A Visual Simulation Support
Environment Based on the DOMINO
Conceptual Framework®

E. Joseph Derrick and Osman Balci

TR 92-44

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

August 17,1992

*Cross-listed as Systems Research Center report SRC-92-008.

ABSTRACT

The purpose of this paper is to present a Visual Simulation Support Environment (VSSE)
based on the multifaceteD cOnceptual fraMework for vIsual simulatioN mOdeling (DOMINO).
The ever-increasing complexity of visual simulation model development is undeniable. There is
a need for automated support throughout the entire visual simulation model development life
cycle. This support is furnished by the VSSE which is composed of integrated software tools
providing computer-aided assistance in the development and execution of a visual simulation
model. The VSSE has been jointly developed with the DOMINO. Its architecture consists of
three layers: hardware and operating system, kerne! VSSE, minimal VSSE, and VSSEs. This
paper focuses on the minimal VSSE toolset. Evaluation of the VSSE shows that it adequately
satisfies all of its 13 design objectives.

CR Categories and Subject Descriptors: 1.6.7 [Simulation and Modeling]: Simulation
Support Systems—Environments; 1.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event, Visual; D.2.2 [Software Engineering]: Tools and Techniques—Computer-aided
software engineering

Additional Key Words and Phrases: Animation, visual simulation, visual simulation model
development environments, visual simulation support environments

—ii—

TABLE OF CONTENTS

Page

ABSTRAC T oottt eetstte st e s st ssbesebese st et sse s s e s s s SR sna s shs R e S aaea et s e e e e s e SR e bbb TR st ii
1. INTRODUGCTION ...oooiiiies i vrriaeeseeisetesesiseesrensssasstsnesssasesssssssssbs sy sssseass ot smsssssssssss sbsssosssnosssrisss 1
2. VSSE DESIGN OBJIECTIVES.....oo o oieetctreeeconetsssresrasassrsesssanssssseosnesubetnasassnssbassrsnssassasassssssns 2
3. VSSE ARCHITECTUREcoveiititetisiie e ssssssiestesesasaes st cas shsste st st s sstasesmcmsboasa s s s asssarssssansssesie 3
3.1 Layer 0: Hardware and Operating SySLEImM........oivuniueiiimiiininmmimiisssss st s 3
3.2 Layer 1: Kernel VSSE ..ottt s s s 4

3.3 Layer 2: Minimal VSSE ..o 5
3.4 Layer 3: VESES oottt s 5

4. MINIMAL VSSE TOOLS ..o ooeeteieenetierestseeeaesiseas seesss st st st e sr s saeemt st b s st st st s s st s s 5
A1 IMOGEL GENETALOT c.veevveeevveeevereeesseseesstssseneesersessstesaessssare e searsssntssrtsas s srssisnoeaesssssenssensransassntostins 6
4.1.1 TMAge BdIOT ..ottt st et bsm s et 6

.1.2 MOAEL EQIOL «eeenviieieitiieiieiireeieereesreissecessesssssbssnas s s b sssmasss e s st asstaesuaeprnasrsrsidsansssassassesasns 3

4.2 MOGEL ANALYZETvovveirieieiiiiciiniirestresessne s s e e et b et 14
42.1 Analyzing Class SPeCifiCationscouereereecemmeniinmiiinss s i4

4.2.2 Analyzing Logic SPECIfICAONS .u.vuvvrvivrieiriires ettt 15

42.3 Analyzing Image SPecifiCations.cceereivesirnescrrismimimiiiiiii s s 15

42.4 Analyzing Layout Definition and Object InStantiationooevivesresinnmnnsicnesscnsnes 15

4.2.5 Analyzing DOCUMENTAHON.cciveiirirrirsiesseiememrsrsissssse st 16

4.3 MOAEE VETITIET o.oveiesieiecie e eetiert e ereeee e st e sa s rb e s basesa e s s e s sr e s b s et a s s a s s a s st e nn st 16
4.3.1 TTACE MAMAZET. ..o ovvvveeserereseeereneseserremsstrtsese e se et s s e s ar s pasedsa e s h b a et as st is 16

4.3.2 EXECULON PrOfiler .oooviiiriieeietecerieie et sbs s e st et bttt s 18

4.4 MOAC] TTANSIALOT . ot veveereiaiesrireraeireseasretestesessesssss e reresrreassesnasssbes e contsat et s bssb s sen s n st epsasesanss 18
4.5 VISUAL STIMULALOT covveiieiiiiieereeerenessrseasee e essesrssraesssssessns e st rsbae s nessrabasntesaarhesnnassassesncesss 19
A6 OTNET TOOIS 1reeeeeerreeeieeetetevressererrasssssesesbestesesse st e e s bes s et sers s b b e srar s e e e e s s bt sa b e s s s s e b a s st ssr s 23
4.6.1 Project MANAZET ...c.ceevviriuieeiiisbrsssssreis s e seob et sttt s e s bt 23

4.6.2 Premodels MANGZETo uviiiiiriesisiienessis s sesse st st et b st s b s s e sttt gt st 23

4.6.3 ASSIStANCE MANAZET .vrvereeeesererereesirirsssesstrs e s ss e ess sssie st sai s s b e sas et st 24

4.6.4 Second Category Minimal VSSE TOOIS ... 25

S, EVALUATION. ... coooeeeieeesteesers st ereeseseseseesebtstesssssasasssaebasbess s baabassnssssseter e b srbbssas s stnr e s s b asgsacans 25
6. CONCLUDING REMARKScoioiieieintemricrirririssit s e ss s seressassssensasss bt sneassrnssassysasassesssunens 32
ACKNOWLEDGEMENTSooottovvmrteessetterersesesteresisssssessssases e esssassnensestsasess ssssssns sasssssssssssnsssesssns 33
REFERENCES ..o ovoeteeeeetcie et eoveesssssesseset st sstasesesmenensessssassssissesbessaserssssassesstosest bhasatsnsssssisasssnstsuesneoniss 33

1. INTRODUCTION

The ever-increasing complexity of visual simulation model development is undeniable. A simu-
lation programming language supports only the programming process—one of 10 processes in the
life cycle of a simulation study [Balci 1990]. There is a need for automated support throughout the
entire visual simulation model development life cycle. This support can be provided in the form of
an environment composed of integrated software tools providing computer-aided assistance in the
development and execution of a visual simulation model.

A collection of computer-based tools makes up a development environment if and only if the
tools are highly integrated and work under a unifying Conceptual Framework (CF). Therefore, to
develop such an environment, a CF is needed. However, the development of a CF requires an envi-
ronment for experimenting with and evaluating the CF. Hence, the CF and the environment need to
be developed jointly. This joint development has spanned between 1984 and 1992, and resulted in:
(1) creation of the multifaceteD cOnceptual fraMework for vIsual simulatioN mOdeling (DOMINO)
[Derrick 1992; Derrick and Balci 1992a}, (2) Visual Simulation Support Environment (VSSE), (3)
Visual Simulation Model Specification Language (VSMSL) [Derrick 1992; Derrick and Balci
1992b], and (3) achievement of the automation-based software paradigm [Balci and Nance 19870b].

This paper describes the VSSE developed under the DOMINO based on the experience gained
~inthe Simulation Model Development Environment (SMDE) research project [Balci 1986; Balci and

Nance 1987a, 1992]. The related work is not described herein in order not to prolong the length of
this paper. The reader is recommended to study the above references, especially the companion
paper on DOMINO [Derrick and Balci 19924a], to obtain the related information including a survey
of the literature.

The rapid prototyping technique has been used in the VSSE’s evolutionary joint development
with the DOMINO. Many VSSE tool prototypes have been developed, implemented, experimented
with, and documented. Some prototypes have been discarded; however, the experience and knowl-
edge gained through experimentation with those prototypes have been kept.

The VSSE is developed by using the C programming language, SunView graphical user inter-
face [Sun Microsystems 1988], Sun programming environment, and INGRES relational database
management system Embedded QUEry Language/C (EQUEL/C) [Sun Microsystems 1986]. It

“encompasses more than 50,000 lines of documented code and runs on a Sun color workstation.

The purpose of this paper is to describe the VSSE based on the DOMINO CF. The design
objectivés of the VSSE are introduced in Section 2. Section 3 presents the VSSE architecture. Mini-
mal VSSE toolset is described in Section 4. Section 5 contains the evaluation of the VSSE.

Concluding remarks are given in Section 6.

2. VSSE DESIGN OBJECTIVES

This section delineates the VSSE design objectives in no particular order. The design objectives
for the VSSE are multi-directed. Some relate to the evaluation of the DOMINO; others relate more
directly to VSSE capabilities, apart from the CF. Objectives are grouped by an associated tool when
appropriate.

VSSE (Complete toolset):

Objective 1: Provide a fully functional and highly integrated toolset under the DOMINO concep-
tual framework. Accomplish the integration and communication among the tools
using (primarily) a relational database (e.g., INGRES) representation of the specifica-
tion.

