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Abstract—The problem of finding a reduced order mode'l, optimal in the L? sense, to a given sys-
tem model is a fundamental one in control system analysis and design. The problem is very difficult
without the global convergence of homotopy methods, and a number of homotopy based approaches
have been proposed. The issues are the number of degrees of freedem, the well posedness of the
flnite dimensional optimization problem, and the numerical robustness of the resulting homotopy
algorithm. Homotopy algorithms based on several formulations — Hyland and Bernstein’s optimal
projection equations; input normal formj Ly, Bryson, and Cannon’s 2x2 block parametrization; a
new nonminimal parametrization — are developed and compared here. The main conclusions are
that dimensionality is inversely related to numerical well conditioning, and algorithmic efficiency is
inversely related to robustness of the algorithm.

Index Terms—-homotopy method, input normal form, optimal projection equations, parameter

optimization, reduced order model problem.

I. INTRODUCTION

The L? optimal model reduction problem, i.e., the problem of approximating a higher order
dynamical system by a lower order one so that a quadratic model reduction criterion is minimized,
is of significant importance and is under intense study. Several earlier attempis to apply homotopy
methods to the L? optimal model order reduction problem were not entirely satisfactory. Richter
and Collins [13}-[15] devised a homotopy approach which only estimated certain crucial partial
derivatives and employed relatively crude curve tracking techniques. Zigié, Bernstein, Collins,
Richter, and Watson [21]-{23] formulated the problem so that numerical linear algebra techniques
could be used to explicitly calculate partial derivatives, and employed sophisticated homotopy
curve tracking algorithms, but the number of variables made large problems intractable. We
propose here several ways to reduce the dimension of the homotopy map so that large problems
are computationally feasible.

The problem can be formulated as; given the asymptotically stable, controllable, observable,
time invariant, continuous time system

(t) = Az(t) + Buft),
y(4) = C=(1),
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where A € R™"*", B € R™*™ (' € R¥?, the goal is to find a reduced order model

Fm() i Am T (t) + Bm u(t), (2)
Ym(t) = Crn (1),

where A,, € R"»X%m B € RMXm (€ RI*"n 5 « n which minimizes the cost function
J(AmaBm:Cm) = tlililo E [(y_ym)TR(y“ym)]: (3)

where the input u(¢) is white noise with symmetric and positive definite intensity V and R is 2
symmetric and positive definite weighting matrix.

The optimal projection equations of Hyland and Bernstein [4], {5], described in Section V,
are basis independent and correspond to the maximum number of degrees of freedom one could
plausibly use. Richter and Collins [15] use this maximum number, and Zigié¢ [21] reduced it
somewhat. At the other extreme, the minimum number of degrees of freedom corresponds to the
input normal form described in Section II, and developed into a homotopy algorithm in Sections
HOI and IV. Subtle differences between the optimal projection equations and input normal form
formulations are explored in Section V. Assuming a particular Jordan form for A,, leads to the
minimal parameter formulation of Ly et al. [8], which is developed into a homotopy algorithm in
Section VI. Section VII gives numerical results for the input normal form and Ly form homotopies
on the test set of Zigi¢ [21].

Both the input normal form and Ly parameterization use the minimum possible number of
degrees of freedom, but rely on assumptions about the structure of (A, Bp,Cm) that do not
always hold, and therefore may not exist. Even worse, they may exist but be arbitrarily badly ill
conditioned, resulting in unstable numerical algorithms. Section VIII explores an alternative for-
mulation using more than the minimal number of degrees of freedom, and compares to the minimal
formulations. Comparisons between the three formulations and the optimal projection equations
approach are given in Section IX. A fundamental difference between the optimal projection equa-
tions and the other formulations is that the optimal projection equations approach solves f(z) = 0
where f is not the gradient of the cost functional and z is not the reduced order model, while the
other three formulations solve g(y) = 0 where g is the gradient of the cost functional and y is the
reduced order model.

I1. INPUT NORMAL FORM FORMULATIONS.

The following theorem is needed to present the homotopy method for the input normal form.
TAEOREM 1 [6]. Suppose Ay, is asymptotically stable. Then for every minimal (A, By, Cim),
i.e., (ﬁim, B,,) is controllable and (./—im,{f'm) is observable, there exist a similarity transformation
U and a positive definite matriz ) = diag (wl, .- -,wnm) such that A, = U"YA,,U, By, = U™ B,,,
and Cp, = Cr U salisfy
0=A,+ AL + B, VBT,

4
0=AZQ 494, +CELRC,,. ®)
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In addition,
1

(Am)ii = _E(BmVB?r:)w
_ (CERCa),
CIRC,).. —wj(Bn,VBI)..
(Am)éj — ( )33 J( )zj’ if w; #wj-

Wi — Wy

DeriNiTION 1. The triple (Am,Bm,C'm) satisfying (4) or (5) is said to be in input normal
form.

Note that generically w; # w; for ¢ # j, and this is assumed henceforth. Under the assumption
that a solution (A, By, Cr) in input normal form is sought, the only independent variables are
B, and C},, and in this case the domain is

{(Am, B, Cr) : Am is stable, (A, By, Cyn) is minimal and in input normal form}.
Assuming (A, B, Cr) is in input normal form, the cost function (3) can be written as
J(Am,Bm,Cm) = tr (QR) (6)
where @ is a symmetric and positive definite matrix satisfying
AQ+ QAT+ ¥ =0, (7)
and

i-(4 0 5= CTRC -CTRC, v BVBT BVBIL )
“\0 A,/ “\~CILRC CIRC, )’ ~\ B.,VBY B,VBL /"

Q can be written as ) i
A @1 Gz )
—_— P4 ~ N 9
¢ (sz 2 (9)
where @1 € R™*", Q15 € R, and @y € R Xm,
The goal of minimizing (6) under the constraints (4) and (7) leads to the Lagrangian

L(Am, By Cy 0, Q) = t2[QR + (A + AL + B, VBL) M,
+ (ALQ + QA + CTRCH)M, + (AQ + QA + V) P],

where the symmetric matrices M,, M., and P are Lagrange multipliers.
Setting 3L/0Q = 0 gives
ATP+ PA+ R=0, (10)

where P is symmetric positive definite and can be pariitioned as

5 _ ;’-31 13:12
P‘(Pf{; PZ). (1)
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AL/OQ =0 and OL/AA,, = 0 yield
0= 2Mc + 2QM0 + 2(1313;@12 + PZQZ)a 0= (AmMo)

i’

A straightforward calculation shows

;TL = 2(PLB + P, B, )V +2M.B,V,
L . .
W = ZR(CmQ2 - 0@12) + 2RC, M.

