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Abstract

In this paper, we investigate the reconstruction of planar-faced polyhedra given
their spherical dual representation. We prove that the spherical dual representation is
unambiguous for all genus 0 polyhedra and that a genus 0 polyhedron can be uniquely
reconstructed in polynomial time. We also prove that when the degree of the spherical
dual representation is at most four, the representation is unambiguous for polyhedra
of any genus. The first result extends, in the case of planar-faced polyhedra, the well
known result that a vertex or face connectivity graph represents a polyhedron unam-
biguously when the graph is triconnected and planar. The second result shows that
when each face of a polyhedron of arbitrary genus has at most four edges, the polyhe-
dron can be reconstructed uniquely. This extends the previous result that a polyhedron
can be uniquely reconstructed when each face of the polyhedron is triangular. As a
consequence of this result, we prove that the 4-dimensional hypercube, a classic exam-
ple of ambiguity in the wire frame representation scheme, is unambiguous when the
same connectivity graph is viewed as the spherical dual representation of a polyhedron
and thus that faces are a more powerful representation than vertices. A result of the
reconstruction algorithm is that high level features of the polyhedron are naturally ex-

tracted. Both of our results explicitly use the fact that the faces of the polyhedron

[



are planar. We conjecture that the spherical dual representation is unambiguous for

polyhedra of any genus,

Keywords: polyhedra, reconstruction, geometric dual, solid modeling, computer vi-

sion, CAD

1 Introduction

A common means of representing a 3-dimensional object is through the abstraction known
as a polyhedron. A polyhedral surface is a closed surface (a 2-manifold) that partitions
Euclidean 3-space E® into 3 sets: (i) points inside the surface, (ii) points on the surface,
and (iii) points outside the surface. A polyhedron is the set of points either inside or on
a polyhedral surface. The boundary of the polyhedron is the polyhedral surface. Viewed
combinatorially, the surface consists of a finite number of faces, edges, and vertices. Each
edge is shared by exactly two faces, and each edge has exactly two vertices as its endpoints.
Each face is a connected open set. The edges incident to any vertex appear on the surface
in a cyclic order around the vertex. Alternately, the faces incident to the vertex appear in
a cyclic order around the vertex, and two faces adjacent in the order share an edge incident
to the vertex. We only consider polyhedra with planar faces; that is, each face is contained

in a plane.

Constructive solid geometry views a polyhedron in terms of point sets, while bound-
ary representations, as the name indicates, characterize a polyhedron based on its bound-
ary [18]. Since the boundary consists of entities of various dimensions—faces, edges, and
vertices—there are various schemes for representing a polyhedron. Obtaining a polyhedron
from its representation is termed reconstruction. If there is always a single polyhedron
that can be obtained from any representation in the representation scheme, the polyhedron
is uniquely reconstructible in that representation scheme. The problem we consider in this
paper is the unique reconstruction of polyhedra in a representation scheme that encodes the
minimum amount of information required for reconstruction and that is useful for computer

vision and other applications.



The spherical dual representation [19] is a representation scheme for polyhedra useful in
both solid modeling and computer vision. The spherical dual representation of a polyhedron
is a graph in which each face of the polyhedron is a node and is labeled by the equation of
the plane containing the face. A nodeis connected by an arc to another if the two faces share
an edge in the polyhedron. No ordering of the arcs around each node is specified. In fact,
no explicit order information whatsoever is maintained. The spherical dual representation
scheme can be viewed as the dual of the wire frame representation of polyhedra. Roach,
Wright, and Ramesh [19] raise, but do not answer, the question of unique reconstructibility

for this representation scheme,

In this paper, we investigate the reconstruction of a polyhedron from its spherical dual
representation. It is well known that the wire frame representation (i.e., the vertex connec-
tivity graph) of a polyhedron is ambiguous [15,18]. Also, given either the wire frame or face
connectivity graph of a genus 0 polyhedron, algorithms are known to uniguely reconstruct it
only when the graph is triconnected [6]. We extend these algorithms to uniquely reconstruct
any genus 0 polyhedron, given its face connectivity graph (spherical dual representation).
We prove that any spherical -dual representation of degree at most 4 represents a polyhedron
unambiguously. As a corollary to this result, we show that the face connectivity graph is
not exactly the dual of the wire frame with regard to ambiguity. This is accomplished by an
example (the four-dimensional hypercube) which is ambiguous as a wire frame, but which
is unambiguous as a spherical dual representation. The results have an added importance
since the spherical dual representation also has some interesting applications in computer
vision. For example, the spherical dual representation provides some useful relationships

between the representation of an object and its image under perspective projection [17].

The structure of the paper is as follows. The next section contains the necessary graph
theoretic and topological definitions. Section 3 reviews previous work in solid modeling
representation and reconstruction. In Section 4, we develop our algorithm for uniquely
reconstructing a genus 0 polyhedron given its spherical dual representation. Section 5
proves that the spherical dual representation of any polyhedron having maximum degree

4 is unambiguous. In that section, we also prove, by an example, that the spherical dual



representation is a more powerful representation than the wire frame. The last section

concludes with observations and conjectures.

2 Terms and Definitions

A graph G = (N,A) consists of a set of nodes N and a set of arcs A; each arc is an
unordered pair of distinct elements from N. (We have chosen this non-standard terminology
for undirected graphs—nodes and arcs instead of vertices and edges—to avoid confusion
between the vertices and edges of a polyhedron and the nodes and arcs of the associated
spherical dual representation. Nodes and arcs are generally used in the context of directed
graphs.) If Ais a multiset, that is, if an arc may occur several times, then G is a multigraph.

Multiple arcs between the same pair of nodes are called parallel arcs.

A path P between nodes vo and v, in a graph G is a sequence of nodes vy, v1,. .., v such
that (v;_1,v;) € A, 1 <i < k. Path P is a simple path if vy, v1,...,v; are distinct. A cycle
Cin G is a path vg, vy,...,v; such that vy = v,. Cycle Cis a simple cycleif vo,v1,...,—1
are distinct. A graph G = (N, A) is connected if there exists a path between every pair
of nodes in N. The number of arcs incident on a node v; is called the degree of the node.
Two arcs are said to be in series if they have exactly one node in common and if this node
is of degree two. A node v € N is an articulation point of a connected graph G = (N, A)
if the subgraph induced by N — {v} is not connected. A connected graph G is biconnected
if .G contains no articulation point. A biconnected componeni of G is a maximal induced
subgraph of G which is biconnected. Let vy, v; be a pair of nodes of a biconnected graph
G = (N, A); {v1,v2} is a separation pair for G if the induced subgraph on N — {vy,v2} is
not connected. A biconnected graph G is triconnected if G contains no separation pair. A
triconnected component of G is a maximal induced subgraph of G which is triconnected.
Hopcroft and Tarjan [8] give an algorithm to find the triconnected components of a graph

in time linear in the size of the graph.