Objective 2. Provide a user interface that satisfies the nine usability principles for interfaces
[Nielsen 1990]: enable simple and natural dialogue, speak the user's language, mini-
mize the user's memory load, promote consistency, provide feedback, provide clearly
marked exits, provide shortcuts, supply good error messages, and prevent errors.

Objective 2 supports usability of the VSSE.
Model Generator:
Objective 3. Provide means for storing model component information in a library.

Objective 4. Provide suitably implemented mechanisms for inheritance of class attributes and
model component logic specifications.

Objectives 3 and 4 support the modeling methodology objective of reusability [Nance 1981, 1987].

Objective 5. Provide sufficient capabilities for attribute access and communication between model
compornents to include message passing and methods.

Objective 6. Provide detailed querying capabilities for displaying specification status and progress
to modelers, and supporting methods of informal analysis verification techniques.
Display query results in appropriate tabular or graphical forms.

Objective 7. Provide graphically based means for the flexible hierarchical definition of model stat-
ic and dynamic structures. This definition should be characterized by ease and
simplicity of movement between the levels of the hierarchy.

Objective 8. Provide an expressive (able to specify the various model component interactions)
specification language which uses English-like expressions like the HyperTalk
language [Winkler and Kamins 1990].

Objective 9. Provide the ability to translate model component logic specifications directly into the
target language and eliminate the need for modelers to interact at the target code
level. Relate translation errors to the modeler-defined logic specification, not the
target language.

Objective 10. Provide extensive use of symbol tables containing specification data from the rela-
tional database, supporting enhanced static analysis techniques during the translation
process.

Objectives 6 and 10 support correctness and testability.

Model Analyzer:

Objective 11. Provide completeness and consistency diagnostic checks on the model specification
and documentation. Use the relational database representation as the basis for
analysis. Tailor the analysis to the unique features of the DOMINO.

This objective supports reliability and correctness.
Model Verifier:

Objective 12. Provide execution tracing with appropriate means of effectively managing the trace
: data and relating runtime errors to the modeler-defined specification. Use the rela-
tional database for storage and retrieval of the trace data.

Objective 13. Provide the means for assertion checking as an additional facility for dynamic analy-
sis.

Objective 14. Allow the creation of performance reporting upon runtime execution by providing
execution profile reports.

Objectives 12, 13, and 14 support correctness, reliability, and testability.
Model Translator:

Objective 15. Provide automatic creation of the executable model from the modeler-defined spec-
ification, achieving the Automation-Based Paradigm [Balci and Nance 1987b].

This objective supports maintainability, reusability, and adaptability.
Visual Simulator:

Objective 16. Provide for the visualization of the model from any desired runtime context. Move-
ment between contexts should be simply executed.

Objective 17. Provide the ability to inspect mode! component atiributes or modeler-defined perfor-
mance measures at any instant during the visualization of the running model.

Objective 18. Provide the ability to Tun the simulation model in the background without animation,
producing statistical analysis reports.

Objectives 16, 17, and 18 support testability and correctness.
3. VSSE ARCHITECTURE

Figure 1 depicts the VSSE architecture in four layers: (0) Hardware and Operating System, (1)
Kemnel VSSE, (2) Minimat VSSE, and (3) VSSEs.

3.1 Layer 0: Hardware and Operating System

A Sun computer workstation constitutes the hardware of the VSSE. The UNIX SunOS operating
system and utilities, SunView graphical user interface, and INGRES relational database management
system constitute the software environment upon which the VSSE is built. Nance et al. [1984] eval-

uate the UNIX operating system as a foundation for building a simulation environment.

Model
Translator

Model
Verifier

Model
Analyzer

Visual
Simulator

Model
Generator

Kernel VSSE

o]

Hardware and
Operating System

Electronic
Mail
System

Assistance
Manager

Document
Preparation
System

Premodels
Manager

Kearnel Interface

Project
Manager

Minimal VSSEs

VSSE

Figure 1. Visual Simulation Support Environment Architecture

3.2 Layer 1: Kernel Visual Simulation Support Environment

Primarily, this layer integrates all VSSE tools into the software environment described above. It
provides INGRES databases, communication and run-time support functions, and a kernel interface.
Three INGRES databases occupy this layer, labeled project, premodels, and assistance, each
administered by a corresponding manager in layer 2. All VSSE tools are required to communicate
through the kernel interface. Direct communication between two tools is prevented to make the
VSSE easy to maintain and expand. The kernel interface provides a standard communication proto-
col and a uniform set of interface definitions. Security protection is imposed by the kernel interface

to prevent any unauthorized use of tools or data.

4

3.3 Layer 2: Minimal Visual Simulation Support Environment

This layer provides a “comprehensive” set of tools which are “minima ” for the development
and execution of a visual simulation model. “Comprehensive” implies that the toolset is supportive
of all model development phases, processes, and credibility assessment stages. “Minimal” implies
that the toolset is basic and general. It is basic in the sense that this set of tools enables modelers to
work within the bounds of the minimal VSSE without significant inconvenience. Generality is
claimed in the sense that the toolset is generically applicable to various simulation modeling tasks.

Minimal VSSE tools are classified into two categories. The first category contains tools specific
to simulation modeling: Project Manager, Premodels Manager, Assistance Manager, Model Gener-
ator, Model Analyzer, Model Translator, Model Verifier, and Visual Simulator. The second category
tools (also called assumed tools or library tools) are expected to be provided by the software environ-
ment of Layer 0: Electronic Mail System, Document Preparation System, and Text Editor. The

minimal VSSE tools are described in Section 4.

3.4 Layer 3: Visual Simulation Support Environments

This is the highest layer of the environment, expanding on a defined minimal VSSE. In addition
" to the toolset of the minimal VSSE, it incorporates tools that support specific applications and are
needed either within a particular project or by an individual modeler. If no other tools are added to a
minimal toolset, a minimal VSSE would be 2 VSSE.

The VSSE tools at layer 3 are also classified into two categories. The first category tools include
those specific to a particular area of application. These tools might require further customizing for a
specific project, or additional tools may be needed to meet special requirements. The second cate-
gory tools (also called assumed tools or library tools) are those anticipated as available due 1o use in
several other areas of application. A tool for statistical analysis of simulation output data, a tool for
designing simulation experiments, a tool for documentation and credibility assessment, and a tool for
input data modeling are some example tools in layer 3.

A VSSE too! at layer 3 is integrated with other VSSE tools and with the software environment
of layer 0 through the kernel interface. The provision for this integration is indicated in Figure 1 by
the opening between Project Manager and Text Editor. A new tool can easily be added to the tool-

set by making the tool conform to the communication protocol of the kernel interface.
4, MINIMAL VSSE TOOLS

The Project Manager, Premodels Manager, Assistance Manager, Model Generator, Model

Analyzer, Model Translator, Model Verifier, and Visual Simulator constitute the first category mini-

mal VSSE tools as shown, except the first three, in Figure 2. The Premodels Manager and Assis-
tance Manager, described in Section 4.6, have been developed but have not yet been integrated into
the VSSE. The Project Manager is not yet functional. Electronic Mail System, Document Prepara-
tion System, and Text Editor constitutc the second category minimal VSSE tools which are

described in Section 4.6.

4.1 Model Generator

The Model Generator is the software too! that guides a modeler under the DOMINO conceptual

~ framework in creating a visual simulation model specification and documentation. It fully imple-
" ments the DOMINO and is the most crucial tool within the VSSE.

Activating the Model Generator by clicking on its icon on the VSSE top level menu (Figore 2)
displays the dialog panel in Figure 3a. A modeler can construct a new model, work on the existing
model the name of which is displayed (“transact”), or retrieve another model to work on using the
appropriate option of the dialog panel in Figure 3a.

The Model Generator consists of two principal parts: the Image Editor and the Model Editor.
Both parts are graphically-oriented and maximize the use of the direct manipulation interface. The
Image Editor is used to create graphical representations for the visualization of simulation models.
The Model Editor allows the complete definition and specification of a model to include the model's

static and dynamic structures and object class information (attributes and logic specification).
4.1.1 Image Editor

Currently, the Image Editor (Figure 4) is purely a “draw” facility. However, it is designed to
enable the modeler to create 2 or 3 dimensional images using drawing, painting, and manipulating
scanned images and digitized video or photo images.