THEOREM 2 [2]. The mairices M, and M, in {12) satisfy

M, = ~(55 + M),

1 =

(M), = _(Tm—)':' ;(Am)ij(Mo)jz”

(M), = (8)i; — (5)ys

07 Sy @i F e

where
S = 2(PLG1 + PQ,).

III. A HOMOTOPY APPROACH BASED ON THE INPUT NORMAIL FORM.

(12)

(13)

(14)

A homotopy approach based on the input normal form is now described. Let Ay, By, Cy ,

R4, and Vy denote 4, B, C, R, and V in the above and define

A(X) = Ao + MA; — Ap),
B(A) = By + )\(.Bf — Bo),
C‘(/\) =Co+ /\(C_f - Co),

R()\) =Ry + )\(R_f — RQ),
V(A) = Vo + A(Vy — Vo).

(15)

For brevity, A(A), B(A), C(A), V(A), and R(A) will be denoted by A, B, C, V, and R respectively

in the following. Let

Hp, (8,)) = (—%L— =2(PLB + BB,V + 2M,B,Y,
AL - .
He, (6,0) = Yo 2R(Crn@Q2 — CQ12) + 2RC,, M,

where

o= vz (Bm))
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denotes the independent variables B, and Cy,, M, and M, satisfy (13), and Q and P satisfy
respectively (7) and (10) with partitioned forms (9) and (11). Vec(P) for a matrix P € RP*? ig
the concatenation of its columns:

Py
P,
Vec(P)=| . | e RPXq,
P,
The homotopy map is defined as

_{ Vec [Hz,.(8,))]
PO, %) = (Vec [He, (0, A)]) ’ (16)

and its Jacobian matrix is

Dp(8,A) = (Dap(6,X), Darp(8, X)) (17)

Define X o ' o » '
fp, (PO, MO = 2B 9B 4+ BB, )V + 2MW B, V,

He, (@D, MY)) = 2R(CnQS” - CQY)) +2RC M,
where the superscript (j) means /86;: YU = g—g;. Using the above definitions, we have for
0; = (Bm) ki’

OHp, _ Hg,, (PO, M) + 2(B; + M) EFIY,

8Hq - P .
——=_ =, G, My,
B(Bm)kl Cun (Q 0 )

and for 8; = (Cr) s

= fig_(PY), M,
N Com )kt B ( ) (19)

sic s = Ho, (@9, MP)) +2RERD (G + M),
where E(*) i5 a matrix of the appropriate dimension whose only nonzero element is ey = 1. P()

and Q{9 can be obtained by solving the Lyapunov equations

0= ADG 4 AP 4+ 6D AT L AT 1 T
Q@+ AQY +@Q +Q + Vi,

— ATWP L AT 4 PO A 4 PAD 4 B (20)
0 P+ ATPW L PDAL PAGY + R

Similarly for A, using a dot to denote 8/8A,

H SR BT (] ‘ p /
83?"‘ = Hp,, (P, M) + 2P (BV + BV) + 2(P; + Mo) BnV,
(21)

OHo, _ o (5 o\ oo ‘ e
5= = Ho,, (Q, Mo) +2BC (G2 + M) — 2(BC + RC) G,
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IV. NUMERICAL ALGORITHM FOR INPUT NORMAL FORM HOMOTOPY.

The initial point (8,X) = (6p,0) = ((Bm)o»(Cm)o,0) is chosen so that the triple {(Aum)o,
(B )o, (Cim)o) is in input normal form and satisfies p(fo,0) = 0.

THEOREM 3 [9]. Suppese A is asymptotically stable. Then for every minimal (4,B,C),
€., (}L 5’) is controllable and (Zt, C’) is observable, there exist a similarity transformation T
and a positive definite matriz A = diag (dl,dz,---,d.n) with d; > diy1 such that A = T-L1AT,
B=T71B, and C = CT satisfy

0= AA + AAT + BV BT,
0=ATA+AA+ CTRC.

DEFINITION 2. The triple (A,B,C) in the above theorem is balanced.

According to Moore [9], under certain conditions, the leading principal n, X 2, block of A,
the leading principal n,, X m block of B, and the leading principal { X ny,, block of ¢ in balanced
form are good approximations to the reduced order model. This suggests that the initial point
(6o,0) be chosen as follows: '

1) Transform the given triple (A, By, () to balanced form (Ay, By, Cs)-
2) Partition (As, By, Cy) as

T

e — Nm
{{ Az A {(B
A - Nn 11 12 ) , B — T ( 1 )’ Cf —_ C C .
b ( Ay Ap ’ By o= (G @)

3) (A, By, o) is chosen as

A 0 B
we( 1) 2e(8) eea o

4) The initial point for the reduced order model is chosen as
g = [ Vec (Bm)o\ _ { Vec By
0=\ Vec (Crdo ) ~ \Vee Gy )’

and (Ao = Ay by construction.
5) Transform the initial point ((Am)o,(Bm)o,(Cm)o) to input normal form so that the initial
reduced order model is

((Am)ﬂa (-B'm.)ﬁa (Cm)()) = (T—l (ﬁm)O Ta T—.l (Em)ﬂa (C'm)(] T)
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The initial point for the homotopy map is then (#),0), where

so= (Vex (Bl

(In general, the truncation to obtain the approximate reduced order model should be based on the
component costs instead of on the sizes of the balanced gains d; as done above [16]. This explains
why in some cases (Examples 1 and 6) the above algorithm for choosing the initial points did not
lead to a reduced order model with a minimal cost.}
Once the initial point is chosen, the rest of the computation is as follows:

1) Set A:=0, @ := 6.

