Defining Software Quality Measures:
A Systematic Approach Embedded in the
Objectives, Principles, Attributes Framework

Gary N. Bundy and James D. Arthur

TR 92-38

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

July 29, 1992

Defining Software Quality Measures:
A Systematic Approach Embedded in the

Objectives, Principles, Attributes Framework

Gary N. Bundy James D. Arthur
The MITRE Corporation The Department of Computer Science
7525 Colshire Drive, MS: 7645 Virginia Tech
McLean, VA 22102 Blacksburg, VA 24061
USA USA
(703) 883-5560 (703) 231-7538
Abstract

Currently, software quality measures and metrics are being developed in isolation and often without the benefit of a
guiding framework, In this paper we describe a systematic process for identifying measurement approaches and

defining corresponding metrics that definitively support software quality assessment. That systematic process
embodies five well-defined steps that reflect quality assessment within a framework which links the achievement of

desirable software engineering objectives to the use of appropriate principles, and the use of principles to the
manifestation of desirable product attributes. Ada is the language we have chosen to examine; the Ada package is

used to illustrate the identification and definition process.

Keywords: Metric Development, Metrics, Measures, Software Quality Assessment, Indicators, OPA Framework,
Assessment Procedure

Category: Techniques and Methods

1 Introduction

In the late 1800s Lord Kelvin recognized the crucial role of metrics in the management process. Stated in
paraphrased form, his contention is that "you cannot manage what you cannot measure.” Today, metric-based
analysis appears to be the most promising approach to controlling the software development process and producing a
quality product. Some of the more well-known metrics include Halstead’s Software Science Measures [HALM77},
McCabe’s Cyclomatic Number [MCCT76], and Henry and Kafura’s Information Flow Metric fHENSR81].
Unfortunately, many metrics currently in use are non-intuitive, non-instructive, and lack that fundamental basis for
understanding the implications of one measurement value as compared to another [KEAJ86, EJIL87]. While we too

advocate use of metrics, we do so with a fundamental belief that metrics must be developed according to

(1} asystematic procedure that stresses the the identification of proper measurement approaches and the

comresponding definition of valid metrics, within

(&) aguiding framework that embraces intuitive measures and provides a basis for reasoning about the implication

and ramifications of those measures grounded in software engineering concepts.

In this paper we outline the Objectives, Principles, Attributes (OPA) framework for software quality assessment.
The OPA framework defines a set of linkages which relate the achicvement of software engineering objectives to the
use of principles, and the use of principles to the presence or absence of desirable atiributes. Code properties are used
to measure the extent to which attributes are either present or absent in the code. Propagating computations along
the sets of defined linkages provides measures of principle usages and an indication of the extent to which software

engineering objectives have been achieved during the development process.

Following the OPA framework presentation we provide a detailed description of a five-siep process for developing
software quality measures and metrics within that framework. Relative to our discussions, Ada is assumed to be the
implementation language. Accordingly, we describe the first step as it applies to the entire Ada language; steps two
through five, however, are discussed in relation to one particular Ada language construct, the package. Although
many other Ada constructs have been considered in our work, e.g. loops, conditionals, tasks and generics, length

restrictions prevent their discussion.

In the last section of this paper we describe to what extent the metric definition process has been utilized and the

impact it is now having on our current research efforts.

QBIECTTVES

Maintainability
Correctness
Reusability
Testability
Reliability
Portability
Adaptability

5 OB

PRINCIPLES

Hierarchical Decomposition
Funictional Decomposition
Information Hiding
Stepwise Refinement
Struzctured Programming
Life-Cycle Vexification
Concurrent Docurnentation

PROCESS

PRODUCT

ATIRIBUTES

Reduced Caupling
Erhanced Cohesion
Reduced Complexity
Well-Defined Interfaces
Readability

Ease of Change
Traceability

Visibility of Behavior
Eary Error Detection

DOCUMENTATION _ (+) PROGRAMS

Figure 1
IMustration of the Relationship Among Objectives, Principles, Attributes
in the Software Development Proces