The various draw operations are available with the buttons from left to right across the top of
the Image Editor window shown in Figure 4. In the PEN mode the mouse can be used for freehand
drawing. The LINE and RECT modes produce lines and rectangles. Text of various font styles can
be entered or set on the canvas using the TEXT mode. Circles and arcs are possible with the
CIRCLE and ARC modes. The SELECT mode allows a modeler to define a rectangular portion of
the drawing canvas (usually over previously drawn images) and then duplicate the same defined
image in another location on the canvas. An eraser (with point, small, and large erasure areas) is
available using the middle and right mouse buttons. The right button sets the erasure area size and
the middle button activates the eraser. Using the SCREEN OPERATIONS button, a modeler can

save a new drawing, load a previous drawing, and clear the drawing screen. The TO MODEL

YSSE Tools

ga@l #pdel Generator

Design

,, Mote] Analyzer
IIMULATIUN

Modet verifier

Pirginia Teck

ISUAL

Dasign
Teanslacer; Model Translator

1 wiRone
|1

¥isual Simulator

Cowyputer Seience

Model Generator Tool Model Analyzer Tool Model Yerifier Tool
ModeT: transacg Model: traFFi% : Mode?: traffi%
Analyze | sssertions: OFF
Construct Hew Modei) Trace: OFF
Work Current Hodel 3 ifiprofile: OFF
Retrieve Existing Model i Retrieve Existing Model [[_BRetrieve Existing Hodel
’ Manipulate irace _J

View Profile]

Return Return

(@) (b) (©)

Model Translator Tool Model Simulator Tool
ModeTl: traffig Model: traffi%

[Generate Scurce Code Sinulate/Animate

(Generate Gbject Code

(Retrieve Existing Medel {___Retrieve Existing Model
Warnings: CFF

[Return { Return

(d) (&)

Figure 3. Dialog Panels of the VSSE Tools

EDITOR button toggles the Model Generator to the Model Editor facility.

The SAVE operation can be applied under screen operations to save a particular component
object type (submodel, static object, etc.) image (that has been previously “selected”), & decomposi-
tion layout image, or 4 library image. Saving component object and layout images to the library
permits the reusability of the images. Images are saved to file (if the modeler is not yet ready to
modify the database with the new image) of 0 database. Library saves are only to file. Images
saved to file are saved by name. For images saved to the database, both name and the class informa-
tion associated with the image is supplied by the modeler. During saves to the database, images arc
named and can be stored as the default image for a component class or as one image in a set associat-
ed with the component class (e.g., saving a submodel component image o database).

The particular class association must be identified, although the class may possibly be not yet
defined. Decomposition layout images are associated with the class of a possible owning component
instance (i.e., model top level, dynamic object, submodel, or subdynamic object). The set of images/
default image option is available for saves of component object images and for decomposition
layouts. Having a set of images available for a class enables instances of that class to take on any of
the representations from within the set. This greatly enhances visual flexibility.

Loading an image is handled by the same conventions as saving. Images may be loaded from
file or from the database, ‘and always by component type such as a submodel, static object, or
dynamic object. The canvas is cleared during the loading of a decomposition layout image which is
then automatically placed on the clean canvas. Loading component object images does not clear the
canvas. Once the component object image i retrieved, it is placed on the canvas at the location

pointed to by the mouse and “dropped” by clicking the middle mouse buiton.
4.12 Model Editor

Model definition and specification are completed using the Model Editor (Figure 5). All images
do not have to be drawn before entering any Model Editor function. Certain aspects of model defini-
tion and specification (e.g., class attribute and logic specification) can be (but not necessarily)
performed prior to any drawing. Flexibility is vetained for performance order. Like the Image
Editor, the ease of accomplishing editor functions is achieved through the graphical—oriented features
of the direct manipulation interface.

Four separate and primary actions must be accomplished in the Model Editor (not necessarily in
this order) to complete the definition and specification of a model:

Action 1. The specification of the object class information (attribute and component
model logic),

wWast to East Lane 7| Lane &

® . East to Wast
Light eo—y €= Light

Prices Fork Rd.

e 77

Lane™d

D —

Lane 3

North-South
Light
N

Joint Lane

S

SR
I HLv L lEL

BONGO ISLAND

Wastern Naval Dp Area

harbor
[bonyoHartor] -
LREAVE
DECOHPOGE =

BESLEND

Southarn Haval Op Arwa

Figure 5. The Model Generator’s Model Editor

Action 2. The general instantiation of the components in each class layout using
variable names,

Action 3. The identification of paths, connectors, and interactors (if applicable) in
each class layout, and

Action 4. The specific instantiation of the components in each class layout using
literal names while “stacking” these layouts to form the model's static and
dynamic structures.

Four principal operations (buttons) are available and are used to satisfy the above actions
(Figure 5). The SPECIFY operation is applied toward Action 1. The CREATE operation supports
Actions 2 through 4. MODIFY and QUERY operations are available to assist in any of the actions.

Each of the four actions is discussed in the following sections.
4.1.2.1 Specifying Class Attributes and Model Component Logic

Under SPECIFY menu option (Figure 5), class information is specified (Action 1) by first iden-
tifying the component type of the particular class such as submodel classes and static object classes.
Using the class specification window, the class name is entered. Error checking on the name is
performed to determine if the class name has been previously used for the component type. (If
already specified, a modeler may go ahead and retrieve the existing class information for editing; if
not previously specified, the class name is zeroed for reentry of a new class name.)

The base class toggle (default of “yes”) is used to identify if the class is a base class or not. By
clicking on “no”, the parent class text item is displayed for typing in the parent class name. (If
desired, the right mouse button displays a popup menu of available class names which can be select-
ed.) The base/parent class information is required for inheritance purposes. Also, if not a base class,
a GRAPHIC IMAGES button appears for indicating the owning class for which objects of the class
(under specification) will inherit set or default graphics images. The class description area is a text
subwindow in which documentation can be typed.

Additionally, buttons are provided for listing and editing attributes (ATTRIBUTE LIST &
EDIT), attribute (new) specification (ATTRIBUTE SPECIFICATION), and logic specification
(SUPERVISORY LOGIC, SELF LOGIC, or METHOD, as applicable). The RESET SUP LOGIC
button turns off any supervisory logic specification during execution. Attribute specification is done
via the button of that name. Before attribute specification (and other actions), a class name must be
first entered at the proper location in the class specification window. The attribute specification
window is similar to the class specification window. The name must be typed and is error checked.
Documentation can be entered.

The attribute can be designated as an array; single dimension arrays are workable within VSSE.

The attribute is data typed (using a popup on the right mouse button) as integer, long integer,

10

floating point, double precision, character, time (system type) or system constant. Initial values are
specified. The attribute information is saved to database using the SAVE button. Previously spec-
ified attributes can be edited (to include deletion) from the ATTRIBUTE LIST & EDIT feature on
the class specification window.

Like class and attribute names, The Model Generator checks for the existence of a previous
logic specification for the class being worked. The logic specification window is a text subwindow
in which the modeler enters the model component logic using VSMSL (Visual Simulation Model
Specification Language) [Derrick 1992: Derrick and Balci 1992b]. The TRANSLATE button acti-
vates a translator (built using LEX/YACC). Successiul translation automatically produces the
source code of the logic in the target language C. During the translation process, symbol tables for
the current class can be produced. With the symbol tables, the translator performs static analysis of
the logic specification. Appropriate eIror messages are displayed and syntax errors are identified.

Once translated, the modeler returns to the logic specification. Of interest, any logic specifica-
tion of the same component type can be loaded from the logic specification window. Supervisory,
self, and method component logic specifications are all handled similarly. One exception is that
method specification includes parameter specification. Parameters can be listed and edited like
attributes or specified anew. In addition, methods require that a return type be indicated (methods
often return data to the sender of the message which activates the method). Parameter specification

includes naming, documentation, typing, and saving.
4.1.2.2 Instantiating Class Layouts: Components and Paths

Prior to performing the CREATE operation, the particular class layout image is first loaded
using the Image Editor. The goal is to identify the class instances in each class layout image in a
general way. This section describes Actions 2 and 3 discussed earlier in Section 4.1.2. The class
layout is classified as REAL or VIRTUAL. In the real case, class layouts can be static or dynami¢
(associated with the model static structure or dynamic structures). On top of the class layout image.,
we identify component locations: submodels and static objects for the static structure or subdynamic
objects and base dynamic objects for dynamic structures. The locations are set using the mouse (left
button) to define a rectangular arca in the desired component position. The modeler must give the
component a variable name to allow the class layouts to be reusable. The status of progress na
class layout can be checked using the COMPONENT STATUS button.

Paths for dynamic ebject movements, connectors, and interactors are included as applicable.
Connectors, interactors, and paths are automatically named by the system. Paths are drawn using the

left mouse button to set the path line from a component to another. Intermediate path points

11

ISP S

(between components) are set by additional clicks on the left mouse button. Once the path is in the
destination component, the middle button terminates path drawing. Connector and interactor posi-
tions are set in the same way as component locations with a defining rectangle. Interactors must be
associated with a static or base dynamic object. During animation, these instantiation lines are not
shown. The completed class layout in this form is called the layout definition.

With the SCREEN OPERATIONS button, the layout definition can be saved to file or database
or loaded from file or database. During the save of a Jayout definition, the definition must be asso-
ciated with its particular layout image by name. This is easily done via the interface. Loading a
layout definition will draw the location rectangles and path lines only. To view the associated layout
image, a modeler can toggle to the Image Editor (using TO IMAGE EDITOR button) to load the
particular layout image. Upon toggling back to the Model Editor, both the layout image and its defi-

nition are displayed simultaneously.
4.1.2.3 Forming Model Static and Dynamic Structures

Once the class layouts have been generally instantiated, then the model structures are instantiat-
ed in a specific way using the INSTANCE LAYOUT option. The following discussion concerns
Action 4 and applies to static or dynamic structures. A static structure is used in this explanation but
the VSSE provides for the selection of either structure type. Here, we build the hierarchical archi-
tecture of the model static and dynamic structures in a top down fashion.

