 0.86| 59.4 4.04 1.01| 11.1 3.83 0.96
8| 10.7 6.00 0.75§ 305 7.8%8 0.99 6.5 6.53 0.82
16 7.6 844 0.53| 155 1550 0.97 3.6 11.81 0.74
1| 84.6 - - 12356 - - 47.1 - -
2 447 1.89 095 |117.7 200 100} 24.9 1.89 0.95
Problem 2| 4| 23.8 3.55 0.80 61.2 3.85 0.96| 135 349 087}
8
6

—
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In Tables 8 and 9 we summarize the parallel performance of gireeql, gtrepsi, and gtreps2. Time
in seconds, parallel speedup, and parallel efficiency (Spd/P) are given for P = 1, 2, 4, 8, and 16
processors. Note that speedup is measured relative to performance of the same code run on a
single processor. If we compared timings with the best serial code (e.g., erw in the eigenvalue-
only case), the speedups would be very different. We report speedup in this way so that the
sequential computational advantages of one algorithm over against another are isolated from parallel
performance issues. Since we give the actual time in all cases, the fastest overall method is still
easily seen from the data.

It can be seen that the parallel efficiencies for gireegl are relatively worse on Problem 1 than
on Problem 2. This is primarily due to the greater number of deflations occurring in the first
problem, leading to an unbalanced load and reducing the proportion of work that parallelizes well.
If deftation occurs in an extremely nonuniform manner, the computational costs of the update steps
at a given level may vary by as much as a factor of two. For example, on Problem 1, with n = 256,
six of the leaf nodes have 16 deflations each while the other two nodes have no deflations.

In comparing Tables 8 and 9, it is also clear that parallel efficiencies are better when the
eigenvector calculations are done. The reason is simple: a greater percentage of the work parallelizes
well when the eigenvector calculations are required (orthogonalization being the dominant example).
Stated another way, the proportion of the computation done serially is generally not significant when
the eigenvector calculations are required. For example, when multiple eigenvalues are encountered
in gtreeql, each deflation requires O(n} work to carry out & Givens rotation. This is not currently
parallelized, and is not a performance bottleneck—uniess we have O(n) deflations, as in Problem 1,
and the remaining computation is also O(n?), as it is in the eigenvalue-only case. Thus, we see
parallel efficiencies deteriorating very rapidly for gtreegl on Problem 1 when no eigenvectors are
computed. It is possible to parallelize the deflation computation to some extent, but it would not
be nearly as straightforward as the parallelization we have done thus far.

Overall, gtreeglis fastest if all the eigenvectors are required. However, as we have seen in §4.2
this advantage is entirely due to its sequential efficiency. In fact, the two gireps methods parallelize
more efficiently. This suggests a scalability advantage for gtreps, in that more processors can be
used without seriously degrading the parallel efficiency. H only eigenvalues are desired, gtreps? is
fastest (when it works); gtreegl is faster than girepsi, but again we see better parallel efficiencies

for the latter.

4.5 Orthogonalization in gireps

As we have seen, gtreps orthogonalizes each eigenvector against the other eigenvectors in the
same group. Recall that a group is defined in terms of eigenvalue separations of at least ¢ =
8||T|jcondy(S), where 8§ = 1073 by default. With this default choice for ¢, for our two test problems
and n = 512, all eigenvalues are in a single group, so that all n eigenvectors are orthogonalized
against one another. For smaller n, a large enough gap occurs between a few of the eigenvalues
that some smaller groups are defined. The result is significant savings in the cost of orthogonaliza-
tion. However, for the purposes of the data reported in §§4.1-4.4 we forced all eigenvectors to be
orthogonalized against each other {essentially setting § = oc), so that the algorithm behaves in as
uniform a way as possible as n is increased.

Obviously, the performance of gtreps can be quite sensitive to the grouping of eigenvalues. To
get a feel for the effect of changing the heuristic used to define the groups, we re-ran gtreps? on
Problem 1 with n = 256 and for various choices of § (see Table 10). The last column in Table 10
lists the number of groups that were defined for a given choice of §. There is a very clear effect
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Table 10: Sequehtial performance of gireps2 on Problem 1 (n = 256) as grouping criterion varies.

& Residual Orthogonality Time Ngroups
1072 [ 3.0x107  L7x107"" 1779 1
1072 | 1.5x107"2 1.5x10713 28.3 183
107 | 1.5x1073  3.2x10712 17.3 249
107% | 1.5%10713 5.7x10711 17.2 256

in both time and orthogonality as é is reduced. For this problem, where the entire spectrum is
contained in a relatively small interval, it appears that full orthogonalization is required to achieve
eigenvectors that are orthogonal to near machine precision. For a problem which has well separated
eigenvalues on the other hand, gtreps could take advantage of this and realize significant savings in
orthogonalization.