2) Calculate A, from (5), B, V, and compute @ and P according to (7) and (10).

3) Evaluate S from (14) and M, and M, according to (13).

4) Evaluate the homotopy map p(#,A) in (16) and Dp(8, A) in (17).

5} Predict the next point ZO = (9(0), )\(O)) on the curve 7.

6) For k:=0,1,2, - until convergence do

(k1) [Dp(z(k))]Tp(Z(k)),

where [Dp(Z )]? is the Moore-Penrose inverse of Dp(Z). Let (91, Al) = jrclim yALR
7) If A1 < 1, then set 8 := 6y, A := A, and go to step 2).
8) ¥ A; > 1, compute the solution  at A = 1. A,, is then obtained from (5).

An alternative strategy for choosing an initial point is as follows:
1) Modify Ay to A} = ¢1J + g Ay, where ¢; < 0 and ¢; > 0.
1} Transform (A%, By, Cy) to balanced form and choose (A4g, By, Cp) as before.
3) Compute the initial reduced order model ({4 )o,(Bm)o,(Cm)o) from the triple (4, Bj, Cp)
as before.
When ¢; = 0, ¢z = 1, this strategy reduces to the previous one. For some problems, our
numerical experiments show that HOMPACK reaches A > 1 in fewer steps with ¢; # 0 than with
¢1 = 0. A modification to the homotopy map p(6, A) in (16) is

p1(8,A) = Ap(8,2) + (1 — A)(6 — bo),

where 8y denotes the initial value of & at A = 0. For some problems this homotopy map can be
more efficient than the one in (16), while in other cases it can be less efficient.
V. COMPARISON WITH OPTIMAL PROJECTION EQUATIONS APPROACH.

THEOREM 4 [4] [5]. Suppose (Am, By, Cr) is a controllable and observable solution of the
problem (1)—(3). Then there exist positive semidefinite pseudogramians Q, P that are a solution
to modified Lyapunov equations

0=7r[A0+0 AT + BV BT,

. (22)
0=[ATP+PA+CTRC]T,
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ond satisfy rank conditions
rank (@) = rank (P) = rank (Q P) = n,y,

such that the optimal model is given by

An =TAGT,
Bn=TB, (23)
Cm=CG7T,

where G and T come from a (G, M, T)-factorization of QP:

)P=GTMT
rét =1,
G, I'e R"=X" M € R X" jg positive semisimple and = G T.
Equations (22) are called the optimal projection equations, which after the nontrivial algebraic
manipulation described in [22], can be written in a form suitable for computation as

U AW EWE+swla® + 0, BV BT =0, (T 1)
ATUES 4+ I AWy + CTRCW, =0, (nnm)  (25)
U w,—I=0. ' (rk)

The unknowns are Wy € R*X%= [J; € R"™ X" and symmetric ¥ € R”mx”m ‘In terms of these
new unknowns, ¢ and P in (24) can be written as

Q2W1EW1T, P:UlTEUL

Hyland and Bernstein [5] stated that the optimal projection equations can have at most (nn )
m

solutions. It is shown by the following 2-dimensional example that this is not true in general.
The system [7] is given by

_ (005 —099 (1 _
‘4“(~0.99 —5000.0)’ B‘(mo)’ ¢=(1 100). (26)

PROPOSITION: For the system (1) defined by (26), the solution set of the optimal projection
equations contains three isolated solutions and a one-dimensional manifold parameterized by one
element of either Wy or Us.

Proof. The three isolated solutions are

Am = (~0.005004234), B,, = (1.000213), C,, = (1.000213),
Ap, = (~4998.079), B, = (100.0002), C, = (100.0002),
= (~0.4659163), By, = (—1.940482), C,, = (—1.940482),
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which were obtained by both POLSYS from HOMPACK [19] and by a homotopy approach {21]-
[23]. The one-dimensional manifold of solutions corresponds to

Am = (~0.4851515), B = (0.0), Cm = (0.0),
which can be derived directly from the optimal projection equations as follows.
Let Wy = (:; ) , Uh = (z3,%4), and ¥ = z5. The optimal projection equations (25) for this
problem can be written as
0 = 011232325 + 012812283%5 + G218 T4T5 + AraT1T2T4T5
+ 2125 + 12225 + (BV BT 1123 + (BV BT a1,
0 = 1121228385 + 0122535 + Gr181T2T4T5 + 022 TF4Ts5
+ an@125 + a5 + (BY BT )iaas + (BV BT )agaa,
0 = 411712385 + 612722385 + 02121830405 + A22T223T4T5 (27)
+ ay1@32s + aareats + (CTRCner + (CTRC)pzs,
0 = a112123%425 + 012028324 T35 + 01212475 + 023827475
+ 132325 + ag2@435 + (CTRC)n @y + (CTRC)pp s,
0 =223+ 2224 — 1.

The triple (An, Bm, Cn) is given by
A = TAGT = (25 24) (rm a12) (9:1)

dg1  G22 L2

= z1(@1123 + @2124) + z2(a1223 + 02224),

28)
By =TB =(z3 z4) (g;i) = briws + da1%y, (

Cm = CGT = (11 €12) (3:) = 1121 + C12%9,
where I' = Uy and G = W{. Substituting (26) into (27) and (28), setting By, = z3 + 100z4 = 0

and Cp, = @1 + 100z = 0 gives zy = —10023, z3 = —10024, and A, = —48522524. Equations
(27) become

0 = 485200222425 — 0.49z475, (29)
0 = 485200z323 25 — 0.49z 425, (30)
0 = 485222425 + 49012925, (31)
0 = 4852252225 + 49012425, (32)
0 = 10001zz24 — 1. (33)

I 29 = 0 or z4 = 0, equation (33) will not be satisfied. Only the situation that 2 # 0 and z4 # 0
is possible. Then equations (29)—(33) can be reduced to

0 = 485200222425 — 0.49z5,
0 = 48b2z3z425 + 490125, (34)
0 = 1000ixszy — 1.
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H 25 # 0 then (34) becomes
0 = 4852002224 — 0.49,
0 = 48522524 + 4901, (35)
0 = 100012974 — 1,

which does not have a solution.
Thus z5 = 0, and equation (34) reduces to

10001z9z4 — 1 =0,

which gives A,, = —4852/10001 = -0.4851515 corresponding to a one-dimensional manifold
parametrized by 23 or z4. Hence the solution A, = —0.4851515, B,, = 0 and C,, = 0 (which
is not controllable or ohservable) corresponds to a one-dimensional manifold of solutions of the
optimal projection equations. Q. E. D.