Class layouts are instantiated at each decomposition level, giving member components a unique
name (literal name). As the instantiation of .each decomposition level is completed, we graphically
“stack” these instance layouts to form the static or dynamic structure. We begin at the top level of
the structure. The root class layout image and layout definition of the structure (e.g., model static
structure in this example) is loaded using the TOP button as shown in Figure 5. The components in
the toot class layout are first literally instantiated. By clicking on any component in the class layout
(using the right mouse button), a popup with three options (CREATE, DECOMPOSE, and
DESCEND) is displayed as shown in Figure 5. The blackened option is selected.

For instantiation, the create/decompose/descend ordering is enforced; creation must come first.
In the darkened top pertion of the popup, the top component name is the variable name of the
component in the class layout. With the CREATE option (on the popup), the modeler assigns the
literal (unigue) name to the component, identifies the class of the component and any docu-
mentation, and then saves the component literal instantiation to the database. After component crea-
tion, the literal name is displayed in brackets below the variable name (“bongoHarbor” in Figure 5).

Once a component is created, the CREATE option in its popup is grayed out and the next option

12

(DECOMPOSE) is activated and darkened.

During the decomposition (using DECOMPOSE), the next decomposition level class layout is
indicated. After this, the indicated class layout (the decomposition level) is displayed. At each new
level in the structure, the create/decompose/descend options are available. A modeler must create/
instantiate all the components at every new level but has the flexibility in how deep to take the
decomposition hierarchy.

Once decomposed, one can DESCEND (from the popup) into that new level. Navigation
around the structure is easily accomplished. The ASCEND button across the top row of buttons
moves the instantiation context up one decomposition level. 1If at a deep level in the structure, the
TOP button (on the top buttons bar), takes the modeler to the root context of the structure. The
combination of descend/ascend/top features gives extreme flexibility and ease of model definition
and specification. The structure doesn't have to be defined level by level; the points of decomposi-

tion can be chosen at the modeler’s discretion.
4.1.2.4 Creating Decomposed Dynamic Objects and Virtual Components

Decomposed dynamic objects (i.e., the oot components of dynamic' structures) are created via
the DECOMP DYN OBJ button. A modeler indicates the object's literal name, the decomposition
class layout that it owns (right mouse button provides a popup listing pessible layouts for selection),
class information, documentation, and saves the literal instantiation to the database. In order to form
the dynamic structure around this decomposed dynamic object, these steps must be completed prior
to those of Section 4.1.2.3,

Virtual submodels are created via the CREATE/VIRTUAL/SUBMODEL sequence of pullright
menus. The creation window for virtual submodels contains entries which must be entered or

performed by the modeler: name, class information, documentation, and saving.
4.1.2.5 Querying the Model Database

At any point in definition and specification, the QUERY operation (from the Model Editor top
level operations) is available. The QUERY feature allows the modeler to inspect the specification
progress, check results in the database, or query any aspect of the model which has already been
specified. Aspects available for query are information regarding all database, instances, classes,
attributes, methods, parameters, graphics, hierarchies, and files. The queries for the instance through
parameter queries can be limited by component type (submodel, static object, dynamic object, etc.).
A graphics query can be oriented to component image, layout image and definition, layout member,
or layout path information. Under hierarchy queries, a modeler can view class inheritance hier-

archies or model static and dynamic structure hierarchies.

13

4.1.2.6 Modifying the Model Database

The MODIFY operation is available at any time during model definition and specification.
With it, a modeler can selectively delete information which has been previously stored to the data-
base or to system files. MODIFY can be performed on instance, class, attribute, method, parameter,
graphics, and files information. Some modifications (instance through parameter) are limited by
component type (just like queries). A popup using the right mouse button provides easy and quick
selection of class type. Selecting the DELETE option causes a confirmation message to be
displayed. Confirmations are the “norm” for all deletions. Graphics modifications are limited to
component image, layout image and defiﬁitibn, layout member, and layout path information. Defini-

tion files can be viewed and deleted; image files can only be deleted.
4.2 Model Analyzer

The Model Analyzer provides a modeler with the means to perform consistency and complete-
ness checks on various aspects of the model specification and documentation by using the model
representation in the relational database. Activating the Model Analyzer by clicking on its icon on
the VSSE top level menu (Figure 6) displays the dialog panel in Figure 3b. A modeler can analyze
the model the name of which is displayed (“traffic”) or retrieve another model to analyze using the
appropriate option of the dialog panel in Figure 3b. Clicking on the Analyze button of the dialog
panel displays the Analyzer window shown in Figure 6.

Analysis is possible on the class specification, logic specification, image specification, defini-
tion and instantiation information, and documentation. The type of analysis is selected by clicking
on the corresponding Analyze button (Figure 6). If a problem is found during analysis, the “NO”
item toggles to “YES”. At that time, the modeler can view the error report by selecting the corre-
sponding View Report button. The individual aspects of analysis {(class, logic, image, definition and

instantiation, and documentation) are now discussed.
4.2.1 Analyzing Class Specifications

Three areas relating to completeness and consistency of class specifications can be analyzed:
component images, layout images, and object instances. Component images are created, named, and
stored as the default image or one of a set of images for a particular class. Decomposition layout
images are linked to a class in the same manner. Also, the object instantiation process requires that a
class be identified for the object. In each case, there is an association to some class. The VSSE
permits these class associations to be made (possibly prior to the class specification) providing addi-

tional flexibility during definition and specification. Therefore, a “YES” report on analysis for any

14

e, T R o oo,

VSSE Tools

- HodeY Benerator

Moda Analyzer
IMULATTON

! S
e 1w
- Model ¥erifier
|
% IAPporT
| J
N

NV IRONMENT

Hirginia Cech

IsuaL
/

&}

=

Ieagas: g
Layouts: pp
Instancag: NQ

LOIC SPECIFIEATLny s
Suparvisary: g
Self: yg

HAGE SPEL'IFICATIBN

Dynamic ohjects; yg

PEFINITION AND INSTANTIATIDN
Layouts: pp 1Rur
View Report :

Instances: ND
L] ¥Yiow Rapprt

Couputer $eipnp,

Figure 6. The Model Analyzer

of these three areas indicates that the associated class has not been formalty Specified, and the class

flexibility.
422 Analyzing Logic Specifications

For alj Specified clasges, analysis can determine g Jig of classes which do not contaip super-
visory or self logic Specifications, Human knowledge must be applied to ensure that clasges requir-
ing some mode! component logic specification (supervisory or self) are pot included on the list. The
analysis reports Provide notes to assist in thig determinatiop,

423 Analyzz'ng Image Specifications

which does not have an associated layout definition. In the second type, the analyzer scans model
static and dynamic structures. Each decomposition level must be fully instantiated. The analyzer
reports model component object instantiation problems of incompleteness. This report does not

include incompleteness of path, connector, or interactor specifications.
4.2.5 Analyzing Documentation

The analyzer identifies incomplete documentation for both classes and class attributes. This
analysis helps provide guidance and a check on the modeling effort, supporting one of Nance and
Overstreet's [1987] identified purposes for diagnosis. In addition, this analysis capability (in concert
with the VSSE design for including documentation features) encourages the accomplishment of
model specification and documentation within the same activity, one of Nance's [1987] three ratio-

nales (by hypothesis) for the Conical Methodology.
4.3 Model Verifier

Activating the Model Verifier by clicking on its icon on the VSSE top level menu (Figure 2)
displays the dialog panel in Figure 3¢ which indicates the verification features that are available
within the VSSE. The toggles (“ON” and “OFF”) in Figure 3c enable assertion checking and the
production of runtime trace or execution profile. Only one of these toggles can be turned on at any
time. Working in-hand with the Meodel Translator (Section 4.4), setting a toggle to “ON” determines
the compitation scheme used by the Translator. For example, with assertion checking “ON”, the
Model Translator produces an executable version of the model in which assertion statements (within
mode! component logic) are executed during runtime. With assertion checking “OFF”, the assertion
statements are bypassed. Similarly, if the appropriate toggle is turned on, compilation by the Trans-
lator generates an executable code that can produce runtime trace data or an execution profile. Once
a runtime trace or execution profile is created, then the Manipulate Trace or View Profile buttons
(Figure 3c) can be used to start up their respective verification features, each of which is discussed

below.
4.3.1 Trace Manager

Execution tracing, a dynamic analysis technique, provides valuable assistance in the verification
of a model. During the execution of the model (which is specifically created for building a runtime
trace), trace data is stored in the relational INGRES database. The database structure accommodates
the trace information in a useful manner and can be selectively queried by the modeler to locate the
source of the error. With the Trace Manager, a modeler can manipulate the trace data in order to

relate runtime errors to the specification.