The genus of an orientable, compact surface is the maximum number of non-intersecting

simple closed curves that can be removed from its surface without disconnecting it. Thus



the genus of a sphere is 0, and the genus of a torus is 1. In general, an orientable surface

with g holes has genus g. The genus of a polyhedron is the genus of its surface.

A graph G is said to be topologically embedded in a suri?a,ce S when it is drawn on S
such that no two arcs intersect except at their common nodes (see Gross and Tucker [4]).
If a graph is embedded in a surface, the complement of its image is a finite set of regions.
A face of a topological embedding of G is a connected component of the complement of the
image of G. (Henceforth, we use facets, rather than faces, to refer to the two-dimensional
components of a polyhedron. We reserve faces to refer to the regions of a graph embedding.)
The genus of a graph G is the genus of the orientable surface S of least genus such that G
can be topologically embedded in S. A graph G is planar if G has an embedding in a plane

(or, equivalently, in a sphere).

The boundary of a face f is the set of arcs in the (topological) closure of f. Two
embeddings of a graph are equivalent when the boundary of a face in one embedding
always corresponds to the boundary of a face in the other. The embedding of a graph on
a surface is said to be unigue if all its embeddings in that surface are equivalent, A planar

graph has a unique planar embedding if and onty if it is triconnected [25].

Given a connected graph G, a closed surface S, and an embedding 7 : G — S, a dual
graph G and a dual embedding ©* : G* — S are defined as follows. For each region f
of the embedding 7 : G — §, place a node f* in its interior. Then, for each arc e of
the graph G, draw an arc e* between the nodes just placed in the interiors of the regions
containing e, The resulting graph with nodes f* and arcs ¢* is called the dual graph G*
for the embedding ¢ : G — §. The resulting embedding of the graph G* in the surface §
is called the dual embedding. Whitney [25] shows that a triconnected planar graph has a

unique planar embedding and hence a unigue dual.

3 Representations

In this section, we review some representations that have been used in geometric modeling

and in computer vision, including the spherical dual representation. We also review known



techniques for reconstructing a palyhedron from its representations.

3.1 Representations in Geometric Modeling

Geometric modeling is the art of creating data structures and algorithms capable of repre-
senting and calculating the three-dimensional physical shape of an object (Mantyla [15)).
Requicha [18] identifies some important characteristics of a representation scheme for geo-

metric modeling that have theoretical and practical implications:

1. Domain: The domain of a representation scheme characterizes the descriptive power

of the scheme; the domain is the set of entities representable in the scheme.

2. Validity: The range of a representation scheme is the set of representations which are
valid, that is, represent an actual “solid.” A representation scheme is said to be valid

if every representation in the scheme is valid.

3. Completeness: A representation is unambiguous or unigquely reconstructible if it cor--
responds to a single object. A representation scheme is complete if all of its valid

representations are unambiguous.

4. Uniqueness: A representation of a solid is unigue if it is the only representation for the
solid in the scheme. A representation scheme is unigue if all its valid representations

are unique.

In this paper, we concentrate on the issue of whether a representation scheme is complete,
As we are attempting to give a representation scheme using the least possible amount of
information that yields an unambiguous representation for each object, completeness is the

central characteristic considered here and the most difficult to prove.

The following are some of the common solid modeling schemes [15,18,21].



3.1.1  Wire Frame Representation

A wire frame model represents a solid object by representing its vertices and edges only.

Each edge is typically represented by a six-tuple

< &1, %, 21,82, Y2, % >

giving the coordinates of the two endpoints (z1,91,21) and (22,92, 22) of the edge.

The main drawback of this representation scheme is its ambiguity. A wire frame model
in general does not have enough information to represent an object uniquely (see Section
5). Characterizing it another way, two or more different objects can have the same set of

edges. Thus wire frame representation is not a complete representation scheme.

3.1.2  Constructive Solid Geometry

The most general form of the constructive solid geometry (CSG) approach is the half-space
model. In this model, solids are represented by a finite number of simple point sets called
half-spaces that are combined by the standard set operations of union, intersection and

difference.

The CSG representation scheme is complete but not unique.

3.1.3 Boundary Representations

Boundary representations represent a solid ob ject by storing a description of its boundary.
The boundary of an object divides space into two parts, one having finite volume and the
other having infinite volume. If we assume that all objects have finite volume, then an
object can be represented unambiguously by its boundary, The boundary is divided into a

three-level hierarchy of entities: Jacets, edges, and vertices.

A widely used boundary representation is the solid modeling scheme based on Euler
operators. Euler’s formula for a convex polyhedron gives a relationship among the number

of facets f, the number of edges e, and the number of vertices v of a convex polyhedron:



v —e+ f = 2. Define a loop of a facet to be a simple cycle of vertices and edges in the
polyhedron that forms a connected component (in the topological sense) of the boundary of
the facet. The boundary of every facet is composed of one external loop and zero or more
internal loops. Euler’s formula is generalized to an arbitrary polyhedron by introducing

three additional parameters

1. The total number r of internal loops in the facets of the solid,
2. The genus g of the solid, and

3. The number s of disconnected components in a solid with a disconnected surface,

The general Euler’s formula is v — e + f=2+(s—g)+r.

The operations used to construct the representation are called Euler operators because
every operator used satisfies Euler’s formula (e.g., two Euler operators are mew, for make
edge, vertez, and kef, for kill edge, face). Mantyla [14] proves that Euler operators are
sound and complete; that is, Euler operators create only meaningful models and every
meaningful model can be constructed by Euler operators. Similar to the CSG scheme,

boundary representations based on Euler operators are complete but not unique.

Representation schemes which are both unambiguous and unique are highly desirable
because they are one-to-one mappings from the object space to the representation space.
This implies that distinct representations in such schemes correspond to distinet objects,
and therefore object equality may be determined by algorithms which compare object rep-
resentations “syntactically” [18]. Both the CSG scheme and the boundary representation

scheme are nonunique.

3.2 Representations in Computer Vision

Object representations in computer vision are generally surface based. We review some
of the representation schemes used in computer vision and introduce the spherical dual

representation,



A Gaussian map is a function that maps the surface onto a unit sphere. Each point
= on a surface is mapped to a point ¥ on the unit sphere such that the surface normal at
¢ equals the surface normal at 4. The unit sphere in this context is called the Gaussian
sphere. The image of a surface § under the Gaussian map is called the Gaussian image
of 5 [9]. In case of a convex surface with positive curvature everywhere, no two points on
the surface have the same normal and the surface is recoverable from its Gaussian image
up to scaling. In case of a general polyhedron, all points on a facet map to the same point
on the Gaussian sphere. The Gaussian image represents the orientation of the ob Jject only,
Size and shape information is lost, making it impossible to reconstruct the object from the
Gaussian image. A popular extension of the Gaussian image representation is the eztended
Gaussian image. In this representation, each normal vector is weighted by the surface area

of the corresponding facet.