The set of solutions of the input normal form equations contains the same set of isolated
solutions as the optimal projection equations, and also a fourth isolated solution given by A, =
By, = Cy = 0. Therefore the solution sets of the two formulations are different.

The input normal form equations can be rewritten as

0 =2(B5B+ P, By)V + 2M,B,,.V,

. - (36)
0 = 2R(CrnQ2 — CQ12) + 2RC, M,.
Setting B,, = C, = 0, the equations become
0= PLRV,
. (37)
0 = RCQ1s,

where Py and Q1 satisfy respectively

0=ATP; + Py Ap,
0= AQ]Z + émAm:

which has a solution }.512 = ng = (g) A, satisfies

Am+ AL 4+ BnVBl, = Ap + AL, =0

which gives A, = 0.

It should be noted that the solutions to the optimal projection equations {22} that satisfy the
rank conditions rank(Q) = rank(P) = rank(Q P) = n,, characterize all controllable and observable
extremals of the optimal model reduction problem. However, there are algebraic solutions to (22)
that do not satisfy these rank conditions. The one-dimensional manifold of solutions of the previous
proposition are such a set of solutions since for these solutions ra,nk(Q) = ra,nk(f’) =0# ny = 1.
On the other hand, the input normal form equations characterize all extremals of the optimal model
reduction problem for which the input normal form has the property that no two diagonal elements
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of 2 are equal. No restriction is placed on the controllability or observability of these extremals.
Hence, the extremal sets that the optimal projection equations and the input normal form equations
characterize are not identical. In addition, the optimal projection equations may also have algebraic
solutions that characterize additional reduced-order models that are uncontrollable or unobservable
and may or may not be related to the solutions of the input normal form equations by a similarity
transformation. These differences in the solution sets were illustrated by the example of this
section. However, it should be noted that if one considers their input-output properties, the two
solution sets are equivalent,

V1. HOMOTOPY ALGORITHIM BASED ON LY’S FORMULATION.

Ly et al. [8] introduced another canonical form also with n,,m + n,,! parameters as in the
input normal form formulation. The reduced order model is represented with respect o a basis
such that A,, is a 2 X 2 block-diagonal matrix (2 x 2 blocks with an additional 1 x 1 block if n,,
is odd) with 2 x 2 blocks in the form

()
* %/

By, is a full matrix, and

On= (@l (Ca)e  (Cu)r)
where ;
Cr=(y 1 0)
Cn)r=(1 % -+ £Y, ifny is odd.

Let S be the set of indices of those elements of A,, which are parameters, i.e.,
§=1{(2,1),(2,2),...,(nm,nm)}

To find the minimum of the cost function (6), consider the Lagrangian

L(Ap, B, Cr, @) = t2[QR + (AQ + QAT + V) P, (38)

where the symmetric matrix P is a Lagrange multiplier,  satisfics (7), and A, R, and V are
defined in (8). Setting OL/8Q = 0 gives (10), and P is symmetric positive definite and can be
partitioned as in (11). A straightforward calculation shows -

oL =P A ~ .
A - 2(PLQu+ Ay, (1,5) €S,
oL - -
—— =2(PLB + BV,
8B, (P »Bm) (39)

oL _, 0
O(Cm)ij  HCm)ij
= QR(C'méz - Cém)éj, i> 1.

[ tr (~QL,CTRCy) + tr (@,CTRC,)]

11



Let A;, By, Cs , Ry, and V; denote A, B, C, R, and V in the above and define A(A), B(}),
C(X), R(A), and V(A) as in (15) and denote them by A, B, C, V, and R respectively in the
following. Let

oL - -
Hy, (0,2) = A 2(P£Q12 + PQ2),
$11]
Hg, (6,)) = 0L = 2(PLB + PB,)V, (40)
B
oL ~ ~
He,(0,0) = FTom =2R(CrnQ2 — CQ1z),
where in H 4 only those elements corresponding to the parameter elements of A,, are nonzero
and
(Am)s
6= Vec(Bn) (41)
Vec (Cy )7

denotes the independent variables, @ and P satisfy respectively (7) and (10), (Am)s is a vector
consisting of those elements in A,, with indices in the set S, L.e.,

(Am)s - ((Am)ﬂa (Am)227 Tty (Am)nm nm)T:

(Cp)7. is the matrix obtained from rows T = {2,...,1} of Ci,.
The homotopy map is defined as

[HAm (9: A)] S
p(B,\) = | Vec [Hp, (6:N)] |, - (42)
Vec [Hcm (8, )\)]T‘

and its Jacobian matrix is
Dp(ga A) = (Dep(ga ’\)7 DAP(B? )‘))'

Define
Ha, (Pw, GW) = 2(P5\ 0 + PREY + PG, + BQY)),
g, (P = 2(PLY B+ BDB,,)V, (43)
Hc (Q(J)) _ ZR(C Q(J) (J)),

where the superscript (j) means 8/96;. Using the above definitions, we have for §; = (Am)kz’
where (k,0) € 8,

OH 4 N
m_ B 40)
HAm)ki A )
OHp, o s
= = fig (P9), 44
B(Am)kl Bm.( ) ( )
OHcw _ & (50)
8(Am  Cm (@)



for 8; = (Bm),,»

B?g:)nm = fa, (PO, 0W),
e s,
and for 8; = (Cp, )x1, where k > 1,
8‘?? :TM — B, (B9, GW),
aé(}g: Yo Hp,, (P), (46)
Bé()ga:;m = fc, (@) + 2REMD Q..