16

4.3.1.1 Trace Data

Each record in the trace data relation contains three fields: name, type, and flow. As execution
moves through model component logic, records are written to the relational database, supplying this
field information relative to the location of the execution at that time. The name refers to the routine
name (e.g., supervisory logic name) or statement name (e.g., move statement, repeat statement, if
statement, etc.). The type is the category of routine (i.e., whether a modeler-defined routine or
system attribute routine) or statement. System attribute routines are those used by the system for
storing or retrieving attribute values. Flow indicates the direction of logic flow within the routine or
statement (i.., entering or exiting). Thus, a record is produced both upon entry to and exit from
each (1) modeler-defined routine, (2) system attribute routine, and (3) VSMSL statement in the
model component logic.

The trace data can be voluminous and represents an accurate sequential record of the execution
logic flow. Because of the potentially enormous amounts of trace data that can be produced, only
one trace database is maintained (i.e., trace data cannot be saved for each model; only one set of
trace data is kept in the database at a time). The Clear operation clears the trace database in prepara-
tion for storing new trace data. The Trace Manager has two additional functions for handling the

trace data effectively: the T.ocate and Trace facilities.
4.3.1.2 Locating End of Execution

Using Locate, a modeler can pinpoint and characterize the end of the execution trace. Each
record in the trace data is numbered. Locate “locates” (as determined by modeler selection) the
identity and record number of the last trace entry, the last user (modeler-defined) routine, the last
system access to an attribute, or the last VSMSL statement. Therefore, a modeler can ascertain in
what part of the logic the execution was interrupted, and even a finer detail: which statement or

attribute access was affected.
4.3.1.3 Viewing a Subset of Trace Data Records

Knowing the scope of the trace data from the record number or position derived from the “last”
entries, the Trace operation becomes an effective tool for manipulating the trace data. The modeler
can get a good contextual look at a reduced subset of the trace data. The modeler can select to view
the last “N” entries, user routines, attribute accesses, or statements, The “N” refers to the number of
records (of the appropriate type) desired for viewing from the end of the trace data. Furthermore, the
modeler can select any block of records using the “Ith-to-Jth™ option. After activating the Trace

feature, the subset of trace data records is shown in the display area of the Trace Manager. The flow

17

information is used to “pretty print” and appropriately indent the display for better readability of the

frace.
4.3.1.4 Detecting Conceptual Errors in Logic

Syntactic errors are effectively caught by the Model Translator. The Locate and Trace features
of the Model Verifier's Trace Manager can detect the position of runtime errors and locate the posi-
tion of the “crash” within the model component logic. However, detecting conceptual errors in the
model component logic is much more difficult. For this reason, the Trace Manager includes a few
other features for assistance.

Figure 7 shows the presence of Object, Class, and Instance codes at the end of each record entry
for modeler-defined routines (such as supervisory logic). Knowing the location (in which modeler-
defined routine) that execution was interrupted is knowing only a part of the puzzle. Since many
dynamic objects are causing the various supervisory, self, and method logic to be executed, it is
helpful to know the identity of the “causing” dynamic object. The O code is the identifier of that
dynamic object and the C code is the class of that dynamic object. Finally, because model compo-
nent logic specifications can be inherited by members throughout a class inheritance hierarchy, the I
code gives the instance code of the specific owner of the logic. The Info button (Figure 7) provides

access to these system-generated codes and enables one to decipher them.
4.3.2 Execution Profiler

After an execution profile is set up and the View Profile button (Figure 3c) is activated, the
profile results are displayed. The execution profile is created using the prof library routine under the
Sun Unix Operating System. Useful runtime execution information is displayed for routines:
percentage of time spent executing between the routine and the next on the list, cumulative execution
time, number of calls made to that routine, number of milliseconds per call, and the routing name.
For large systems, this information can be used to identify conceptual problems in the model and

runtime inefficiencies.
4.4 Model Translator

Activating the Model Translator by clicking on its icon on the VSSE top level menu (Figure 2)
displays the dialog panel in Figure 3d. The Model Translator accomplishes the final automatic
generation of code for model execution. This is done in a two-step process: generating source code
and generating object code. Generate Source Code (Figure 3d) creates the modules and system defi-
nitions to accommodate the object-oriented capabilities. The information used in this creation

process is retrieved from the specification information stored in the model database. During this

18

phase, the Translator reports on the incremental generation, notifying the modeler at each step.

Generate Object Code (Figure 3d) takes the source modules and definitions created as explained
above and combines them with the individual model component logic source files that are created by
the modeler during class specification. Compilation of all source files produces a set of object
modules; all resulting object modules are linked together to form a single executable model version,
During compilation, the Model Translator reports progress in the compilation effort to the modeler.

Compilation errors are reported. If desired, compilation warnings can be turned on (default: off)
using the designated toggle (Figure 3d). As mentioned in Section 4.3, toggles in the Model Verifier
cause different effects of this final translation process in producing an executable for different
purposes (activation of assertions, production of runtime trace or execution profiles, or normal
execution for simulation and animation by the Visual Simulator).

The antomatic translation and production of an executable visual simulation model supports the
Automation-Based Paradigm [Balci and Nance 1987b]. Modelers are prevented from having to get
involved with the low-level details of a programming language (e.g., C, Fortran, Pascal). Instead,
the modeler deals directly with the specification. Modification and maintenance are performed on
the specification which is stored in the model database and in various system files. There is no
maintenance or modification on the target code itself.

The Model Translator takes the specification and automatically generates the executable code.
- Guided by the DOMINO during design and implementation while using the integrated VSSE toolset,
a modeler produces a specification that can be automatically translated. This final translation, in
which all parts of the model specification “come together” and are “fused”, produces the executable

model by what is called the “DOMINO effect.”
4.5 Visual Simulator

Activating the Visual Simulator by clicking on its icon on the VSSE top level menu (Figure 2)
displays the dialog panel in Figure 3e. The Visual Simulator provides two key features: (1) the
runtime inspection facility for model component attributes and performance measures, and (2) the
contextual visualization of the executing model.

The RUN button (Figure 8) is used to execute the model with no visualization, Clicking on the
RUN button displays a pop-up menu for the modeler to enter data collection information (e.g., tran-
sient period length, steady state length, random number generator seed, number of replications, etc.)
under the Method of Replications technique. Following model execution, statistical summaries of
performance data are made available in a file.

The ANIMATE button (Figure 8) is used to execute the model with visualization. Before

19

20

cii Projer

t

Yirginia Tech
ISUAL

#

IMULATION

NV IRONMENT

Gomputer Seience

HOREL VERIFIER TRACE MAH.

0
[MOGEL -

Message and Display Arsa

Return

NAME: pos_sm_sulog TYPE: User FLOV: In(mid} (014:623:128)
NAME: engageUniil TYPE: Statement
NAME : bi11ProcDoneaddr_pus_sm TYPE: Attributs
MAME: pus_sm_suleg TYPE: User FLGY; Out{dslay) {014:C23:128)
NAME: puws_sm_sulog TYPE: User FLOW: In(mid) (015:020:196)
NAME: engageUntil TYPE: Statemsnt
NAME: bookingDoneaddr_pus_sm TYPE: Attribute
NIME: pus_sm_suiog TYPE: User FLOW: Dut(detay) {(D15:C20:138)
HAME: pus_sm_sulog TYPC: User FLOY: In(mid) (016:C28:132)
NAME: engageUnti? TYPE: Staiement
i bookingDoneaddr_pws_sm TYPE: &ttribute
NAME: pus sm_st:log TYPE: User FLOW: Out(delay) (0D18:C20:152)
NAHE; pus_sm_sulog TYPE: User FLOW: In(mid) (019:C19:128)
NAME: engagelintil TYPE: Statement
NAME: customsrDonsaddr_pus_sm TYPE: Attributs
NAME: pus_sm_sulog TYPE: User FLOV: Out{dalay) (019:C18:129)
HAME: pus_sm_sulog TYPE: User FLOW: In{mid) (02B:C29:131)
NBME: engagelrtil TYPE: Statement
NAME : customerDoneaddr_pus_sm TYPE: Attribute
NAME: puws_sm_sulag TYPE; User FLOW; Out(delay) (028:019:131)
NAME: pws_sm_sulog TYPE: User FLOV: In(top) (026:C22:131)
NAME: branch TYPE: Statement
MAME: 1f TYPE: Statement
NAME: contentaddr_basicTransaction_do TYPE: Atiribute
NAME: put TYPE: Statement
NAME: Ttraveladdr_pus_sm TYPE: Attribute
NAME: stimeaddr_pus sm TYPE: Attributs
NAME: engagefor TYPE: Statement

Figure 7. The Model Verifier’s Trace Manager

NN

Joint Lane

/S

ock: A .
(CARIMATE) (_TRin__) (Cascim_)(_Tor J(ImsFieT) RENTINE INSPECT FACILITYY: m
s || West to East AN tane Bllane X Lane 6 <" Toms Creek Rd. East to West —.
-’ i Light ~\ 0 ~ €= Light ;'"”)
:, F : [
7 e
— ~ . S
ST T
() N L) ke 9
S - e
Church . ;2 -
i h'\, \ \\ Prices Fork Rd. Y
i H \\ e N ()
— o \\ v A o N, / / ol ~—
. . 4 - |
Lane 5
K H N E
- - T - — — Lane 4
—
1 2 3 P F
= TR Lzna 3
T
3 B4 — 122
- 5 R L) L] W iy v s T I I T 77 77777
ane
T\ u 8| g v \\
Tane 1T T T T e T — -
. N
- / / - z M == i : I
. W ¥ ~ \ N\
e Horth-South
Prices Ferk Rd. / 3, Light
I / \
jLane 2 7
N Lane 1 —
0 ()

Figure 8. The Visuval Simulator

animation, the modeler turns the Runtime Inspection Facility on or off by selecting “yes” or “no”
from the pull-down menu in the upper-right corner of Figure 8.