2 Objectives, Principles, Attributes Framework

The Objective/Principles/Attributes (OPA) framework [ARTI90] characterizes the raision d'etre for software
engineering; that is, it embodies the rationale and justification for software engineering. As illustrated in Figure 1,
the framework enunciates definitive linkages among project leve! objectives, software engineering principles, and

desirable product atiributes. In particular, it advances the following rationale for software development:
* asetof gbjectives can be defined that correspond to project level goals and objectives,

* achieving those objectives requires adherence to certain principles that characterize the process by which the

product is developed, and

+ adherence 10 a process governed by those principles should result in a product that possesses attributes

considered to be desirable and beneficial,

Underlying this rationale is a natural set of relations, depicted in Figure 2, that link individual objectives to one or

OBJECTIVES PRINCIPLES ATTRIBUTES

Adaprabitity Concurrent Cohesion
Documentation
Complexity
Cotreciness Functional
Decomposition S\
Coupling
. Hierarchical A/
Maintzinability Decomposition '/ X
't Early Error Detection
ili Information
Portability Hiding Ease of Change
Life Cycle Readability
Reliability Verification
Traceability
. Stepwise
Reusabilit
cusabity Refinement
Visibility of Behavior
o Stuctured
Testability Programming Well-Defined Interfaces
Figure 2

Linkages Among the Objectives, Principles and Attributes

more principles, and each principle to one or more attributes. For example, to achieve maintainability one might
employ the principle of information hiding in the development process. In turn, employing information hiding will

result in a product that exhibits a well-defined interface.

A natural question at this point is: How does one determine if, and to what extent, a product possesses desirable
attributes? The answer lies in the observation of product propertics, i.e. observable characteristics of product, For
example, the use of global variables indicates that a module’s interface is not necessarily well-defined [DUNHS0].
The number of global variables used relative to preferable forms of communications, e.g. parameter passing,

indicates the gxtent to which the interface is ill-defined.

In "bottom-line" parlance: (1) the achievement of software engineering objectives is directly linked to the use of
specific principles, (2} as a consequence of using these principles desirable attributes are induced in the product, (3)
by observing product properties to determine the extent to which attributes really do exist in the product, one can
ascertain the extent to which particular principles are governing the development process, and in turn, the extent to

which stated software engineering objectives are achieved.

Effectively, through its property/attribute pairs and linkages relating attributes to principles and principles to

objectives, the OPA framework supports a well-defined, systematic approach to examining product and process
quality. To date, we have defined and substantiated (through published results of independent researchers) 33 linkages
among the seven prominent software engineering objectives and nine principles, 24 linkages among principles and

attributes, and 84 property/attribute pairs [ARTI87].
3 The Five Steps to Metric Development

The OPA framework defines a set of linkages that relate the achievement of software engineering objectives to the
use of principles, and the use of principles to the presence or absence of desirable product attributes. Nonetheless,
that framework provides only the basis and rationale for metric development. The five steps outlined below, when
applied within the OPA framework, leads one to the realization of viable measurement approaches, and subsequently,

to the definition of suitable metrics.

Step 1. Identifying, Categorizing, and Classifying Crucial Language Components: The categorization and
classification of individual language components supports and encourages independent analysis with respect

to each component.

Step 2. Understanding the Rationale for Component Inclusion: Language component rationales often motivate the
necessity for including the component in the langnage definition as well as provide insight into the

theoretical uses of a component.

Step 3. Assessing Component Importance from a Software Engineering Perspective: From a software engineering
perspective, the impact of using a particular language construct or component is significant within the OPA
framework. Such information, found in language rationales and language reviews from literature, provides
ingight into a component's contribution to achieving software engineering objectives, supporting accepted

software engineering principles and inducing desirable product attributes.

Step 4. [dentifying the Impact of Component Usage on Desirable Software Engineering Attributes: This forth step
entails the identification of all possible uses (abuses) for each language component and recognition of why

and how such uses (abuses) impact product attributes.