P and Q9 can be obtained by solving the Lyapunov equation (20). The derivative of the
homotopy map with respect to A can be derived in a similar fashion.
The initial point (8, X) = (f,0) is chosen so that the triple ((Am)o,{Bm)o,{Cm)o) is in Ly’s
form and satisfies p(fp,0) = 0. This can be done as follows:
1) Obtain the initial reduced order model {(Ap)o, (B )o,(Cm)o), in balanced form in the same
way as for the input normal form approach.
2) Transform the balanced ((Am)o,(Bm)o,(Cm)o), to Ly’s form, and build 6 as described in

(41).

The homotopy curve tracking computation is the same as described in Section IV.

VI1I. NUMERICAL RESULTS.

In this section numerical results for both the input normal form and Ly formulations are
given for eleven systems. The first nine systems have been studied and solved in [21]-[23] using
the optimal projection equations approach. Comparisons are made between these two minimal
formulations and the optimal projection equations in Section IX.

The cost J is computed for each model as tr (Q R), according to (6). Tor all examples V =
R = I. Unless indicated otherwise, the solutions, given in input normal form, can be obtained by
both formulations and are the same as those obtained by the optimal projection equations method.

ExaMPLE 1 [7]. The system is given by

-0.05 -0.99 1 '
4= (—0.99 —5000.0) » B= (10(}) , ¢=(1 100).
The homotopy algorithm converges to a solution corresponding to the model of order n,, = 1 given

by
A = (=0.00500423), B, =(-0.100042), C,, = (-10.6000),

which was not obtained by the optimal projection equation approach of [21}-[23]. This model
yields the cost J = 10000.
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In the first step of choosing an initial point, (Ay, By, Cy) is transformed to (As, By, Cp), where
orthogonal decompositions of two matrices are needed. If the eigenvalues of one of the matrices
are rearranged in ascending order, then a different solution is obtained, namely

Ap = (—4998.08), Bn =(—99.9808), C, = (—100.020).

This model yields the (minimum) cost J = 96.0781.
ExaMPLE 2 [17]. The system is given by

-1 0 1 1
a=( %), m=(5 D). =t o2

A model of order n,, = 1 is
A, =(-11.9794), B, =(-4.85914 0.589656), C,, =(2.76076).

This model yields the cost J = 0.598377.
ExaMPLE 3 [7]. The system is given by

-0.25 —-0.4 1 B
A= ( ~0.4 -0.72)’ B= (1‘2) , C=(1 12).
A model of order n,,, = 11is

Am = (—0.838521), B, =(—1.29501), C,, = (1.82558).

This model yields the cost J = 0.107256.
EXAMPLE 4 [18]. The system is given by

-1 3 0 -2
A=|-1 =1 14, B=(2], ¢=(1 0 0).
4 -5 —4 4

A model of order 1, = 1 s
AL, = (-0.286334), B, =(-0.756748), C, = (0.878161),

which is different from that obtained by the optimal projection equation method [21}-[23], and has
a smaller cost J = 1.22883. A model of order n,,, = 2 is

A _ (0215087 0.733968)  p _ (0.655800\ . _ (0.888877
™=\ —2.51385 —3.60074/° ™ T \ 2.68356 /) ™~ \ —1.09093

This model yields the cost J = 0.0197781.
ExampLE 5 [7]. The system is given by

~10 1 0 0
A= -5 0 1), B={[1], C=(1 0 0).
-1 0 0 1



A model of order n,, = 1 is
Am = (—0.157898), Bp =(0.561956), Cp = (0.318537).

This model yields the cost J = 0.0107792. A model of order n,, =2 is

A = —0.139652 0.100607 B. = 0.528492 o7 = 0.320438
™ —0.600971 —0.448192 /° ™ T\ 0.946775 ) ™ T \ —0.0961019 /"

This model yields the cost J = 0.000329024.
ExXAMPLE 6 [21]. The system is given by

0 1 0 0 0 0
(-2 —002 1 oot 10 _
A= 0 0 0 1 , B= 0 ol C=(0 1 0 0).
0.1 0.001 -0.1 -0.001 01
A model of order n,,, = 1 is
0.184397
Ap = (-0.353743), B, = (0.82066{)) , Cm =(0.805197).

This model yields the cost J = 285.012.

With the input normal form, when n,, = 2, 3, two of the initial ws are approximately the
same, which leads fo a significant numerical error in computing M, and the numerical failure
of the homotopy algorithm. Therefore this technique for choosing initial points fails, and some
modification to the algorithm is needed to avoid this kind of ill conditioning. However, it is not
at all clear how to systematically avoid nearly equal ws, and this remains an open question. It
can be shown that the solutions, obtained by the optimal projection equation approach, also have
close ws, which implies that changing the strategy for choosing initial points will not suffice for
this example.

The Ly formulation can obtain the solutions which are given in [21]-[23]. However, a more
general strategy for choosing an initial point similar to that for getting the minimum solution in
Example 1 is needed to get the same results as in [21]-[23]. i such change is not made, different
solutions with a larger cost are obtained; those solutions will not be reported here.

The solutions are given in Ly’s form. A model of order n,, = 2 is

A 00 1.0
™=\ -2.05093 —0.0205208 ) °

B :( 0.974576  —0.4994518

—0.0265942 0.0351745
This model yields the cost J = 256.432. A model of order n,, = 3 is

0.0 1.0 0
Ap = | —2.05137 -0.0205971 0.0 ,

), Cm = (1.0 0.0).