The Runtime Inspection Facility enables the modeler to view the values of the following attrib-
utes during visualization: (1) model component attributes (for non-dynamic object components
which are instantiated within model class layouts), (2) global attributes (attached to the model itself;
i.e., model attributes) or the attributes of virtual submodels, and (3) attributes of dynamic objects
(both decomposed and non-decomposed). Using this facility, a modeler can set up performance or
statistical measures of interest and observe their changes during the course of visualization.

The contextual visualization capability of the Visual Simulator allows a modeler to view the
animation from any layout context. Figure 9 shows the visualization at the top level of the Branch
Operations Model in which a transaction called “BillProc™ is exiting Branch 1 submodel with some
information displayed on it. Similar to the ability to navigate throughout the model static and
dynamic structures within the Model Generator (for definition and specification), a modeler is given
the same flexibility to change the runtime viewing context. The TOP button shifts viewing to the top
layout of a model static or dynamic structure. ASCEND incrementally shifts viewing up one decom-
position level.

If a component is decomposed, the DESCEND option of its popup menu is activated. This can
be used to incrementally descend into a decomposition hierarchy. The Visual Simulator “naviga-
tion” facility has an added feature in that by pressing the right mouse button on the top border of the
Visual Simulator, a popup menu is displayed which lists all model layouts (Figure 9). By selecting
one, the viewing context can be changed to a deep level of the hierarchy, without having to incre-
mentally get there.

Within any layout, pointing (using the mouse) at a model component on the layout and then
pressing the right mouse button pops up a menu containing INSPECT and DESCEND options.
Selecting INSPECT and pulling down its menu, the component's attributes and their current values
are displayed as shown in Figure 10. The INSPECT button in the top horizontal bar of Visual Simu-
lator buttons (Figure 10) provides the capability for inspecting the model attributes and also virtual
submodel attributes.

Dynamic object attributes of interest and their values are written onto their moving dynamic
object images during runtime. This is specified by display statements in the VSMSL.. The attributes

of decomposed dynamic objects are also available using the INSPECT button.

21

22

- ‘) .anout Selections
INTERRUFT) (_RETURA
R ro— - ———

bethasda

braneht

BRANCH OPERATIONS MODEL branchz

tiranch3
(Top Levef) branchd

lexington
lexinglonConpiex
transact

branchi

branch3

BiTtProc

ttext

& 21

bathesda

Texington|

branchd

branchz

Figure 9. Visual Simulation of the Branch Operations Model

Elock

ATATE TERAIPT) (_RETomn
——— o . =
EXIT
ENTRY
Bil1Proc
Bi11IProc datadisk
KContext t
dBCode 21

linst

[bethesdalost] A
hosifueue THSPECT ATIR HAME] - VaLUE
DEGCEND status
. decting 0,825
=+ | ntravel 5.8
Tiravel 158.8
Bethesda Central Computing Facility ‘/

Figure 10. Visual Simulation of a Submodel of the Branch Operations Model

4.6 Other Tools
4.6.1 Project Manager

The Project Manager software tool: (1) administers the storage and retrieval of items in the
Project Database; (2) keeps a recorded history of the progress of the simulation modeling project; (3)
triggers messages and reminders (especially about due dates); and (4) responds to queries in a

prescribed form concerning project status. The Project Manager is not yet functional.

4.6.2 Premodels Manager

The overall goal of the Premodels Manager (PM) software tool is to enable the user to: (a)
locate and reuse components of successfully completed simulation studies, and (b) learn from past
experience. The following design objectives are identified to meet this overall goal [Beams 1991,

Beams and Balci 1992}:

@ Provide easy methods of installing and maintaining documentation of successfully completed
simulation studies [Nance 1977, 1979] in the Premodels Database.

@ Provide appropriate methods of access to documentation of successfully completed simulation
studies in the Premodels Database. Initiative, mechanisms, and complexity of access should
vary according to task and type of user.

@ Provide a stratified display, capabilities for copying and pasting, capability for storing in a
user-created file, and printing of the information located by a user in the Premodels Database.

@ Provide a user interface that satisfies the nine usability principles for interfaces: enable simple
and natural dialogue, speak the user’s language, minimize the user’s memory load, promote
consistency, provide feedback, provide clearly marked exits, provide shortcuts, supply good
error messages, and prevent errors.

® Provide context-sensitive help that is always available in a consistent manner. The system
should use all available information on the user’s state and avoid placing the burden on the
user.

The PM consists of a collection of windows which work together to allow different types of
interactions between users and the Premodels Database. Three types of windows are used in the PM:
(1) working windows (Browser, Searcher, Installer, and Maintainer), (2) access windows (Driver,
Retriever, and Administrator), and (3) support windows (File Viewer, Describer, and Helper).

The PM has been evaluated with respect to the five design objectives stated above and has been
found to provide cffective reusability and learning support [Beams 1991; Beams and Balci 1992].
The design objectives altogether contribute to enabling the user to locate and reuse components of
successfully completed simulation studies and learn from past expetience.

The rapid prototyping software engineering approach has been used in developing the PM. The
first PM prototype focused on the terminology problem in searching model components in the data-

base. Subsequent PM prototypes have been developed, evaluated, and discarded prior to the current

23

version described above. Knowledge gained by experimenting with one prototype PM has been

used in developing the next improved PM prototype.
4.6.3 Assistance Manager

The overall goal of the Assistance Manager (AM) software tool is 1o provide effective and effi-
cient transfer of assistance information to a VSSE user. “Effective” means accurate information is
provided that is relevant to the user's needs. “Efficient” implies that if the user s involved in inter-
action with the VSSE, it is not nhecessary to switch tasks or modes in the process of seeking help.
The following objectives are identified to meet this overall goal [Frankel 1987; Franke! and Balci
19897:

(1) Provide general information for beginning system users. Such information would serve to
acquaint new users with the environment, and establish a context for subsequent learning.

(2) Provide detailed and specific help on the use of an VSSE tool,

(3) Provide definitions and example usages of technical terms encountered in documentation and
communication within the environment.

(4) Provide tutorial assistance for VSSE users. The tutorial should give the user a protected arena
for limited experimentation with a tool's features.

(5) Provide help that is constantly available and immediately accessible, Methods sheuld be avail-
able to suspend temporarily interaction with the AM, or save the current display for future
reference. The user should not be required to step through an artificial protocol or syntax to
access immediate assistance.

(6) Provide help that is unobtrusive; ie., messages or prompts that are only visible when required
or asked for,

{7) Provide g help system that is flexible enough to accommodate experienced users as well as
novice or casual users.

(8) Provide context-sensitive help wherever possible. The system should use all available informa-
tion on the user's state and avoid placing the burden on the yser. :

(9) Provide appropriate methods of access to the help information. Initiative, mechanisms, and
complexity of access should vary according to task and type of user.

(10) Provide a straightforward and Systematic method for tool developers (application program-
mers) to build help into tools which may be added to the environment.

(11) Provide help that is available in a consistent manner from any tool within the environment.

(12) Administer the Assistance Database by serving as an interface between the user or programmer
and the database contents.

(13) Provide easy methods for update and expansion of the AM database. This is critical in order to
accommodate the tailoring and updates that are inevitable in g large software environment.
Updates should be enforced in a manner which helps enforce database integrity and consis-

The AM has four componenis providing: (1) information on how to use an environment tool; (2)

a glossary of technical terms; (3) introductory information about the environment; and (4) assistance

24

for tool developers for integrating help information. Evaluation of the AM with respect to the 13
design objectives stated above has found the tool able to provide effective and efficient transfer of

assistance information to a VSSE user [Frankel 1987; Frankel and Balci 1989].
4.64 Second Category Minimal VSSE Tools

Electronic Mail System, Document Preparation System, and Text Editor constitute the second
category Minimal VSSE tools. These tools are also called assumed tools or library tools and are
expected to be provided by the software environment of Layer 0—Sun programming environment.
Many options exist within the Sun programming environment, through Sun Microsystems and third

party vendors, for providing these tools to the VSSE users.
5. EVALUATION

The VSSE’s evolutionary joint development with the DOMINO has spanned between 1984 and
1992. Using the rapid prototyping approach, many VSSE tool prototypes have been developed,
implemented, experimented with, and documented. Some prototypes have been discarded; however,
the experience and knowledge gained through experimentation with those prototypes have been
kept.