Step 5. Identifying Properties, Defining Indicators, and Formulating Measures and Metrics: The activities in this
final step is to determine the various uses (abuses) of each code component, formally link the code
component use (e.g. properties) to the impacted attribute(s), and then define a metric whose value reflects

the justification linking each property/attribute pair.

The remaining subsection provide a detail description of the five step process as applied to the Ada language. For
purposes of illustration and brevity, steps two through five are discussed relative a single virtue of only one Ada

component: the package.

3.1 Identifying, Categorizing and Classifying Crucial Language Components

The first step in defining an OPA-based procedure for assessing the quality of an Ada-based product is to identify
those language components deemed necessary and crucial to the assessment process. Such first steps often involve a
categorization scheme that permits a language 1o be analyzed at the individual component level and then to be viewed
from analytical perspectives based on aggregated components. In concert with this approach, the initial
categorization scheme employs partitioning criteria proposed by Ghezzi and Jazayeri [GHECS82]; that is, the
partitioning of language components along specific functional boundaries. In particular, an Ada program can be

viewed as possessing data types, statement level control structures, and unit level control struciures.

Based on suggestions of Wichmann [WICB84b], Ada language constructs can be further partitioned relative to
constructs defined in Pascal. That is, within functional boundaries an Ada construct can be further delineated based
on whether it has a Pascal counterpart; and if not, whether it can be easily added to Pascal, or represents a new
language feature having a significant influence on the language design issues. Data aggregates, user-defined types,
looping, and decision constructs are members of the first set. Partial array assignment, exit statements, and named
loops are representatives of the second set. Packages, generics, tasking, and exception handling are each members of
the third set. The Pascal oriented categorization is particularly significant because it allows extension of previous
rescarch results reported by Farnan {[FARMS87] and Dandekar [DANART], so that research focuses on those language

constructs and semantic components found in the Ada language but not in Pascal.

Assuming that Faman and Dandekar have necessarily and sufficiently analyzed conventional language

constructs, the critical Ada language constructs requiring additiona! examination are:

» Data Types
- Strings

- Record Discriminants

» Statement Level Control Structures
- Partial Array Assignments
- Exit Statements

- Named Loops with Exits
- Bleck Structures

+ Unit Level Control Structures
- Subprograms
Defanlt Parameters, Name Overloading, Parameter Passing
- Packages
Specification
Body
- Generics
- Tasking
Concurrency Specification

- Exception Handling.

We recognize that the above categorization does not cover alt Ada specific language components, but stress that the
intentions are to examine only those that are most prominent from a software engineering perspective. Bundy
[BUNG90] offers a more detailed explanation of identifying, categorizing, and classifying Ada language constructs

with respect to software quality assessment within the OPA framework.
3.2 Understanding the Rationale for Component Inclusion

Before employing code structure analysis as part of a software quality procedure, one must acquire a firm
understanding of why particular language constructs have been included in a langnage definition. In some cases, the
rationale might simply be that a specific capability is needed, e.g., looping. From the perspectives of software
engineering and software quality assessment, however, of particular interest is the rationale for including constructs
like generics, packages, and block structures that are purported to support desirable product design and development
capabilities. For Ada, the language designers have provided the Rationale for the Design of the Ada Programming
Language [ADARS4]. Published papers describing research and development efforts and books describing usage
techniques provide additional insights into the proposed uses of Ada language components. Using packages as a
representative example, the next paragraph outlines the type of information the authors have sought in synthesizing

an adequate understanding for including particular language elements in the definition of Ada.

According to [ADAR84] packages are one mechanism through which the programimer can group constants, type
declarations, variables, and/or subprograms. The intent is that the programmer will use packages to group related
items. From a software engineering perspective, this particular use of packages is appealing because it promotes

code cohesion [ROSD86). Packages are also a powerful tool in supporting the specification of abstractions. The

7

ability to localize implementation details and to group related collections of information is a prerequisite for defining
abstract data types in a language. Again, from a software engineering perspective, the capability to specify abstract
data types and to force the use of predefined operations to modify data structures promotes reliability, portability, and

maintainability,
3.3 Assessing Component Importance from a Software Engineering Perspective

To exploit the OPA framework one must determine each individual component's contribution to the achievement of
desirable software engineering objectives, its support in the use of accepted software engineering principles, and/or
its ability to impart desirable software engineering attributes to the encompassing product. The authors note that the
impact of a component on product quality can be beneficial or detrimental. For example, operator overloading
generally enhances program readability [WICB84a, GHECR2]. If used indiscriminately, however, it can have the
opposite effect [GHECS2 1.