Other important surface representations exploit a duality between points and planes
in three dimensions. Duality is an important concept in geometry [1,7]. Dual space was
originally proposed by Huffman as an aid in analyzing pictures of impossible objects [10] and
later applied to interpreting general line drawings of polyhedral scenes [13,11). Huffman’s

version of duality involves associating the plane
az+bhy+ezd+d=0 (1)

with the point (—a, ~b, ~d) in dual space. In addition to the duality between points and
planes, there is also an induced duality between lines in (z,¥,2)-space and lines in dual
space. The dual of the line formed by the intersection of two planes is the line passing
through the two points that are the duals of the planes. In Huffman’s duality, only the
first two coordinates of the dual point of a plane are related to orientation. Gradient space,
another duality representation, is formed by orthogonally projecting the dual points {a,b,d)
onto the plane d = 1. Shafer [22] provides extensive analysis describing the advantages and
uses of duality and gradient space in analyzing images for computer vision. Unfortunately,
the interesting relationships between lines and points in the image and the dual lines and
points are achieved under the assumption that the images are produced by orthogonal

projection.



The spherical dual representation (SDR) dualizes planes into points by normalizing
the constant d to —1 in Equation 1. This form of the dual transform is well known to
mathematicians. Grunbaum [5] uses this transform to define a dual polyhedron when the

given polyhedron is convex. Thus the plane
gz +byt+ez—d=20 d#£0

is mapped to the dual point (a/d,b/d,c/d) in spherical dual space [19]. We name this
dual the spherical dual since this normalization has spherical symmetry about the origin
as opposed to the cylindrical symmetry of Huffman’s duality. To represent a polyhedron,
each facet is taken to be the point dual to the plane containing the facet. The dual point
is the node of a graph called the DR of the polyhedron. The node f corresponding
to facet F'is connected via an arc to the node f' corresponding to facet F' if facets F
and F' share an edge. It is possible for two facets to share more than a single edge.
The spherical dual representation does not explicitly represent such multiple adjacency
and hence is not a multigraph. To accommodate multiple facets in the same plane, the
spherical dual representation represents each facet as a different node in the graph; that is,
two nodes carry the same label (planar equation) if the corresponding facets lie in the same
plane. Henceforth, we identify each node in the SDR with its associated facet so that we
can speak of a facet as being a node of the SDR. Figure 1 shows an object and its SDR
(minus the planar equations). In view of the graph nature of the SDR, graph theoretic
terms and operations apply to SDR. In fact, the spherical dual representation is the facet
connectivity graph of the polyhedron, where each node has an attached planar equation.
In contrast to the wire frame, the SDR is always a connected graph as long as the surface

of the polyhedron is connected.

Features of an object are high level abstractions that humans generally identify and
operate with. Some examples of object features in manufacture, design, and recognition
are boss, rib, blind hole, and through hole. Feature extraction at this abstract level is thus
important in object recognition and geometric modeling systems. These features are further
abstracted into projecting features and depressions. Falcidieno and Giannini [3] present

a method for the automatic recognition and representation of shape-based features in a
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Figure 1: An object and its SDR
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geometric modeling system. Loops in a face are the primary elements of this approach. The
algorithm however requires the specification of the object as a face adjacency hypergraph,
i.e., in addition to representing each face by a node and edges between faces by an arc
between corresponding nodes, a hyperarc is defined for each vertex. Also each loop on
a given face is organized into an ordered sequence of arcs. This also requires that their
representation be a multigraph. The algorithm we present also extracts the shape features
in terms of projecting features and depressions. Our method has the advantage that the
specification of the object is only as a face adjacency graph rather than a face adjacency
hypergraph. The loop information is extracted automatically. However, the domain of
our algorithm is currently restricted to genus 0 objects only. The ability to extract high
level features automatically makes our representation very powerful in computer aided

manufacture and computer vision applications.

3.3 Reconstruction Techniques

Hanrahan [6] gives a linear time algorithm for the unique reconstruction of a genus 0
polyhedron given its wire frame representation. This algorithm, however, requires the wire
frame input of the polyhedron to be triconnected and planar in the graph theoretic sense.
The facets of the polyhedron correspond to the faces in the unique planar embedding of

the wire frame.

Markowsky and Wesley [16] present an algorithm that generates all polyhedra with a
given wire frame. This explicitly uses topological and geometric information by forcing
the final facets to be planar. Human intervention is required to choose one of the several

polyhedra reconstructed from such a wire frame representation.

Weiler [24] enumerates those boundary representations of polyhedra that are sufficient
for unique reconstruction. Making use of Edmonds’ Theorem [2], Weiler shows that knowing
the ordered set of edges around each vertex, or each edge, or cach facet of a polyhedron is
sufficient information for the reconstruction of any polyhedron. Weiler also states that a

representation without order has insufficient information for unique reconstruction. Later,

12



we show unique reconstructibility for genus 0 polyhedra when represented by SDR, a
representation without order information, We also prove that a polyhedron of any genus

that only has facets with at most 4 edges is uniquely reconstructible from its SDR.

A different approach to reconstruction of convex polyhedra is suggested by Minkowski’s
Theorem [5]. Minkowski uniquely characterizes, up to a transtation, any convex polyhedron
by the area of its facets and their orientations. Using the Minkowski and Brunn-Minkowski
Theorems [5], Little [12] solves the problem of reconstructing the polyhedron, given its
extended Gaussian image, by solving a constrained minimization problem. The domain
of Little’s algorithm is the same as that of Minkowski’s Theorem; it fails to reconstruct

non-convex polyhedra.

The most important result on the realization of a polyhedron from its wire frame is
Steinitz’s Theorem [5]. The theorem states that g graph G is realizable as a convez polyhe-
dron if and only if G is planar and triconnected. In the case of reconstruction of polyhedra,
this theorem can be used for all combinatorially convex polyhedra. A polyhedron is combi-
natorially convez if its wire frame is planar and triconnected and the polyhedron has genus
0. From Whitney’s Theorem [25], every combinatorially convex polyhedron is uniquely
reconstructible from its facet connectivity graph, i.e., its SDR. In the next section, we

extend unique reconstructibility to every genus () polyhedron.

4 Reconstruction of Genus 0 Polyhedra

In this section, we present an algorithm RECONSTRUCT that uniquely reconstructs any
genus 0 polyhedron P from its spherical dual representation. RECONSTRUCT first builds
a graph for each facet in P and then extracts the vertices of each boundary of the facet

from that graph.

Let SDR = (N, A} be the spherical dual representation of the genus 0 polyhedron P.
Let P(f) be the plane containing the facet f € N. Each facet f of P consists of a bounded,
connected region in P(f) that has one or more cycles of edges and vertices of P as boundary.