0.0 0.0 —0.384243
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| 0.976140  —0.505800
B = | —0.0176536 0.00117515 |, Cn=(1.0 0.0 1.0).
0.0373661  0.754190

This model yields the cost J = 255.703.
ExaMpPLE 7 [9], [20]. The system is given by

0 0 0 -150 4
{100 -25 {1 3 |
A=19 1 0 -1z B={o|> ¢=(0 00 1)
00 1 -19 0

A model of order n,, = 1 is
Ay = (—0.495187), By, = (0.995175), C,, = (0.0148426).

"This model yields the cost J = 4.90749 - 10~5. A model of order n,, = 2 is

_ [ —0.437964 —0.482612 _{0.935911 T
Ap = ( 2 81007 317945 ), B = ( __2‘51890), CT = (0.0149143 0.00682097).

This model yields the cost J = 4.159-10~7. A model of order n,, = 3 is

-0.437810 -0.483078 —0.0370108
Ap = 2.82632  —3.13536 ~—0.612598 |},
—4.65184  13.1604 —12.5542
0.935746
By, = | -2.50414 |, C, =(0.0149143 0.00682180 0.000635413).
5.01082

This mode! yields the cost J = 4.59 1019,
ExaMPLE 8 [9]. The system is given by

5 1 0 o0 0
o 6o 1 o0 {o _
A= o o o 1l B=lgls c=(s0 15 1 0).
~50 —79 -3 1

9 3 -5

A model of order n,,, = 1 is
Ay = (—-0.576205), B, =(1.07350), C,, = (0.588692).

This model yields the cost J = 0.104740. A model of order 7, = 2 is

A = —0.532330 —0.598751 B = 1.03182 o7 — 0.588704
"o 3.80077  —4.81512 J* T T\ -3.10326 } 7 ™ T {0.278923 / °

This model yields the cost J = 0.0269278. A model of order n,, = 3 is

2.88892  -2.23562 —3.72129
—1.08450  6.30540  -0.746729

(—0.520312 ~0,731867 -0.162146)
Am = 3
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BI =(1.02011 -2.11453 1.22207), C,, ={0.586461 0.307967 0.105043).

This model yields the cost J = 0.00148438.
ExaMpLE 9 [3]. The system is given by

—6.2036  15.054 —9.8726 —376.58 251.32 -—162.24 66.827

0.53 —2.0176  1.4363 0 0 0 6
16.846  25.079  —43.555 0 0 0 0
A= 3774 —89.449 —-162.83  57.998 —65.514 68.579 157.57 |,
0 0 0 107.25 —118.05 0 0
0.36992 —0.14445 —0.26303 -—0.64719 0.49947 —0.21133 0
0 0 0 0 0 376.99 0

89.353 0
376.99 0
0 0
00 00CO0 10
B = 0 H , C:( )
0 0 0 0000 ¢ 1
0 0.21133
0 0

A model of order n,, = 1 is
Ap =(-0.199272), B, =(0.631300 -0.00187918), (. =(—0.187347 —354.430).

This model yields the cost J = 27632.2. A model of order n,, = 2 is

A = —0.199608 -0.0763006
™\ 3.33119 —13.2758 }°’

Bm:(0.631832 —0.00191612)’ o

~0.201050 0.800899
—5.15182  —-0.101952 m = -

—354.414 —-66.1873
This model yields the cost J = 23262.3. A model of order n,, = 3 is

An = | —1.0873% -0.912444  9.20181

-0.198769 0.235666 —0.0248136
?
—0.115288 —-9.50243 —0.0261157

—1.350879  —0.00377142 354.222  ~164.479  26.6355

B —0.630503  0.00216112 o - (0.291338 —0.0265117 —4.03570)
—0.222387 —0.0526803

This model yields the cost J = 0.673079. A model of order n,, = 4 is

-0.198769 0.235667 —0.0248136 0.000915746
-1.08739 -0.912440 9.20181  -0.00904508
-0.115288 -9.560243 -0.0261166 0.00159031 |’
—5.46513 —11.6984  ~1.92997 ~37.5544

Ap =
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—0.630503 0.00216112 0.291340 354.222
-1.35088 —0.00377141 o7 = —0.0265302 —164.479
—0.222386 —0.0526803 |’ ™ —4.03569 26.6355
—-8.66651  —0.0203036 0.0861885 —0.815898

B, =

This model yields the cost J = 3.22.107".

For this example with n,, = 3, 4, the columns of the initial. Jacobian matrices from input
normal form formulations are so badly scaled that the numerical linear- algebra in- HOMPACK:
fails. Modifying HOMPACK to use the LINPACK subroutine DQRDC for the QR factorization
of the initial Jacobian matrices enables HOMPACK to successfully overcome the ill conditioning

and find a solution.
ExaMPLE 10 [1]. 4 is a 2 X 2 block diagonal matrix with each diagonal block being of the

form
0 1 .
(_0? -Zya'i)’ i=1,...,n/2,

B= (0351}03 b2:' . .,O,bnfg)T, C= (0,61,0, Cay .. °:Urcn/2)7

where o; = 7%, b; = /2 sin(iwa), ¢; = NG sin(¢ms) and y, @, s are known parameters. This system
was not studied in [21]-[23]. The input normal form approach can not give a solution when 7, > 1
because the initial ws are generated in pairs.

Choosing n = 16, n,, = 8, y = 0.001, @ = 0.1, s = 0.2, the reduced order model is

Ap = diag (A1, As, A3, Ag),

s 0.0 1.0 A = 0.0 1.0
1=\ ~24936.92 —0.3158248 /° 2 7 \ —97.40911 —0.01973900 /°

e 0.0 1.0 a = 0.0 1.0
3T\ -7890.149 —0.1776489 /> 4T \ —1558.546 —0.07895572/°

/ 1.118022 (1.0 T
0.3208260 0.0
0.3632675 1.0
—0.007030323 0.0

Bm = 1.538809 v Cm=1|10] >
~0.1661970 0.0
1.118019 1.0

\ —0.07921770 / \ 0.0/

which has cost J = 2.59857. Ly’s formulation is very efficient for this problem.
ExaMprLe 11. The system is given by

~1 0 0 1.1
A= 0.0005 —1.000001 0 , B=[12], Cc=(21 22 23).

