On the Relationship Between the
Object-Oriented Paradigm and Software Reuse:
An Empirical Investigation

John A, Lewis, Sallie M. Henry,
Dennis G. Kafura, and Robert S. Schulman

TR 92-15

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 13, 1992

On the Relationship Between the
Object-Oriented Paradigm and Software Reuse:
An Empirical Investigation*

by

John A. Lewis Sallie M. Henry Dennis G. Kafura
(Department of Computer Science)
and
Robert S. Schulman

(Department of Statistics)

ABSTRACT

This paper describes the results of a controlled experiment designed to evaluate the impact
of the object-oriented paradigm on software reuse. The experiment concludes that (1) the
object-oriented paradigm substantially improves productivity over the procedural paradigm,
(2) language differences are far more important when programmers reuse than when they
do not, (3) under both moderate and strong encouragement to reuse, the object-oriented
paradigm promotes higher productivity than the procedural paradigm, (4) software reuse
improves productivity no matter which language paradigm is used, and (5) the object-
oriented paradigm has a particular affinity to the reuse process.

* Accepted for publication by the Journal of Object-Oriented Programming, to appear in

1992,

Virginia Tech
Blacksburg, Virginia 24061
Internet: lewis@vtopus.cs.vt.edu

1. Introduction

Far too often, claims made by advocates of the object-oriented paradigm remain
unsubstantiated by precise, repeatable experiments because the claims are inherently
difficult to validate or because the intuitive appeal of the claims seem to dismiss the need for
scientific confirmation. Anecdotal evidence and experience reports, while useful, leave
room for biased and misleading conclusions.

The danger of relying only on anecdotal evidence to assess object-oriented
technology is clearly illustrated by a previous study [HENS90]. This study determined that
the object-oriented paradigm is quantitatively more beneficial than a procedural approach in
terms of software maintenance. An interesting point made in that research is that subjects
viewed the object-oriented techniques as more difficult to accomplish, even though all
objective data supported the hypothesis that using it resulted in fewer maintenance tasks

and reduced maintenance effort.

Among the purported benefits of the object-oriented paradigm are those related to its
positive interaction with software reuse and programmer productivity. The characteristics
of the object-oriented approach and the qualities which support successful reuse seem (o
complement each other. Some of the characteristics that seem particularly suited to reuse
include a balance between power and generality [BIGT87), encapsulation [KERB84], class
hierarchies and inheritance [MEYBS87], and abstraction [WEGP83]. However, little
empirical evidence has been given to support this relationship.

The research described in this paper provides a comparison of a procedural
approach to that of the object-oriented techniques. A controlled experiment was designed
and executed in order to measure the relative effects of a procedural language and an object-
oriented language in terms of software reuse. Also examined were the effects of
managerial support on the reuse process.

The goal of the experiment described in this paper is to answer the following
questions with respect to the impact of the object-oriented paradigm vs. the procedural
paradigm on the successful reuse of software components:

1) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm?

2) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers do not reuse?

3) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers reuse?

4) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers are moderately encouraged to reuse?

5) Does the object-oriented paradigm promote higher productivity than the
procedural paradigm when programmers are strongly encouraged to reuse?

6) Does reuse promote higher productivity than no reuse regardless of the
language paradigm used?

7) Is the extent of improvement due to reuse higher for the object-oriented
paradigm than for the procedural paradigm?

The experimental design was constructed with these questions in mind. We define
productivity as the inverse of the effort expended to produce a specific software product.
Effort is measured in several quantifiable ways. We hypothesize that both reuse and the
object-oriented paradigm are important factors in the software development effort.

The next section describes the design of the experiment and discusses the
specifications of the tasks performed. Section 3 defines the data collected and the statistical
analysis performed. Section 4 draws conclusions from the analysis, specifically
addressing the questions presented above. Finally, Section 5 summarizes the experimental
results and discusses future work in this area.

2. [Experimental Design

Some reuse experiments employ hypothetical, question-and-answer situations
where the subjects do not actually perform all the various tasks inherent in the reuse
process. The authors believe, however, that to accurately determine influential factors, the
experimental subjects must perform all of the following tasks: evaluating potentially
reusable products, adapting them to the new situation, and integrating them into a
functionally complete product. It is important to create, as accurately as possible, a
representative development environment while maintaining a valid experimental design
[CURBSO0].

The experimental subjects were a set of senior-level software engineering students.
The use of students as subjects, while sometimes considered unrealistic, is justified in this
case due to two overriding considerations. First, empirical evidence by Boechm-Davis
indicates that students are equal to professionals in many quantifiable measures, including
their approach to developing software [BOED84]. Although new techniques are learned
and further refinement does occur, a programmer’s basic approach and development habits
are formed quite early in his professional development. Second, given the amount of
control necessary to execute this experiment, students are the only viable alternative. The
efficacy of students as subjects is supported for within-subject experiments by Brooks
[BRORZ&0].

The subjects in this experiment developed a specified target system. The system
specification is couched in the guise of computerizing a fictional company and is separated
into two tasks. The specific functions making up the system were abstracted from the
commercial software development experience of the first author. They involve a variety of
programming techniques including data management, numerical processing, and graphics.

Previous research investigating the factors affecting software reuse has concentrated
on two issues: 1) the impact of software engineering characteristics of code components,
such as readability, structured code, etc., and 2) the techniques used to find appropriate
code components from a set of possible candidates. Neither of these issues are the focus of
this study. Code quality was allowed to vary only within the controlled confines of
"adequate” testing and software engineering standards. All completed projects were
verified to meet a set of requirements concerning documentation, code quality, and

functional correctness. Furthermore, subjects were given no special tools for searching or
identifying candidate components. It is assumed that any assistance in this area would only
improve the reuse results.