From an Ada standpoint, the literature abounds with citations attesting to the "software engineering goodness” of
Ada language constructs. In particular, Ada packages are extremely important in achieving a quality, software
engineered product. Ada packages support four definitional abstractions: named collections of declarations,
subroutine libraries, abstract state machines, and abstract data types. One particular abstraction, abstract data types,
is fundamental to supporting the software engineering principle of information hiding [ADARS84]. That is, packages
defining abstract data types provide the type declaration for an abstract data type and methods for manipulating the
data type. What is hidden from the user is the sequence of coded instructions supporting the manipulative
operations. Also, the user is forced to modify the abstract data type through the specified operations. This form of
information hiding is particularly beneficial when maintenance is required because it tends to minimize the "ripple
effect” that change can have. As also discussed by Booch [BOOGS3, BOOG87], packages are crucial in supporting

modularity, localization, reusability, and portability, all of which are highly desirable from a software engineering

perspective,

3.4 Identifying the Impact of Component Usage on Desirable Software Engineering

Attributes

In the third step described above language components are associated with rather abstract software engineering
qualities like maintainability, reliability, information hiding, and modularity. To implement an assessment
procedure within the OPA framework, however, those language components must be aligned with less abstract
entities, i.¢. the software engineering attributes. This fourth step in the metric development process is crucial in that

it esiablishes such linkages by identifying the impact(s) of each language construct on one or more (less abstract)

software engineering attribute. This fourth step is illustrated below by considering the impact of packages relative to

selected software engineering attributes.

As a basis, the authors examined the four proposed uses of packages in linking package properties to software
engineering attributes. For example, packages that contain only type declarations indicate code cohesion [ROSDS6].
The other three proposed uses are packages to define abstract data types, packages to define abstract statc machines
and packages to define subprogram units. Although all four of these uses induce desirable attributes in the developed
product (see [GANJ86, EMBD88, BOOG87], respectively), improper use of packages can also have a negative
impact on the desirable product attributes. For example, the use of packages to group type declarations has
diminishing returns when too many type declarations are exported. This misuse hinders ease of change because

program units must be unnecessarily checked for possible impacts caused by changes to declaration packages.

Consider as a detailed illustration of the above, the use of packages o0 define abstract data types (the authors will
refer to such packages at ADT packages). The benefits (relative to the inducement of desirable software engineering
attributes) of ADT packages are enhanced cohesion (functional and logical), a well-defined interface to the ADT, and
enhanced ease of change for program units "withing” the ADT package. The improved cohesion results from the
grouping of the ADT declarations and access operations within one package. A well-defined ADT interface is
achieved by using the package specification to house the subprogram specification for each ADT and then using
private or limited private types to restrict access to the ADT. From a different perspective, because of the
capabilities provided by packages, the use of ADTs has additional beneficial effects in terms of reduced code
complexity and improved readability. Without further elaboration, it suffices to say that the definition of ADTs

through packages embraces the use of abstractions that hide superfluous details from the ADT user.

In considering packages relative to their impact on product attributes, the authors have also examined several other

uses (and misuses) of packages. They include (but are not limited to)

* “excessive" number of declarations in a declaration package,

* program umnit access to declaration packages,

= "excessive" number of subprograms in a package,

* defining abstract state machines via packages,

* the use of packages to define collections of global variables, and

*+ the impact of unused packages.
3.5 Identifying Properties, Defining Indicators, and Formulating Measures and Metrics

The fourth step of the metric development procedure describes the impact that component uses and abuses have on

9

the software engineering attributes. Step 5 identifies and formatly links product properties (language elements) to
software engineering attributes. Because each identified property undeniably reflects either the presence or absence of
a specified attribute, the authors refer to the property/attribute pair as an indicator. Buiiding on the relationship
between the property/attribute pair, a measurement approach and supporting metric is defined. These three activities
are being discussed together, as a single step, because they are intrinsically tied together. To illustrate Step 5 of the
metric development procedure the remainder of this section focuses on the identification of properties indicative of

the presence of the attribute cohesion relative to the use of packages in defining groups of subprograms.