If f is bounded by t cycles, then [f has exactly ¢ ~ 1 holes. To reconstruct P, it suffices

13



to determine all the bounding cycles of all facets. Let F(f) be the set of facets that are
adjacent to fin SDR. If f* € F(f), then L(f, f*) = P(fNP(f*) is an infinite line within
P(f) that contains the {one or more) edges of I’ that are shared by f and f~.

Suppose that f*, f** € F(f) have the property that lines L{f, f*) and L(f, [**) are not
parallel. Then L£(f, f*) and L(f, f**) intersect at a point T(f, f*, f*) within P(f). Let
Q(f) be the set of all such intersections within P(f). Then every vertex v of P that is
incident to f is an element of Q(f). In general, Q(f) contains many points that are not
vertices of P. A necessary condition for a point p € Q(f) to be a vertex of P is that there
exist a defining cycle f, fi,..., fr in SDR such that p € Q(f), i=1,...,k. (Generalizing
the T notation, we write p = T(f, fi,--.,fi).) If pis indeed a vertex of P, then there
is, of course, a defining cycle for p which is the cycle of facets incident to p. However, a
given point p may have many defining cycles. That the existence of a defining cycle is not
sufficient for a point p to be a vertex is shown by the example in Figure 2. This example
is a truncated tetrahedron, where the facet E has cut ofl the top vertex p of the original
tetrahedron. The point p is not a vertex of the truncated tetrahedron, yet p € Q(A),
pe Q(B),pe Q) and A, B,C is acyclein SDR.

If a point p € Q(f) meets the above necessary condition (of having a defining cycle), call
p a near-verter. The minimal subgraph N F(f) of SDR that contains all defining cycles
of every near-vertex of f is the near-facet graph of f. Clearly, every node in F(f) is also
adjacent to f in N F(f).

An outline of an algorithm for constructing N F(f) for all f € N follows. Let J be the
set of all lines in 3-dimensional space defined by edges in I”:

g = {Li.p)| (i f2) € A},

Let 7 be the set of all pairwise intersections of two distinet lines in 7 such that each

intersection is a single point:

T = {TChfosfo ) | £ o). LU Ja) € T and
|£(f1’f?)ﬂ£(f3,f4)‘ = 1}.

14



Figure 2: Truncated tetrahedron

Clearly, for each f € N, we have Q(f) CI. The calculation of 7 requires O(|4?) = O(|N|?)
time. For each p € Z, build a subgraph H{p) of SDR induced by this set of arcs:

{(2) 19 € £, 1)}

In O(|N]) time per p € Z, eliminate from H(p) any arcs that do not appear in a cycle
of H(p) and any isolated nodes; the resulting graph is H'(p). Calculate the biconnected
components of each }'(p). For a particular f € N, consider every H' (p) that contains f;
every biconnected component of H'(p) that contains f is a subgraph of NF (). In fact,
all of NF(f) is obtained by taking the union of all such biconnected components from
every H'(p) that contains f. The calculation of NF(f) for all f € N is accomplished in
O(|¥®) time. We emphasize that this is a worst case time complexity; under reasonable
assumptions on the sizes of each A/ F(f) and each H(p), the time complexity can be reduced
to O(|N[%).

15



Shortly, we will be embedding subgraphs of N F(f) in the plane and reading off the
vertices incident to f from the faces of the embeddings. Any node of degree two in NF(f)
has no effect on these embeddings and can be eliminated by series reduction (replace the
node and its two incident arcs by a single arc; see Gross and Tucker [4]). If any parallel

arcs are introduced by series reduction, all but one can be eliminated by parallel reduction.

There is one last kind of reduction that can be applied to NF(f) without losing the
ability to recover the vertices on the boundary of f. Suppose {f1, LY CN-—{flisa
separation pair of NF(f). Let C be any component of N F(f ) — {f1, f2} that does not
contain f. Let f* be a node in C. Since every defining cycle containing f* must pass
through f, fi, and fa, the plane f* passes through 7(f, fi, f2)- Therefore, every node of
C' passes through 7(f, fi, f2);in a geometric sense, the nodes of C give only redundant
information. In a graph theoretic sense, observe that any face in a planar embedding of
NF(f) that is incident on a node of C is also incident on fi and fa. A separation-pair
reduction deletes ¢ and adds an arc between fi and fp. By the above discussion, such a
reduction does not affect the information available for recovering vertices on the boundary

of f.

The facet graph SDR(f) of f is NF(f) that has been reduced as much as possible by
series, parallel, and separation-pair reductions. As SDR is planar, NF(f)isa subgraph of
SDR, and SDR(f) is a reduction of NF(f), SDR(f) is also planar. Also, every node in
F(f) is a node of SDR( f). As calculating triconnected components can be accomplished
in linear time [8], the reduction of NF(f) to SDR(f) can be accomplished in O(|N]) time.

Since P has genus 0, SDR(f) gives us all the information necessary to determine the
bounding cycles of f. For example, the number of bounding cycles is just the number of
biconnected components of SDR(f). This is {llustrated in Figure 3 where facet F' has two
bounding cycles, and SDRE(F) has two biconnected components. Observe also that F is the

sole articulation point of §DR(F). This observation is formalized in the following theorem.

Theorem 1 Let SDR = (N, A) be the spherical dual representation of a genus 0 polyhedron
P, and let f be a node of SDR. If SDR(f) contains an articulation point, then [ is the

16



Figure 3: A polyhedron with an articulation point in its SDR
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only articulation point. SDR(f) — f has t connected components if and only if f has t

bounding cycles.

Proof: By the definition of SDR(f), every node f*in NF(f)~{f} has two vertex disjoint
Paths to f in SDR(f). Therefore, only f can be an articulation point of SDR(f).

Assume that f has ¢ bounding cycles. Define an equivalence relation = on N — {f} such
that f* = f** if there exists a curve on (the surface of) P that goes from a point in the
interior of f* to a point in the interior of f** without passing through the closure of f (that
is, the curve avoids fandits boundary). Because P has genus 0, = has exactly ¢ equivalence
classes. NF(f) — f has one component for each equivalence class. It is easy to see that
series, parallel, and separator-pair reductions apply independently to each component of
NF(fy-f. Thus, SDR(f)~ f has the same number of components as NF(f)~ f, namely
t. O

As SDR is planar but not necessarily triconnected, SDR does not have, jn general, a
unique embedding in the plane, whose dual would be the wire frame of P. A first approach
that is doomed to failure is to decompose SDR into its triconnected components, embed
each in the plane, and somehow read off the structure of P from these embeddings. The
failure of this approach is illustrated by the polyhedron in Figure 4, shown with its SDR.
The triconnected components of DR are shown embedded in the plane in Figure 5. There
is no face in any of the embeddings that corresponds to the vertex of P shared by the facets
F,C,I,and H, nor to the vertex shared by the facets F,C I, and J, However, there is
a “false” vertex indicated by the face bounded by the cycle of facets F yH T,

In view of this failure, we turn to facet graphs for a solution. From the proof of
Theorem 1, we know that if § D R(f) has biconnected components C'y,Cy, ..., Cy, then each
C; contains f and corresponds precisely to one of the bounding cycles of f. As each C;
may be processed separately to determine its corresponding bounding cycle, we henceforth
assume that SDR(f) contains only one biconnected component, namely SDR(f) itself.