4.6 Granularity in gireegl

As described in §2.3, there are three main parallel tasks in our implementation of gtreegl: inde-
pendent crw solves of the leaf problems, rank-one update computations, and eigenpair calculations
(root-solves, etc.) within an update. The latter two need a little explanation. Since the goal is to
balance useful work as much as possible, if there are enough rank-one updates on a given level of
the control flow tree for each processor to have at least one, then no further parallelizing of the
root-solves within an update is necessary. However, if there are not enough update tasks to go
around, the root-solves are distributed among the processors. In order to keep the granularity of
these root-solving tasks high, a single task consists of as many root-solves as possible. For example,
with 16 processors we divide the root-solves needed for the largest update step into 32 groups or
“bins”; at the next level in the tree each of the two updates divides its root-solves into 16 bins
of more or less equal size; and so on. Notice that if deflation occurs non-uniformly, it is possible
that the bins defined by one update node are somewhat smaller than those defined by another. In
practice this does not appear to be a serious problem. It is extremely important, however, to define
a sufficient total number of bins, especially at the root node. For example, on Problem 2 with
n = 512, gtreeql spends nearly 65% of its total (sequential) time executing the last update. If the
number of total bins generated at that point is set to 20 instead of 32, then the time taken by gtreeql
on 16 processors increases from 36.6 to 53.1 seconds. Setting the total number of bins equal to
the number of processors might seem like a natural choice, but we find that havirg approximately
twice as many bins as processors is more efficient since it reduces the potential load imbalance due
to bins of different sizes.

4.7 Divide-and-conquer depth in gtreeq!

It is very difficult to determine an optimal size for the leaf problems solved by gireegl. If such an
optimum value exists, it must depend on the machine (e.g., number of processors, memory config-
uration, communication and synchronization costs, etc.}, the problem (e.g., amount of deflation),
and the desired solution (e.g., whether eigenvectors are required). Qur experience is that for the
class of machine we are considering here, choosing nsmall so that the number of leaves is approx-
imately the same as the number of processors is a reasonable choice. (This strategy lies behind
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Table 11: Time for gireegl on Problem 2 for various values of nsmall.

nsmall

n 8 16 32 64
64 2.97 3.04 3.72 6.88
Full computation | 128 | 1548 15.61 16.91  23.29
256 | 86.06 86.06 89,17 101.94
512 | 502.96 501.78 509.37 533.53
64 1.75 1.84 2.87 6.88
Eigenvalues only | 128 6.36 6.61 8.52 16.76
256 1 22.60 23.08 26.84 43.59
512 | 76.06 77.01 B84.64 117.83

the choice of nsmall = 32 in the data reported above, since our target configuration is n = 512
and 16 processors.) The data in Table 11 illustrate the sequential behavior of gtreeql on Problem 2
as nsmall varies. One can see that there is some advantage to smaller values of nsmall, especially
for small n and for the eigenvalue only case. This is to be expected, since reducing nsmall tends
to increase the advantage in computational complexity due to the divide-and-conquer approach.
However, for larger n, and for multiple processors, the differences are really not that significant.

5 Summary and Conclusions

In this paper we have described generalizations of two well known algorithms for the symmetric
tridiagonal eigenvalue problem. The generalized algorithmns, gireegl and gireps, compute eigenpairs
of a generalized symmetric tridiagonal eigenvalue problem Tx = ASx. We have compared the
performance of these two algorithms on two test problems of varying sizes, and for varying number
of processors on a shared memory multiprocessor. The results of the numerical experiments can be

summarized as follows:

Accuracy. Both algorithms achieve accuracy near machine precision on the problems tested. How-
ever, there is some loss of orthogonality with increasing problem size for our present imple-
mentation of gireeql; this issue is discussed in detail, with suggested improvements, in {3]. The
gireps algorithms require an expensive orthogonalization step unless eigenvalues are grouped
and separated. Note that the spectrum for both test problems lies in a relatively small in-
terval ({0,2] for Problem 1 and [-.12,2.49] for Problem 2), and that the eigenvalues have
a quasiuniform distribution in the sense that they do not appear in clusters relative to the
grouping criterion of gitreps. Problems with qualitatively different eigenvalue distributions
may yield different results. In fact, a significant difference between divide-and-conquer meth-
ods and bisection methods seems to be that the latter can take better advantage of clustering
by avoiding unnecessary orthogonalization. With divide-and-conquer, each subproblem must
be solved as accurately as possible (with full orthogonalization) because the algorithm cannot
know what the eigenvalue distribution of the global problem is going to be. Finally, note that
gtreps? can suffer from overflow problems for large n.
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Sequential performance. If eigenvectors are needed, gireeql is the most efficient algorithm. If
the orthogonalization costs can be reduced, gireps is competitive as well. For the eigenvalue
only case crw is the fastest, although gtreps2 and gireeql become competitive as problem size
grows.

Parallel performance. The gireps algorithms have better parallel efficiencies than gtreeg! (com-
paring time for the same code on 1 and P processors). The parallel performance of gtreegl
is sensitive to the depth of the divide-and-conquer tree, the granularity of root-finding tasks,
and the pattern of deflation. Because of its advantages as a sequential algorithm, gtreegl
is still superior in most of the cases tested. However, for fixed problem size, our data sug-
gests that adding processors will benefit gtreps relatively more than gtreegl. Further analysis
and experiments are needed to predict relative performance in terms of scaled speedup (i.e.,
problem size growing with the number of processors).

A goal of this research is to develop “rules of thumb” which help decide which approach is
best—as a function of problem size, number of eigenpairs needed, distribution of spectrum, and
machine characteristics. Toward that end, we plan to consider these algorithms on problems with
qualitatively different eigenvalue distributions. Other areas for future work include a parallel version
of Crawford’s algorithm, and implementations on a distributed memory architecture.
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