0.0005 0.0005  —~1.00001 1.3

A model of order n,, = 2 with cost J = 0.36- 10714 is

A = -~0.999519  0.00000 B — —1.41387 T — ~5.61578
"o 1.99976  —1.00024 /> T T\ 1.41438 /° T™ T\ 0.00000 /°
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This system was constructed to illustrate that some problems can be solved by the input nor-
mal form formulation or the over-parametrization formulation described below but not by the Ly
formulation.

VIII. OVER-PARAMETRIZATION FORMULATION.

Both the input normal form formulation and Ly formulation can introduce ill conditioning,
resulting from eliminating certain variables so that the minimal number of variables is used. To
avoid such ill conditioning, one could use all the elements in A,,, B, and O, as variables, i.e.,
not impose any restriction on the representation of (A, By, C).

The same Lagrangian as in (38) is used:

L{Am, By Cry @) = 2 [QR + (A0 + QAT + V) P,

where the symmetric matrix P is a Lagrange multiplier. Setting 8L/8Q = 0 gives (10). A
straightforward calculation shows

oL o .

Yy 2(P012 + P0s),
ol ~ -

3B, = Z(PngB + PzBm)V, (47)
oL ~ .

ac. = 2R(CnQ2 — CQ12)-

Let Ay, By, Cy , Ry, and V; denote A, B, C, R, and V in the above and define A(X), B(\),
C(A), V(A) and R(X) as in (15) and denote them respectively by 4, B, C, V, and R. Tet

aL

Hp,(0,7) = m = 2(13122;6‘2'12 + 152@2),
aL . _

Hp, (0,\) = B = 2(PLB + BBV, (48)
arL

He (6,70) = 50 = 2R(Cm@Q2 — CO12),

Vec (4,)
§= (Vec (Bm))
Vec (Cr)

where

denotes the independent variables 4,,, By, and C,,, and § and P satisfy respectively (7) and
(10). Define
Vec [Ha,,(0,7)]
p(0,X) = | Vec [Hp,.(8,0)] |,
Vec [He,, (8,7)]

whose Jacobian matrix is
Dp(8,X) = (Dep(8,X), Dap(6, 1))
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Because of the over-parametrization, the Jacobian matrix of p is singular. The homotopy map

is defined as
3(8,X) = Ap(8, ) + (1= 1)(0 — do), (49)

which guarantees a well conditioned Jacobian matrix along the whole path except at the solution
corresponding to A = 1. The Jacobian matrix is given by

Dp(6,3) = (ADep(8, )+ (1= ), p(8, A)+ ADrp(8, ) — (6 — ))- (50)

To find Dyp(8, A), define ﬂ’Am (P(j),é(j)), EB,,,. (P(j)), and He,, (ém) as in (43}, where again
the superscript (j) means 8/8¢;. For §; = (Am) o

-0
35 = 5. (), )
%{% = f1c, (),
for 6; = (Bm) ;s oH
75 :)nm = By, (B9, W)
a?gj’fm =, (PV) + 2R, E*DY, (52)
6(‘(?113?3;1 = fie. (@),
and for §; = (Cm)kt’ oH
5@% — fIAm (ﬁ(i)}@(j))
B%,; = i, (P9), (53)
0Hg, = fo, (Q(j)) +2RE® DG,

PG and Q) can be obtained by solving the Lyapunov equations (20). The derivatives with
respect to A can be obtained in the same way as in Section T

The initial point (8,)) = (6,,0) = ((Am)o,(Bm)g,(Cm)o,O) is chosen so that the triple
((Am)o,(Bm)g,(Cm)o) is in balanced form and satisfies p(6p,0) = 0. The algorithm is similar
to steps 1)-8) described in Section IV, except that the homotopy p from (49) is used.

For all the test problems except Example 6 with nm = 3 and Example 9 with n,, = 2, 3, 4,
the above algorithm gives satisfactory results by adjusting the curve tracking precision. For these
exceptional cases, HOMPACK reaches A > 1 very fast, but because of the high order singularity at
the solution, the computed solution does not have acceptable accuracy. Although very sophisticated
methods for dealing with singular endpoints of homotopy curves are known [10]-[12], these are
difficult to implement in the present context, and the following simple algorithm was adequate.
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1) Use the algorithm in Section IV to track the curve until A >1.
2) Use the last point (é, 5\) before A > 1 to redefine the homotopy map with 8; = § and set

A=0.

3) Redo step 1.
4) Use Hermite polynomial interpolation to obtain the solution at A = 1.

In Step 3 the new homotopy (49) has a zero curve that is nearly a straight line, and thus
Hermite interpolation using points before A = 1 and one point with A > 1 is quite accurate. Care
must be taken to use data points away from the singularity {lest they be inaccurate), but this is
easily done by controlling the step size parameters in HOMPACK.

IX. COMPARISONS AND DISCUSSIONS.

Table 1 gives the CPU times in seconds and the number of steps needed to obtain the results
for each example (a dash indicates failure). The CPU times are for a DECstation 5000/200, using
double precision, IEEE arithmetic, and the MIPS RISC {77 compiler. Table 2 gives the comparison
of the optimal projection equations approach and the input normal form formulation for Examples
8 and 9. The asterisks in Table 1 denote the cases requiring Hermite polynomial interpolation
to obtain the solution for the over-parametrization formulation. The asterisks in Table 2 indicate
cases that required special numerical linear algebra techniques to deal with severe scaling errors.

TABLE 1. ALGORITHM MEASURES FOR THREE FORMULATIONS.