SDR(f) can be decomposed into its biconnected components in linear time using depth-
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Figure 4: A polyhedron whose § DR is not triconnected
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Figure 5: The corresponding triconnected components

first search (Tarjan (23]).

The bounding cycle of f is given by the sequence of vertices defining it, say,
U1, V24, .., V.
Each »; has a defining cycle given by the actual facets that are incident to w;:
FifiasFias o Firgy,s

where firly = fiyr11 € F(f),forl <i<k- Loand fz o) = f11 € F(f). From these cycles
we derive another cycle in A/ F (/) that avoids f but otherwise goes along the bounding
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cycle of f:

A R, fiey = B fary = Fas
fictpiony = finfizsooos finy = Jirr, 650, frpy = Fin.

This cycle in A/ F (f) is reduced to a cycle C (f) in SDR(f), called the neighborhood cycle
of f. Note that C{f) need not be a sitple cycle.

It is now our task to determine the vertices that occur on the bounding cycle of f and
the order in which they occur. If § DR(f) is triconnected, then it has a unique planar
embedding. Suppose that the order of the nodes in Fi (f) about f in this embedding is

N fose o fe (note that these are not necessarily distinct). These correspond to the vertices

n=T6M Ry =T,y fs), e o = TS, fres 1),

in that order, defining the bounding cycle of f. Call this cycle of vertices the cycle induced
by the embedding.

K SDR(f)is not triconnected, then it may not he true that all embeddings induce the
same cycle of vertices or even that there exists an embedding that induces a cycle equal to

the bounding cycle of J. We observe that:
Lemma 2 If SDR(f) is biconnected, then any separation pair of SDR(f) contains f.

Proof: Since there is no separation-pair reduction that can be applied to SDR(f), the

Lemma follows, 'l

Thus any separation pair of SDR(f) has the form (f, f*), where f* is a node of SDR(f)
which may or may not be adjacent to f. Call f* a separation partner of f. All separation
partners of f can be identified by finding the articulation points of SDR(f) — £ in linear
time using depth-first search. For example, Figure 6 shows the facet graph of the facet F
in the polyhedron of Figure 4. The separation partners of f are facets €' and I. Note that
F and C are adjacent in SDR(f), while F and I are not.
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Figure 6: The facet graph SDR(F)

‘The example in Figure 4 is a degenerate one in that P(F), P(C), and P(I) intersect
in a single line. Figure 7 shows another example in which there is a single separation pair
whose nodes are not adjacent. The polyhedron is a box with a raised pyramid (facets C,
D, E, and F) on its front face. Facets A and B are distinct facets that reside in the same
plane and that are not adjacent in SDR. Facet B is a separation partner of A (and vice
versa). Note that A and B share (are incident to) both vertices © and v9. This is a general

phenomenon:

Lemma 3 [f f* is 4 separation partner of f and F* € F(f), then f and J* have two or

more shared vertices but no shared edges.

Proof: Since f* ¢ F(f), f and f* do not share an edge.

Since f* isin at least one cycle of SDR( f) that also contains S, and f*is an articulation
point of SDR(f)~ f, thereis some face containing both f and f* in every planar embedding
of SDR( f). Therefore, f and f* share at least one vertex. In particular, f* occurs in the
neighborhood cycle C(f). Since every node in F(f)occurs in C(f), and f* is an articulation
point of SDR(f)~ f, f* must occur at least twice in C(f). Otherwise, the removal of fr
from SDR(f) - f leaves C(f), and hence SDR(f) - f, connected.
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v

Figure 7: A separation pair whose nodes are not adjacent

Since f* occurs at least twice in C(f), f and f* must share two or more vertices, O

We can make a stronger observation. Let f* be a separation partner of f. Suppose
SDR* is a connected component of SDR(f) — f — f*. Then there exists a closed curve
contained in the closure (in the topological sense) of flJf* that separates P into two
regions, each homeomorphic to a disk, such that SDR* is contained wholly in one of the

regions and the remainder of § DR(f)— f— f* is contained wholly in the other region.

SDR* may or may not contain a separation partner of J. I it does not, then we can

determine the boundary between f and SDR* as follows. Construct the decomposition
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graph SDR*(f*) by taking the subgraph of SDR(f) induced on f, S*, and the nodes of
SDR*, and add the arc (F, F)if /* ¢ F(f). The following observation is key.

Lemma 4 If SDR* contains no separation pariner of f, then SDR*(f*) is triconnected.

Proof: Suppose SDR*(f*) is not triconnected and that (fi, f2) is a separation pair of
SDR*(f*). Then (fi, f») is also a separation pair of SDR(f). Since SDR(f) is separation-

pair reduced, either f; or f; equals f and the other is a separation partner of f. 0O

Hence, SDR*( ) has a unique planar embedding. The order of arcsin F (f)around fin
this embedding exactly gives the order in which facets of SDR* (f*) appear in the boundary
between f and SDR*. Asis true when SDR(f) is triconnected, the cycle induced by the
embedding gives the {cyclic) order of vertices and edges that form the bounding path. The

cycle breaks into a path at the arc ([, f*).

For example, if we apply this decomposition to the facet graph SDR(¥) in Figure 6,
we obtain two decomposition graphs as shown in Figure 8. The arc (F,T) has been added
to the lower decomposition graph. From the two planar embeddings, we learn the ordering
of the vertices and edges in each of the two intermediate cycles C; and €2 on F. One
bounding cycle, Cy, of F has facets A, B, C, and D in that order and facets G, H, I, and
J in that order in C,. These two cycles are mated geometrically, obtaining a unique cycle
C =(ChUuUC —Cin ¢2), which is the bounding cycle of F. Viewed in terms of paths,

they begin and end at the separation partners of F.