To begin the process one identifies those properties associated with the use of packages to define subprogram units
and the attribute(s) that usage affects. In the cohesion example, the task is to identify characteristics that a cohesive
package would exhibit. One such characteristic is the wilization of subprograms defined within a package. In
particular, each program unit that “withs” the package of subprograms utilizes a percentage of the subprograms. A
very low utilization suggests that the subprograms grouped by the package are not as closely related (or functionally
cohesive) as they should be. A very high uiilization suggests that the subprograms are closely related or

functionally cohesive.

The description presented in the previous paragraph suggests the identification of a property, the establishment of a
link between a particular property and attribute, a measurement approach and a supporting metric. In particular, the
property/attribute indicator is the “definition of packages that export subprograms relative to its positive impact on
code cohesion.” Hence, to effectively measure the cohesiveness of packages that export subprograms, one must
examine the utilization of the subprograms by “withing” units. Inwitively, if the subprograms are sufficiently
related, any unit that “withs” the package will use a majority of the subprograms. The indicative metric, calculated

on a per package basis, is given with the following formula:

package subprograms
Sub Package referenced
Utilization Withs"
to a Sub
Package

(total # of "withs") * (# of subprograms in the package specification)

{(Note: Sub Package refers to a package that exports subprograms)

The analysis of packages that define abstract data types and of packages that define abstract state machines provides

similar results. The current working list of property/attribute indicators for Ada packages is:

10

1. Definition of Declaration Packages
« Cohesion (+)
« Ease of Change (+)

2. Insufficient Decomposition of Declaration Packages
» Ease of Change {-)

3. Definition of Packages that Export Subprograms
= Cohesion (+)
* Ease of Change (+)
* Well-Defined Interface (+)

4. Units which "with" Packages that export Subprograms
* Complexity {+)
* Readability (+)

5. Definition of Packages that are never "withed"
* Complexity (-)

For further details on the indicators and metrics for Ada packages (and alt Ada components) see [BUNDGY0]
4 Summary and Current Research

The Objectives, Principles, Attributes framework provides a formal basis for defining a software quality assessment
procedure. The five-step procedure outlined above provides a guidance that enables one to identify and characterize
the beneficial (or detrimental) impact that the use of a language construct can have on a product. Because this
procedure relates such properties to software engineering attributes, a natural, complementary link to the OPA
framework is established. Together, they embody the guidelines and techniques for identifying alternative

measurement approaches and the definition of metrics that measure what is intended.

Using the five-step procedure we have currently identified 66 automatable metrics: eight are based on data type
information, 12 exploit properties of statement level constructs, and 46 reflect assessment of unit tevel constructs
like packages, tasks, subprograms and so forth. A code analyzer has been built and is currently being used to

validate the 66 metric relative to their ability to assess product quality.

We also have two other research efforts that use procedures similar to the one presented here. The focal poinis of
these efforts, however, have been to identify and formulate document guality metrics and process metrics. Currently,
thirty-two document quality measures form a basis for assessing the accuracy, completeness and usability of
documentation. Of these thirty-two, ten have been automated. Nine process metrics that span the software
development life-cycle are now being investigated. In each case, a step-based procedure defined relative to the OPA

framework has been instrumental in the identification and definition of such metrics.

11

[ADARS4]

[ARTI90]
[ARTIS87]
[BUNG90]

[BOOGS3)
[BOOGS87]

[DANAST]
[DUNHZ0]
[EMBDSE]

[EJIL87]
[FARME7]
{GANI86]
[GHECS82]
[HALM77]
[HAMCSS]
[HENSE81]

[KEAJ86]

References

Rationale for the Design of the Ada Programming Language, Minneapolis, MN: Honeywell
Systems and Research Center, 1984.