Input normal form Ly’s form Over-parametrization

Ex Pom, steps time steps time steps fime
1 1 7 0.06 8 0.08 12 0.08
2 1 25 0.13 490 0.25 31 0.20
3 i 23 0.10 25 0.i4 30 0.16
4 1 16 0.14 18 0.21 18 0.19
4 2 11 0.20 16 0.37 18 0.47
5 1 14 .12 13 0.17 14 0.15
5 2 14 0.22 12 0.27 10 0.29
6 1 205 1.8 220 2.9 19 0.29
6 2 - - 8 0.32 35 1.3
6 3 - - 114 6.9 125* 13.
7 1 15 0.22 15 0.33 13 0.21
7 2 12 0.30 13 0.45 10 0.38
7 3 10 (.42 12 0.70 18 1.5
8 1 14 0.20 14 0.29 17 0.25
8 2 22 0.50 35 1.1 35 1.1
8 3 16 0.65 17 0.96 14 1.3
9 1 15 (.60 2339 103. 19 0.78
9 2 127 8.0 - - 168* 13.
9 3 9 1.3 45 6.7 21%* 4.2
9 4 8 1.9 59 15. 17* 7.5

10 8 - - 19 35. 7 49,

11 2 6 6.13 - - 16 0.42
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Fig. 1. 7 (OP) and #; (INF) vs. A.

As shown by Table 1, the input normal form homotopy can be very efficient. Also there is no
need to adjust any parameter to achieve this efficiency (although to obtain the minimum solution of
Example 1, some adjustment of the initial point was necessary). However, note that the potential
ill conditioning of the input normal form formulation can result in failure (Examples 6 and 10) or
the need for extraordinarily delicate linear algebra (Example 9).

Figures 1 and 2 show the behavior of the largest variation component with respect to A for
Example 5 at #,, = 1 and Example 9 at n,, = 2 using the input normal form formulation and
the optimal projection equation formulation [21]-[23]. The figures show that component of the
solution vector with the largest total amount of oscillation, corresponding to the most difficult
component of the homotopy path to track. Even though Fig. 1 corresponds to a good choice of
the initial point for the optimal projection equations approach, it is obviously not as efficient as
the input normal form formulation. Generally speaking, since the number of variables in the input
normal form and Ly formulations is much smaller than that of the optimal projection equations
formulation, and. the strategy for choosing initial points uses balancing (hence giving an initial
point closer to the final solution in most cases), the input normal form and Ly form homotopies
are more efficient than the optimal projection equations homotopy.

For Example 9, when n,, = 1, the Ly’s form homotopy is extremely inefficient, requiring ¢;
and ¢y (cf. Section IV) to be adjusted to achieve a solution. All attempts to obtain a solution
when ny, = 2 failed. The solutions of Example 9 when n,, = 3 and n,, = 4 are singular, which
accounts for the large number of steps required by Ly’s form.
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Fig. 2. z7 (OP) and 8, (INF) vs. A.

TABLE 2. COMPARISON OF METHODS.

Example 8
Optimal projection input normal form
Tom # steps time (sec) # steps time (sec)
1 31 0.6 10 0.20
2 59 2.7 18 0.50
3 89 14, 10 0.65
Example 9
2 575 88 123 8.0
3 601 223 6* 1.3
4 671 518 6* 1.9

The optimal projection equations homotopy successfully solved all of the test problems, but
Table 2, containing typical results, shows that the minimal parameter homotopies are much more
efficient. However, when the input normal form and Ly’s form are used, some restrictions are
imposed on the structure of the triple (Ap, Bm,Cm ), potentially resulting in ill conditioning. For
the input normal form formulation, ill conditioning occurs if two diagonal elements of Q in (4) are
approximately the same. In other words, let @, and P, be the controllability and observability
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Gramians of the system represented hy (Am, Bm, Cn), and let
Qm =WEWL, P,=WwTzw!,

where ¥ is diagonal and is the controllability and observability Gramian in balanced form. If
two diagonal elements of X are approximately the same, then ill conditioning occurs. For Exam-
ple 6, when n,, = 2, 3, both the initial point chosen using the given strategy and the solution.
obtained in [21]-{23] or by Ly’s formulation are ill conditioned, i.e., two diagonal elements of §}
are approximately the same. Hence the input normal form method will not be able to solve this
problem.

For Ly’s formulation, ill conditioning occurs if the Jordan decomposition of 4,, is ill condi-
tioned. Precisely, if the two eigenvalues of A,, which are to be grouped into a 2 x 2 block are
approximately the same, the transition matrix to 2 x 2 block diagonal form is ill conditioned. This
can be clearly illustrated by observing that for n,, = 2, finding the Ly form is equivalent to finding
the transition matrix T € R?*? guch that

()\1 0)(7511 t12)=(t11 tlz) 0 1 )
0 Az / \tor too LTI T —AAz A A )
Crn(1, )ty 4 Cin(1,2)801 = 1,
Cm(la 1)t12 + Cm(]-a 2)t22 = 03
where A; and A, are the eigenvalues of Ap. Trivial algebra gives
tin = —A2Cnm(1,1)7IA, tie = Cin(1, 1)1,
.= MCm(1,2)71AS, trs = ~Crm(1,2)" 1051,

cond T =0+ o2 -1,

where . . 212
Cm(1,1) 1474 A3 + 723
A1z = A — Ag, T = —x o= .
BeAT A Cm(1,2) 2/ s

Thus ill conditioning occurs in general when o is large, and in particular when A1 & 0. Further-
more, note that the very existence of the Ly form is predicated on the assumption that the Jordan
Jorm of A, consists of 2 x 2 Jordan blocks, which is a rather strong assumption.

Both the input normal form formulation and Ly’s formulation can fail to exist or lead to
ill conditioning and it is conceivable that both of these formulations will fail for some problems.
This failure of existence in general is related to the insistence on using the minimal number of
parameters nmm + nyl. The over-parametrization formulation solves the ill conditioning issue,
but introduces a very high order singularity at the solution. It is doubtful whether either the
Hermite interpolation used here or the techniques of [10}-{12] can handle a large problem with a
singularity of order 100. A pragmatic suggestion is to try in order the input normal form, Ly’s
form, and the over-parametrization form, switching if il conditioning or failure occurs. The ideal
paradigm would be to have a family of minimal formulations, almost all of which exist for any
given problem. The homotopy algorithm would then dynamically adjust the formulation, finding
a well conditioned one and tracking its zero curve simuftaneously. Such a paradigm remains an
open question.
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