For any SDR(f) that is not triconnected, there always exists an SDR* that contains
no separation partner for f (examine the tree of biconnected components and articulation
points of SDR(f) — f to find a biconnected component that is a leaf). We can then
determine the subpath of the bounding cycle of f that is between f and SDR* by the
above decomposition method. Once the subpath is determined, we would like to remove
SDR* from further consideration. This can be done by replacing SDR(f) by the reduced
graph SDR(f) ~ §DR* with the arc (f,f*) added, if f* ¢ F(f). Tn geometric terms, this
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Figure 8: The decomposition graphs of S DR(F)

reduction amounts to removing the feature of P that corresponds to S DR* and replacing it
by an edge in P shared by f and f*. Geometrically this may not always work, as witnessed
by the polyhedron in Figure 7, where facets A and B are in the same plane and therefore
cannot share an edge. However, combinatorially the reduction does work. As stated earlier,

the reduction reveals the structure of the polyhedron at a high level.,

The strategy for finding the bounding cycle of SDR(f) now is clear. Iteratively find
a decomposition graph SDR*(f*) that contains no separation partner of f, determine
the corresponding bounding path, and reduce SDR(f). Once SDR(f) is reduced to a
triconnected graph, construct the bounding cycle of J by gluing the subpaths together
at the separation partners of f. This completes the description of the processing of each

biconnected component of SDR(f).

In summary, the algorithm RECONSTRUCT consists of the following steps, applied to
each facet f.

1. Form the set Q(f).
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2. Determine N F(f) and reduce it to SDR(f).

3. Decompose SDR(f) into its biconnected components; say these components are

SDRy,SDR,,...,SDR;, k> 1.

4. For each biconnected component $DR;, determine the bounding cycle of f corre-
sponding to §DR;, using the decomposition graph strategy.

The time complexity is dominated by the determination of A/F (f) for all f € N; this
step has time complexity O(|N|?), as discussed earlier in this section. Determining A" F( f)
and reducing it to SDR(f) only takes linear time, Finding the biconnected components
is the same complexity as finding the articulation points of SDR(f) — f. Embedding a
triconnected component is again a linear time operation. As the size of SDR(f) may
be O(]N]), the time complexity of these steps for each facet is O({N]). The total time
complexity for RECONSTRUCT is O({NF?), though we expect that it is typically much

less,

Theorem 5 Algorithm RECONSTRUCT uniquely reconstructs any genus 0 polyhedron

Algorithm RECONSTRUCT successfully reconstructs some, but not all, polyhedra of
genus greater than zero. If P is a polyhedron of arbitrary genus, then it is possible that,
for some facet f, SDR(f) is not even planar. This occurs when {one or more) cycles in
SDR(f) pass through (one or more) holes in P. Also, a facet f with multiple bounding

cycles need not even be an articulation point in SDR(f} if a hole of P passes through f.

RECONSTRUCT can be modified to successfully reconstruct more polyhedra of genus
greater than zero as follows. Typically, the facets in some non-empty subset of ¥ can be
successfully reconstructed by the steps in RECONSTRUCT. Boundary information from
these reconstructed facets can be shared with neighboring facets that are not immediately
reconstructible, perhaps making them reconstructible in the process. If such information
sharing propagates to all facets of P, then the modified RECONSTRUCT successfully

reconstructs F. We have found that this modified algorithm is capable of reconstructing a
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Figure 9: The degree four SDR

number of “hard” polyhedra that we had proposed as potential counterexamples to unique

reconstructibility for polyhedra of higher genus.

The SDE shown in Figure 9 is a graph that cannot be solved by the above (modified)
algorithm. The genus of this graph is 1. The SDR(f) of each facet of the polyhedron is
non-planar and triconnected (each SDR(f) is homeomorphic to K5). Hence not even a
single face can be reconstructed via planar embedding of its SDR(f). In the next section,

however, we show that the graph in Figure 9 does have a unique reconstruction from its

SDR.
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3 SDRs of Maximum Degree 4

In this section, we show that an SDR of degree four represents a unique polyhedron. We

also provide an algorithm to reconstruct the polyhedron from its SDR.

Each facet of a polyhedron having Figure 9 as S DR is connected by an arc to four other
facets. Since each facet is connected to four other facets, each facet must be a quadrilateral,
If the bounding cycle of each facet is determined, then the polyhedron represented by this
SDR is reconstructed. We study the different quadrilaterals that can be formed by the
adjacent facets. Consider the arrangement of four lines in a plane. In case of degeneracies
among the four lines, there may not be any quadrilateral formed by these lines, for example
when three of these lines are concurrent. On the other hand, if two of the lines are parallel,

at most one quadrilateral is formed and the reconstruction of this facet is unambiguous.

The four lines defined by the facet adjacencies form two different quadrilaterals when
the four lines are in general position. Refer to Figure 10 which depicts the plane containing
facet 1 and the four lines formed by intersection with the planes containing facets 0, 3, 5, and
9. There are two possible interpretations for the boundary of each facet. One interpretation
has vertices @, f, b, and e, while the other interpretation has vertices a, d, b, and ¢. Two
vertices, a and b, are present in both interpretations. Vertex a, called the fired vertez, has
its context unchanged, i.e., when we follow the boundary of the two polygons in the same
direction, the line segments occur in the same order. Vertex b, called the reflex vertez, has
its context reversed. The internal angle at the reflex vertex changes from being a convex
angle (/dbc) in one interpretation to concave (£ fbe) in the other. It is immediately clear
from Figure 10 that fixing any one of the remaining four vertices determines the polygon
unambiguously. These four vertices are termed the fransient vertices. Vertices on each of
the lines through the fixed vertex and nearer the fixed vertex are called intruded vertices
and those farther away are called eztruded vertices. Thus in facet 1 in Figure 10, vertices

c and d are intruded vertices and e and [ are extruded vertices.

Given an arrangement of four lines in a plane, the following procedure can be used to

classify a vertex as reflex, fixed, or transient. Four lines in general position determine six
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(potential) vertices. The vertex that lies inside the convex hull defined by the six vertices
is the reflex vertex. It is easy to see that there is exactly one such vertex. In Figure 10,
the vertex formed by lines 0 and 3 is the reflex vertex. The vertex defined by the two lines
not involved in defining the reflex vertex is the fixed vertex. Again, referring to Figure 10
the fixed vertex is defined by lines 5 and 9. The other four vertices are transient vertices.
Of the transient vertices, the two vertices forming vertices of the convex hull are extruded
vertices and the other two are intruded vertices. It is clear that the classification of a vertex
is a constant time operation. Note that the classification of a vertex is only with respect to

a specific facet; its classification may be different on a different facet.

Figure 10 also shows the resulting facet subgraph for each of the two interpretations.
The quadrilateral afbe corresponds to the subgraph on the left, while the quadrilateral
adbe corresponds to the subgraph on the right. Observe that the transient vertices are
either both intruded or both extruded. Observe also that the internal angle at the reflex
vertex is less than 180° (convex) if the intruded vertices are chosen and is greater than 180°

(concave) if the extruded vertices are chosen.