Arthur, 1.D. and R.E. Nance, "A Framework for Assessing the Adequacy and Effectiveness of
Software Development Methodologies,” Proceedings of the Fifteenth Annual Software Engineering
Workshop, Process Improvement Session, Greenbelt MD, December 1990,

Arthur, James D. and Richard E. Nance, “Developing an Automated Procedure For Evaluating
Software Development Methodologies and Associated Products,” Technical Report SRC-87-007,
Systems Research Center and Department of Compater Science, Virginia Tech, 1987,

Bundy, Gary N., “The Objectives, Principles, Attributes Approach for Measuring Software Quality
in Ada Based Products,” M.S. Thesis, Computer Science Department, Virginia Polytechnic
Institute and State University, July, 1990,

Booch, Grady, Software Engineering with Ada, Menlo Park, CA: The Benjamin/Cummings
Publishing Company, 1983.

Booch, Grady, Software Components with Ada, Menlo Park, CA: The Benjamin/Cummings
Publishing Company, 1987.

Dandekar, Ashok V., “A Procedural Approach to the Evaluation of software Development
Methodologies,” M.S. Thesis, Computer Science Department, Virginia Polytechnic Institute and
State University, September, 1987.

Dunsmore, H.E. and J.D. Gannon, "Analysis of the Effects of Programming Factors on
Programming Effort," Journal of Systems and Software, Vol. 1, No. 2, February 1980, pp. 141-
153. ,

Embiey, David W. and Scott N. Woodfield, “Assessing the Quality of Abstract Data Types
Written in Ada,” Proceedings: 10th International Conference on Software Engineering, April
1988, pp. 144-153.

Ejiogu, LEM O., “The Critical Issues of Software Metrics--Part 0. Perspectives on Software
Measurements,” SIGPLAN Noiices, Vol. 22, No. 3, March 1987, pp. 59-64.

Farnan, Mark A.. “The Automation of a Set of Code Metrics for Pascal,” M.S. Project, Computer
Science Department, Virginia Polytechnic Institute and State University, September, 1987.

Gannon, . D,, E, E. Katz, and V. R. Basili, “Metrics for Ada Packages: An Initial Study,”
Communications of the ACM, Vol. 29, No. 7, July 1986, pp. 616-623.

Ghezzi, C. and Mehdi Jazayeri, Programming Language Concepts, New York, John Wiley &
Sons, Inc., 1982.

Halstead, Maurice H., Elements of Software Science, New York: Elsevier North-Holland, Inc.,
1977.

Hammons, Charles and Paul Dobbs, “Coupling, Cohesion, and Package Unity in Ada,” Ada
Letters, Vol. 4, No. 6, May/June 1985, pp. 49-59.

Henry, Sallie and Dennis Kafura, “Software Structure Metrics Based on Information Flow,” IEEE
Transactions on Software Engineering, Vol. 7, No. 5, September 1981, pp. 510-518.

Keamey, Joseph K., et al., “Software Complexity Measurement,” Communications of the ACM,

12

[MCCT76]

[ROSDE6]

[WICB84a]

[WICBR4b]

Vol. 29, No. 11, November 1986, pp. 1044-1050.

McCabe, Thomas J., “A Complexity Measure,” JEEE Transactions on Soﬂware Engineering, Vol.
2, No. 4, December 1976, pp. 308-320.

Ross, Donald L., “Classifying Ada Packages,” Ada Letters, Vol. 6, No. 4, July/August 1986 , pp.
53-65.

Wichmann, B. A., “Is Ada too Big? A Designer Answers the Critics,” Communications of the
ACM, Vol. 27, No. 2, February 1984, pp. 98-103.

Wichmann, B, A., “A Comparison of Pascal and Ada,” Comparing and Assessing Programming
Languages, Englewood Cliffs, NJ: Prentice-Hall Inc., 1984.

13