The VSSE has served as an experimental testbed for the prototyping and evaluation of the
DOMINO. Therefore, the DOMINO and some of the VSSE software tools (Model Generator,
Model Translator, and Visual Simulator) have been developed jointly for eight years. The proposed
concepts, ideas, and approaches for the DOMINO have been implemented within the Model Gener-
ator. Accordingly, the Model Translator and Visual Simulator tools have been modified. Then,
using the three VSSE tools, the DOMINO’s proposed concepts have been experimented with for a
variety of modeling problems. Based on the experience gained, the proposed concepts have been
revised and experimented with again. This iterative process has continued until all design objectives
of Section 2 are satisfied.

Many authors (e.g., [Bell and O’Keefe 1987; (’’Keefe 1987: Paul 1989]) advocate the use of
visual interactive simulation. We also believe in the importance of the interactive nature of visual
simulation and the VSSE provides interactive capabilities through the achievement of the auto-
mation-based paradigm. During animation, if the modeler wants to change the model (e.g., compo-
nents, attributes, layouts, specifications, etc.), such changes can easily be incorporated within the
model specification through the use of the Model Generator’s Image and Model Editors. Thereafter,
a new executable model can be automatically generated via the Model Translator. A new animation
is obtained by activating the Visual Simulator under the modified model. The Runtime Inspection

Facility of the Visual Simulator also enables the modeler to interact with the animation by viewing

25

the values of the model attributes. The ability to view animation at any component level within the
model hierarchy also enables the modeler to interact with the visualization of the model.

The VSSE, reported in this paper, has been applied to the modeling and visual simulation of an
order processing system of a large computer vendor, a complex traffic intersection in Blacksburg
(Virginia), a Navy combat system, a bus transportation system, and many others. Based on these
applications, the VSSE has been evaluated with respect to the 18 design objectives of Section 2 and
has been found to effectively satisfy its design objectives. The evaluation is given below for each
design objective. Evaluation comments are grouped by the associated VSSE tool.

VSSE (Complete toolset):

Objective 1: Provide a fully functional and highly integrated toolset under the DOMINO concep-
tual framework. Accomplish the integration and communication among the tools
using (primarily) a relational database (¢.g., INGRES) representation of the specifica-
tion,

The minimal VSSE toolset (Model Generator, Model Analyzer, Model Verifier, Model Trans-
lator, and Visual Simulator) was rigorously experimented with in performing model development of
a variety of problems described above. Each prototype tool performs as described in Section 4, with
all the attendant capabilities listed therein. Two of the three models (Traffic Intersection and Branch
Operations) are non-trivial, large, real-life models. Their successful completion supports the claims.

The integration among all tools is satisfied by way of the common INGRES relational database.
As the central repository for the representation of the model specification, every tool had access to
the specification information. The underlying VSSE implementation prevented simultaneous access
of the database relations, preserving data integrity. Furthermore, the access to specification data is
well-coordinated among the tools.

During development of the VSSE prototype environment, the relations of the database evolved
to their final form. Effective communication among tools depends upon a well-engineered and well-
designed set of relations (e.g., field composition, relationships, etc.). The query (report generation
on status of the specification data) and the modify (ability for manipulating the data) operations in
the Model Generator give valuable assistance in preserving the specification in a meaningful form
for tool communication.

Objective 2. Provide a user interface that satisfies the nine usability principles for interfaces
[Nielsen 1990): enable simple and natural dialogue, speak the user's language, mini-
mize the user's memory load, promote consistency, provide feedback, provide clearly
marked exits, provide shortcuts, supply good error messages, and prevent errors.

The VSSE is a fully functional prototype environment and was not expected to have the look
and feel of a fully developed commercial system. In several cases, therefore, the evaluation indi-
cates areas for improvement and inclusion for building the production version of the VSSE. Each

usability principle is taken in turn for comment:

26

= Enable simple and natural dialogue

Nielsen [1990] describes “simple” as not containing irrelevant or rarely needed information.
The VSSE, as one in a series of evolutionary prototypes, has been developed in three stages with the
DOMINO. From a broad, developmental perspective, at each step in the evolution, irrelevant and
rarely needed displays have been scrapped. Although the interface allows modelers the freedom to
produce voluminous or irrelevant information (e.g., querying for all database information or viewing
all trace data), there are many examples of how the modeler can limit the information being
displayed to only the relevant material. Pullright menus are typical in the interface style (Figure 10).
In general, the further right that a “pull” is made, the more limited or categorized the data display
becomes. Also, Section 4.3.1 specifically describes how the trace manager allows the modeler to
manipulate and view a small (and relevant) subset of the trace data.

o Speak the user’s language

The use of the direct manipulation interface (containing icons, buttons, mouse for point and
click operations, etc.) simplifies the communication of actions to users. Buttons are annotated with
the domain-independent terminology of the DOMINO of which the user should have some working
knowledge. Context-sensitive help would improve communication and direction to users. Its facil-
ities are not fully developed in this VSSE prototype but have been stubbed for later completion.

== Minimize the user's memory load

Complicated series of keystrokes are not required, thus minimizing the memory load on a user.
Consistency (later discussed) across tools also supports the ease of learning the tools and their
features in the VSSE. Alert messages are periodically displayed to guide the user. Again, context
sensitive help, if available, would be extremely valuable.

“* Promote consistency

This principle is effectively supported across all tools. Several aspects of consistency are
described. In all cases, the left mouse button activates the actions of buttons which are embedded in
the various VSSE windows. The right mouse button displays popup menus. The middle button is
clicked for special, unique operations. For all major windows, the RETURN button is always locat-
ed in the top right corner of the window.

= Provide feedback

Alert messages (warnings, errors, delays) provide feedback to users after inappropriate or
special responses are made. The query facility of the Model Generator enables a user to essentially
tailor his/her own feedback mechanism to confirm expected results after input or modification to the

specification database.

27

+ Provide clearly marked exits

From the top level VSSE window (Figure 2), the QUIT icon is unmistakable in the form of an
annotated stop sign. Once a VSSE tool is entered, the RETURN button is designated in most cases
in the same window position. As successive windows are activated, a RETURN button provides
©asy return to the previous window. The VSSE cannot be exited except from the top level VSSE
window,

e Provide shortcuts

example, from each top level tool meny (e.g., Figure 3a to 3e), the modeler can type in the model
name to be worked on, but the RETRIEVE EXISTING MODEL button eliminates the need to type.
Selecting it displays a list of model names from which to choose one by clicking on the name using
the mouse. Also, POpPup menus using the right mouse button allow easy selection of options. Final-
ly, as previously mentioned, the extensive use of pullright menus enables the quick selection of
application functions and provides shortcuts over text-based, command-driven systems.

~ Supply good error messages

Error messages (for inappropriate responses) are prominently displayed with alert popups.
During wranslation of rmode] component logic specifications, error messages are meaningful and
direct the modeler to the location of the error within the specification,

= Prevent errors

The VSSE interface alerts modelers to potential sources of error so that problems can be avoid-

ed. For example: (a) the modeler is notified that an attribute has already been specified for the given

deletions are standard throy ghout the interface,
Model Generator:
Objective 3. Provide means for storing model component information in a library,
Library storage is available for layout and component images. Although the current prototype

does not provide the ability to store class specifications (attributes and model component logic), this

model component logic files to new model file locations, and (2) INGRES database copying facﬂ—

ities to transfer data from one model's database relations to the borrowing model’s.

28

Objective 4. Provide suitably implemented mechanisms for inheritance of class attributes and
model component logic specifications,

A full single inheritance mechanism (to include inheritance of attributes and model component
logic specifications between objects) is available. Since INGRES does not have an imbedded query
language interface for C++, Objective C, or any other object-oriented programming language, multi-
ple inheritance was not implemented within C dye to its difficulty. The production version VSSE
should use a relational database management system with an object-oriented query language inter-
face such as Sybase.

Objective 5. Provide sufficient capabilities for attribute access and communication between mode]

Attribute access is fully available with three types of attribute referencing mechanisms. Class
methods and message passing are included with the object-oriented implementation, Access to an
object’s attributes is via its own class methods in keeping with the principles of data abstraction and
information hiding. Methods are executed by messages between model objects. Attribute access,
methods, and message passing are straightforward using the English-like statements of the VSMSL.

Objective 6. Provide detailed querying capabilities for displaying specif_icatior_l status and progress

Objective 7. Provide graphically based means for the flexible hierarchical definition of model stat-
ic and dynamic structures, This definition should be characterized by ease and
simplicity of movement between the levels of the hierarchy.

The VSSE provides a powerful, graphically-based means for the top-down definition of model
static and dynamic structures, The descend/ascend/top combination of “navigation” actions provide
for truly fluid movements among the levels of the hierarchies,

Objective 8. Provide an expressive (able to specify the various model component interactions)

“model component logic reveals the English-likeness of the VSMSL statements [Derrick and Balci

29

Statements in the mode] component logic make correct and meaningful references. For example,
object attributes must be named and referenced appropriately for that object's class. The symbol

tables also permit attribute type checking within mathematical expressions. Besides these static

definitions and object instantiation, and class documentation,
Model Verifier:

30

Section 4.3.1 describes the Trace Manager of the Model Verifier and clearly delineates its

impressive manipulation capabilities of the trace data, stored within the INGRES relationa] database.

files, and gives the location of the failed assertion.