Now we study the constraints provided by the adjacent facets. Observe that knowing
any edge in the quadrilateral determines the complete quadrilateral since each edge has
exactly one transient vertex incident to it. Consider a facet f; adjacent to a facet f;. If
cither the reflex vertex on facet f; or the fixed vertex on facet f; is a transient vertex on
facet f;, then facet f; is completely determined. This in turn determines facet f; and the
other facets adjacent to facet f; are completely determined. On the other hand, if the
reflex vertex on facet f; is the fixed vertex on facet fi, facet f; is completely determined

and consequently all the facets adjacent to facet f;.

Thus the only possibility for an ambiguous interpretation occurs when the fixed vertex
on facet f; is also the fixed vertex on an adjacent facet f; and the reflex vertex on facet fi

is the reflex vertex on an adjacent facet f.

Suppose facet f; is adjacent to facet f; and they share the reflex vertex. If the convex
internal angle at the reflex vertex in facet f; is consistent with the convex internal angle at

the reflex vertex in facet f;, then again there is no ambiguity in determining the vertices
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Figure 10: Two realizations of facet 1 and resulting subgraphs
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and edges on facets f; and f;. This is evident when one observes that no two adjacent
facets of a polyhedron can simultaneously have an internal angle greater than 180° at a

common vertex,

Finally, ambiguity can continue to persist when the adjacent facets at a reflex vertex
form an alternating sequence of convex and concave angles. Thus the transient vertices
switch their classifications between adjacent facets, i.e., an intruded vertex on one facet is

an extruded vertex on the adjacent facet.

The classification of the vertices in the four facets forming the reflex vertex is given in
Figure 11. The fixed vertices are labeled p;, ¢ = 1,...,4, the reflex vertex is labeled 0,
and the transient vertices are labeled ¢, i = 1,...,8. As an example, the vertex defined

by facets 1, 5, 0 and 4 is intruded on facet 1 and is extruded on facet 4.

Suppose a particular choice of the quadrilaterals on facet 1 is made. This completely
determines the quadiilaterals of the four facets adjacent to it. Thus, once a particular

choice at one facet has been made, the entire SDR of Figure 9 is determined.

Lemma 6 For every reflex vertex v of Figure 9, there is only one interpretation for each

of its four facets.

Proof: To obtain a contradiction, assume that there is a reflex vertex r with two inter-
pretations. Without loss of generality, let the reflex vertex be r = (0,0,0) (labeled C for

origin in Figure 11).

The following linear constraint equations can be obtained from Figure 11. (Note that

these are 3-dimensional vector equations.)

s ~p1) = @-m (2)
ol —-m) = @g-m (3)
talee —p2) = @-p2 (4)
ta{gs —p2) = @1 —p2 (5)
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Facet 3 Facet 4

Figure 11: Four facets at a reflex vertex.
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ts(qa ~p3) =
te(gs ~ p3) =
tr(ge — ps) =
ts(gr —pa) =
-1 =
U3 =
Uz -gs =

Ug g7y =

g6 — P3

43 — P3

gs — P4

d5 — Pa

a2

q4

s

ds

(6)
(7)
(8)
(9)
(10)
(11)
(12)

(13)

where for 1 < ¢ < 8, ¢; > 1,and for 1 <i <4,y <0. Eliminating p; using Equations 2

and 3, p» using Equations 4 and 5, ps using Equations 6 and 7, and p4 using Equations 8

and 9, we obtain

gf — B(ths — )
E: - 3 (ta2 — 1)
g—:{—%(fsfh — %)
gj — 3@7% - 48)

Il

tag1 — g7
tags — ¢y
t6qs ~ g3
lsqr — g5

(14)
(15)
(16)

(17)

Substituting for g2, q4,¢s and gs from Equations 10, 11, 12 and 13 into Equations 14, 15,

16, and 17 and simplifying, we obtain

(B2(t1 = 1) + (t2 — D) — (0 — 1)+ (85 — 1)t 4 )gr
(talts — 1) + (ta — Dyua)gs — ({t3 — 1) + (ta — L)tzu1)n
(t6(ts — 1) + (t6 — Vyus)gs — ((ts — 1) + (t6 — L)tsug)gs

(ts(tr — 1) + {ts — Lyua)gr — ((tr — 1) + (s — 1)trus)gs

0.

Since no line passing through the pair of points appearing in any of the above 4 equations

pass through the origin, the coeflicient of each ¢; in these equations is equal to zero. Thus

we have

tg(t1 - 1) + (tg - 1)'&1
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=D+ (- Dtyug = 0
talts = 1)+ (s —uy = 0
{a—1)+(ta~ 1)}z, = ©
te(ts ~ 1)+ (ts ~ Dug = 0
(ts — 1)+ (t6 — Itsuz = 0
ts(ty — 1) + (15 — Duy = 0

(t7 — 1) + (tg — l)t-,r’h'.3 = (0

(19)
(20)
(21)
(22)
(23)
(24)
(25)

Substituting for u;, uy, us, and uy from Equations 18, 20, 22, and 24 into Equations 21,

23, 25, and 19, respectively, gives

ts—1) _ , (-1
(ta — 1) ") 1)
(s —1) _ rts = 1)
(te — 1) (t4 -1)
(h-1) _ ,, (s-1)
(ts — 1) -1 1)
-1 _ o 1)
(ta - 1) (ts—1)
which after further algebraic simplification yields
i —~1) (t —
= tilgtatyistsgt-t
(t2—1) 12345678(2_1)

and finally

tl t2t3t4t5t6t713 = 1.

This is a contradiction, since #; > I, 2=1,...,8. The lemma follows.

The arguments presented in this section can be generalized to the SDR of any poly-

hedron having degree < 4. As pointed ouat earlier, there cannot be any ambiguity in the

interpretation of a quadrilateral formed by four arbitrary lines if any one of the transient

vertices is known. Thus if any degree 4 facet f; has a degree three facet adjacent to it, f;

is unambiguous. All degree 4 facets adjacent to f; can then be resolved. Hence the SDR
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of any polyhedron of maximum degree 4 with at least one node of degree 3 represents a

unique polyhedron.

Now we show that there cannot be ambiguity at a reflex vertex which has an odd number
of facets incident on it. Since there is 3 switch from convex to concave angles between the
two interpretations, ambiguity at a reflex vertex with an odd number of facets would imply
that there are at least two adjacent facets each of which has an internal angle greater than
180°. This is impossible in polyhedra. Thus there cannot be any ambignity at a reflex

vertex where an odd number of facets come together.

The remaining case to be considered ig when an even number of facets come together
at a reflex vertex, and all the nodes are of degree 4. We now prove that for this case also

there is only one interpretation. The proof is a generalization of the proof of Lemma 6.

Lemma 7 An SDR of degree 4 with an even number of facets forming a reflex vertex

represents a unique polyhedron.