Objective 14. Allow the creation of performance reporting upon runtime execution by providing
execution profile reports,

Model Translator:

Objective 15, Provide automatic creation of the executable model from the modeler-defined spec-
ification, achieving the Automation-Based Paradigm [Balci and Nance 1987b).

The Model Translator, Section 4.4, accomplishes automatic full translation of the DOMINO model

tion errors, Maintainability and reusability model quality characteristics are achieved.
Visual Simulator:

Objective 16, Provide for the visualization of the model from any desired runtime context. Move-
ment between contexts should be simply executed.

Contextual visualization 1s well provided. The capabilities for moving between contexts are
even more powerful than the ease of movement during structyre definition.

Objective 17. Provide the ability to inspect model component attributes or modeler-defined perfor-
mmance measures at any instant during the visualization of the running mode.

Section 4.5 describes the runtime inspection facility which gives instant-by-instant monitoring
capability of attributes (which can be modeler-defined performance measures) to modelers, Figure
10 demonstrates this facility and substantiates the satisfaction of this objective. Dynamic analysis of

the model specification is enhanced with this feature.

3

Objective 18. Provide the ability to run the simulation model in the background without animation,
producing statistical analysis reports.

The description of the Visual Simulator (Sections 4.5) summarizes the VSSE execution of a
model without visualization while providing confidence intervals and other statistical analyses. The
removal of underlying system code for anmimation is automatically performed. No additional burden

i3 placed on the modeler when the background mode of execution is chosen.
6. CONCLUDING REMARKS

A Visual Simulation Support Environment (VSSE) based on the multifaceteD cOnceptual
fraMework for vIsual simulatioN mOdeling (DOMINO) is presented. The VSSE, with its fully func-
tional and highly integrated toolset, demonstrates significant advances in the Simulation Model
Development Environment (SMDE) research [Balci 1986; Balci and Nance 1987a, 1992] and auto-
mated support for visual simulation mode] development.

Based on the DOMINQO, the VSSE brings new features to the SMDE. The automation-based
paradigm is achieved. The WYSIWYR (What You See Is What You Represent) philosophy is real-
ized. The VSSE is applicable for any discrete-event simulation problem and is domain independent.
The use of a library for reusability is introduced. The Object-Oriented Paradigm is more fully imple-
mented than in previous tools with true inheritance, methods, and message pasSing. Visualization
and the extended use of graphical facilities for model definition and specification are explored within
the SMDE research for the first time, The Model Verifier is built also for the first time.

The graphical facilities for model structure definition and contextual visualization at multiple
levels of abstraction clearly offer help to the modeler in overcoming the complexity problem asso-
ciated with large modeling efforts. The screen designs demonstrate simplicity and ease of use.
Modelers are able to flexibly define the model structure in depth-first or breadth-first traversals. The
navigation of movements between the model’s hierarchical structure during definition and runtime is
as simple as paging through the documents of a word processor with comparable features to the
common up, down, page up, page down, top, and bottom. The modeler can view the model structure
in the smaller context or effectively “zoom” to a larger context by ascending the hierarchy. Viewed
or defined in increments, the complexity of the model structure is successfully managed.

The VSSE provides a wide range of effective verification techniques. This contributes to an
area in the life cycle of a simulation study where emphasis is currently lacking. Versatile, with facil-
ities for assertion checking, trace management, and execution profiling, the Model Verifier provides
significant, additional capabilities for automated support,

The VSMSL. translator with its component symbol tables provides static and syntactic analysis

capabilities which are realized during the translation of the model component logic. The powerful

32

querying and modification capabilities of the Model Generator are valuable support for informal
analysis. The visualization of the executing model and the runtime inspection facility strongly

impact and aid a modeler's dynamic analysis capabilities.

Lymne F, Barger, Jay D. Beams, John L, Bishop, Valerie L. Frankel, Robert L, Moose, Jr., C.
Michael Overstreet, Ernest H. Page, Jr., and Fred A. Puthoff which coatributed to the research

described herein.

REFERENCES

Balci, O, (1986), “Requirements for Model Development Environments,” Computers & Operations
Research 13, 1 (Jan.-Feb.), 53-67.

Balci, O. and R.E. Nance (1987a), “Simulation Model Development Environments: A Research
Prototype,” Journal of the Operational Reseqrch Society 38, 8 (Aug.), 753-763.

Balci, O. and R.E. Nance (1987b), “Simulation Support: Prototyping the Automation-Based Para-
digm,” In Proceedings of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and
W.D. Kelton, Eds. IEEE, Piscataway, NJ, pp. 495-502.

Beams, I.D. (1991), “A Premodels Manager for the Simulation Model Development Environment”
M.S. Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA, Sept.

Beams, JD. and O. Balcj (1992), “Providing Reusability and Learning Support in the Simulation
Model Development Environment,” Technical Report TR-92-03, Department of Computer
Science, VPI&SU, Blacksburg, VA, Mar.

Bell, P.C. and R M. O’Keefe (1987), “Visual Interactive Simulation - History, Recent Develop-
ments, and Major Issues,” Simulation 49, 3, 109-115.

Derrick, E.J. (1992), “A Visual Simulation Support Environment Based on a Multifaceted Concep-
tual Framework,” Ph.D, Dissertation, Department of Computer Science, VPI&SU, Black-
sburg, VA, Apr.

33

Derrick, E.J. and O. Baici (1992a), “DOMINO: A Multifaceted Conceptual Framework for Visual
Simulation Modeling,” Technical Report TR-92-43, Department of Computer Science,
VP1&SU, Blacksburg, VA, Aug.

Derrick, E.J. and O. Balci (1992b), “A Visual Simulation Model Specification Language,” (in prep-
aration),

Frankel, V.L. (1987), “A Prototype Assistance Manager for the Simulation Model Development
Environment,” M.S, Thesis, Department of Computer Science, VPI&SU, Blacksburg, VA,
July.

Frankel, V.L. and O. Baici (1989), “An On-Line Assistance System for the Simulation Model Devel-
opment Environment,” International Journal of Man-Machine Studies 31, 699-716.

Nance, R.E. (1977), “The Feasibility of and Methodology for Developing Federal Documentation
' Standards for Simulation Models,” Final Report to the National Burean of Standards, Depart-
ment of Computer Science, VPI&SU, Blacksburg, VA, June

- Nance, R.E. (1979), “Model Representation in Discrete Event Simulation: Prospects for Developing
Documentation Standards,” In Current Issues in Computer Simulation, N. Adam and A,
Dogramaci, Eds., Academic Press, New York, pp. 83-97.

Nance, R.E. (1981), “Model Representation in Discrete-Event Simulation: The Conical Meth-
odology,” Technical Report CS81003-R, Department of Computer Science, VPI&SU, Black-
sburg, VA,

Nance, R.E. (1987), “The Conical Methodology: A Framework for Simulation Model Develop-
ment,” In Proceedings of the Conference on Methodology and Validation, O. Balci, Ed.
Published as Simulation Series 1 9, 1 (Jan. 1988), 38-43, SCS, San Diego, CA.

Nance, R.E., Q. Baici, and R.L. Moose, Jr. (1984), “Evaluation of the UNIX Host for a Model
Development Environment,” In Proceedings of the 1984 Winter Simulation Conference, 8.
Sheppard, U.W. Pooch, and C.D. Pegden, Eds. IEEE, Piscataway, NJ, pp. 577-584.

Nance, R.E. and C.M. Overstreet (1987), “Diagnostic Assistance Using Digraph Representations of
Discrete Event Simulation Model Specifications,” Transactions of the Society for Computer
Simulation 4, 1 (Jan.), 33-57.

Nielsen,. J. (1990), “Traditional Dialogue Design Applied to Modemn User Interfaces”,
Communications of the ACM 33,10 (Oct.), pp. 109-118.

O’Keefe, R-M. (1987), “What is Visual Interactive Simulation? (And is There a Methodology for
Doing it Right?),” In Proceedings of the 1987 Winter Simulation Conference, A. Thesen, H.
Grant, and W.D. Kelton, Eds. IEEE, Piscataway, NJ, 461-464.

Paul, R.J. (1989), “Visual Simulation: Seeing is Believing?” In Impacts of Recent Computer Advanc-
es on Operations Research, R. Sharda, B.L. Golden, E. Wasil, O. Balci, and W. Stewart, Eds.
Elsevier Science Publishing, New York, NY ,422-432,

Sun Microsystems (1986), SunINGRES, Volumes L II, and M1, Sun Microsystems, Inc., Mountain
View, Calif., May.

Sun Microsystems (1988), SunView Programmer’s Guide, Sun Microsystems, Inc., Mountain View,
Calif., May.

Winkler, D. and S. Kamins (1990), HyperTalk 2.0 The Book, Bantam Books, New York, NY.

34