Proof: Let f; be afacet involved in. forming a reflex vertex and » the degree of the reflex
vertex. Without loss of generality, we may assume that the reflex vertex is at the origin.
The fixed vertex on f; is pit=1,...,n, while the intruded vertices are g2i—2 and ¢o;_1. The
extruded vertices are ¢o; and 92i~3. Subscripts are computed modulo 2n with the caveat
that 0 is represented by 2n. The subscript arithmetic is unaffected by this variation. As .
an illustration, if there are 6 facets meeting at a reflex vertex, and we are considering the
vertices on facet 1, then the intruded vertices are g3 and ¢y, and the extruded vertices are
g2 and g1, respectively. The line through the odd numbered vertices ¢2i-3 and gy;—; passes
through p; and is formed by the intersection of Ji with one adjacent facet. Similarly, the
line through the even numbered vertices go;_2 and gy; passes through p;. See Figure 12

From the n facets meeting at the reflex vertex, the following relationships follow

trimt(Qice —pi) = o —p; (26)
t2i(qai-1 — Pi) = Ga-z—p; (27)
Uifr—1 = (o (28)
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Figure 12: Vertex labeling of the realizations of facet fi.

where 23;1 > 1, ty; > 1, w; <0, i = 1,...,n. Substitute go; for i = 1,...,n, by %;qei_1
from Equation 28 into Equations 26 and 27 obtaining
(t%(th’-—-l — 1)+ {t2: — l)w) @it —
((tzi_1 — 1)+ (tas — 1)%‘-1%-1)425—3 = 0. {29)

From the geometry of the lines in Figure 12 and the fact that the origin is the reflex vertex,

the coefficient of each point ¢; in Equation 29 must be zero, i.e.,
fai(taim1 — 1)+ (tss — Dy = 0 (30)
(b2i1 — 1)+ (t2i — Ditaimytsq = 0. (31)

Replace u;, i = 1,...,n in Equation 31 using Equation 30 obtaining

(b2i —1) _ toity(ing (tai+n) — 1)
(t2ioy — 1) et )"I(tz(i+1}—1 -1)
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which yields

(fz—l):“2 . (2—1)
(t]‘—l) 1 ---2n(t1_1)9
and finally,
tilats ...ty = 1.
This is a contradiction, since #; > I, t=1,...,2n. The lemma follows. a

Thus there cannot exist an even number of facets forming a reflex vertex such that every
facet has two interpretations. Since there is no ambiguity at the reflex vertex, all the facets

of the polyhedron are determined unambiguously and we have the following theorem.

Theorem 8 The SDR of a polyhedron of any genus is unambiguous if its degree is at most

4

Proof: Let facets f; and f; be adjacent in an SDR of maximum degree four. Facets f;
and f; share an edge in the polyhedron represented by SDR. Let FV(fi), RV([i), and
TV (f) be the fixed vertex, reflex vertex, and a transient vertex respectively on facet f;.
Assume that all the vertices on each facet have been classified as fixed, reflex or transient.
We enumerate all possibilities, and show that for each possibility, the shapes of f; and f;

are completely determined.

1. Either f; or f; is triangular: The triangular face is completely determined and con-

sequently all its neighbors are determined.

2. FV(fi) = TV(f;): f; and consequently f; and their neighbors are unambiguously

determined.

3. RV(f) = TV(f;): f; and consequently f; and their neighbors are unambiguously

determined.

4. RV(f;) = FV({;): fi and then f; and their neighbors are determined,
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5. RV(f;) = RV(f;) and intruded TV (f;) = intruded TV(f;): f; and f; are unambigu-
ously determined, since one (impossible) choice requires both adjacent faces forming

internal angles greater than 180° at the reflex vertex.
6. BV(fi) = RV(f;) and intruded TV(f;) = extruded TV(f;):

* An odd number of faces meet at the reflex vertex: Only one choice is possible
since the alternate choice involves both the adjacent faces forming internal angles

greater than 180°.

e An even number of faces meet at the reflex vertex: By Lemma 7, there is only

one choice.

The proof given above also provides an algorithm for reconstruction. Ambiguity at one
reflex vertex is resolved using the above equations. This can be done in time proportional
to the number of facets incident to the reflex vertex. The rest of the polyhedron is then
reconstructed in time proportional to the size of the polyhedron. Thus the time complexity

of the algorithm is O(n), where n is the size of the SDR.
Corollary 9 The hypercube is unambiguous as an SDR.

It is easy to observe that the hypercube can be interpreted as more than one polyhedron
when viewed as a wire frame. The wire frame is a popular representation because of the
perceptual ease of specifying a polyhedron in this representation scheme. The SDR is an
equally easy representation to specify. One other advantage SDR enjoys over the wire
frame representation is that the surface of a polyhedron is connected if and only if the
SDR is connected. This is not the case for the wire frame representation. As a result we

have the following theorem.

Theorem 10 SDR is a more powerful representation scheme than the wire frame when

the degree of SDR is at most 4.
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6 Conclusion

Using the spherical dual representation, we have relaxed the requirement that the facet
comnectivity graph of a genus 0 polyhedron must be triconnected to support unique re-
construction. All genus 0 polyhedra are uniquely reconstructible. We have also extended
unique reconstruction to any polyhedron of arbitrary genus, whose SDR has degree at
most 4. The completeness of arbitrary spherical dual representations remains an open
question. However, as numerous attempts to construct a polyhedron of higher genus that

is a counterexample have failed, we are lead to the following conjecture:

Conjecture 1 The spherical dual representation of a polyhedron of arbitrary genus is

uniquely reconstructible.

This conjecture is the most intriguing question raised by this work. A resolution to this
conjecture will require a deep understanding of the structure of planar-faced polyhedra of
arbitrary genus. As a taste of what such understanding should entail, we offer this smaller

conjecture:

Conjecture 2 No complete graph K, s > 4, is the spherical dual representation of any

planar-faced polyhedron.

We also note that there is a global version of RECONSTRUCT that also reconstructs
genus 0 polyhedra. It must consider what happens when an SDR is separated by a sep-
aration pair in the same manner as does RECONSTRUCT. We do not elaborate on this
version as it is less likely to lead to a universal reconstruction algorithm for polyhedra of

arbitrary genus.

We have already mentioned in the description of RECONSTRUCT how that algorithm
can naturally extract many features (protrusions and depressions) of a solid. The lack of
explicit order information in our approach is an advantage over the approach to feature

extraction taken by Falcidieno and Giannini [3].
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Another interesting aspect of our research has been the lack of the necessity for repre-
senting the adjacency information as a multigraph. In the light of our conjectures, we feel

that the multigraph representation has the same power as the SDR,

An important observation is that RECONSTRUCT uses the requirement that facets are
planar only to calculate Q(f) and the edges of P, Therefore, RECONSTRUCT actually
applies to larger classes of ob Jects than we have allowed. It would be useful to specify and
investigate other classes of “polyhedra” for which edges and the near-vertices in A(f) are

easy to calculate.
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