An overview of the two phases of the experiment is shown in Figure 1. The first
phase was preparatory, in which potentially reusable components were designed and
implemented. The experiment was executed in the second phase, in which the target
system was developed by a set of subjects. Reusable code components were made
avatilable to the subjects implementing the target system. The experimental subjects did not
include any programmers who designed and implemented the reusable components. The
two phases of the experiment are described in more detail in the following sections.

Target Managerial
Specification Encouragement

oopP Empirical

Components Meisures

Statistical

Procedural Analysis

Components
Developers Subjects

Conclusions

Figure 1. Phases of the Research

2.1 Phase One: Component Development

Two sets of potentially reusable components were created during phase one. One
set was implemented in a procedural based language, Pascal, and the other in an object-
oriented language, C++. The choice of languages was not arbitrary, We deliberately chose
not to use C as the procedural programming language to make as clear a distinction as

possible between the object-oriented approach and the procedural approach. Since C s
basically a subset of C++, we feared the similarities of the two languages might cloud that
distinction. C++ was chosen over Smalltalk because we believed the powerful
programming environment of Smalltalk, not available to a Pascal programmer, might
jeopardize the comparison. Finally, both C++ and Pascal emphasize strong typing, thus
controlling another possible source of variation.

Both component sets were implemented on Apple Macintosh II's running A/UX.
They were designed to be functionally equivalent, though design and coding techniques
naturally vary. Equivalence was guaranteed by ensuring that all code met the same
fundamental functional and error-handling requirements. Furthermore, all developed code
passed the same level of testing thoroughness.

Knowing the requirements of the target system to be implemented in the second
phase, each component was designed to have a specific level of applicability. The levels of
reuse can be described as:

1) completely reusable,

2) reusable with slight revision (<25%),

3) reusable with major revision (> 25%), and
4) not applicable for reuse.

With respect to the target system, the component sets were designed to contain
elements from each reuse level. The 25% marks of levels 2 and 3 are only intuitive
guidelines and refer to the amount of code that must be added, deleted and modified to
create a component that meets the target system's requirements. Providing components
which span a wide range of applicability ensures a realistic, diverse collection from which

subjects evaluate and choose components.
2.2 Phase Two: Project Implementation

Using the two sets of components, independent subjects were assigned the task of
implementing the target project. The subjects were divided into six groups, pictured as
cells in Figure 2. Half of the subjects implemented the project in Pascal, the other half in
C++. Furthermore, subjects within each language category are divided into three sub-

groups. One group could not reuse at all, therefore implementing the project using only
newly developed code. A second group was encouraged to reuse components from the
appropriate reuse set as they saw fit. The third group was instructed that they should reuse
anything remotely appropriate in the reuse set. The later two groups are termed "moderate

encouragement” and "strong encouragement,” respectively.

Managerial Influence
Moderate Strong
Cannot Reuse Encouragement Encouragement

:SD Procedural 4 4 3

g (ascal ®) ®) ©)

g

B Object-

gﬂ Oriented 3 4 8

,§ (C+4) (6) (8) (6)

Figure 2: Number of Subjects (Observations) Per Group.

Twenty-one subjects were distributed unevenly across the groups. The uneven
distribution of subjects was factored into the statistical analysis. The subjects were divided
into the groups randomly, but were statistically blocked across their computer science grade
point averages. This blocking was an effort to reduce variability within each group. An
anova test comparing the grade point averages of subjects showed no significant
differences between groups (p < 0.9795).

The functional requirements of the target system are divided into two equal tasks
related to "employee management"” and "business management.” Employee management
deals with an employee database, payroll, security control, and cost center management.
Business management is concerned with the details of shop floor control, quality control
testing, warchouse management, and customer interactions. All subjects were given
written introductory material containing information to aid the subjects in understanding the

requirements.

Differences between the two tasks were controlled in two ways. First, tasks were
designed to be comparable in programming difficulty. Both tasks are divided into seven
subtasks, each of which has a counterpart in the other task designed to require
approximately the same amount of effort to develop. Since preliminary analyses showed
that the results are not affected by the difference between the two tasks, task differences
were ignored in subsequent analysis, thereby increasing the power of all other statistical
tests. Second, half of the subjects designed and implemented the employee management
task first, while the other half of the subjects designed and implemented the business
management task first. Then each half switched, resulting in both system tasks being
developed by each subject. This organization offsets any learning benefit of doing a
particular task first.

3. Data Analysis

The data collected during the experiment measure a subject’s effort in implementing
the target system. Productivity and effort are considered to have an inverse relationship.
Therefore, the less effort expended by a subject to satisfy the requirements of one task, the
higher the productivity of that subject. In this experiment, the goal is to determine which
groups from Figure 2, on average, had a significantly different productivity rate than
others. The measurements of effort, and therefore of productivity, are:

Main productivity measures

« Runs - The number of runs made during system development and testing,

« RTE - The number of run time errors discovered during system
development and testing,

+ Time - The time (in minutes) to fix all run time errors,

Secondary productivity measures

« Edits - The number of edits performed during system development and
testing, and

e Syn. - The number of syntax errors made during system development and
testing.

Since each subject implemented the same tasks, a comparison of data across
subjects yields a relative measure of the effort used to develop a task. A subject with a high
value for a given measure is considered less productive than a subject with a low value.

Multiple productivity measures are used to obtain a more complete picture of the
development process. The Runs, RTE and Time measures, given their significance to the
development process, are considered the main variables of interest. The Edits and Syntax
Errors measures are gathered for completeness, but are given less emphasis. To reduce the
overhead of the data collection, some measures that might have been of interest, such as
total development time, were not collected.

Data was collected by the subjects using tally sheets. To assure the data's validity,
subjects were informed that their names would not be associated with these data, and that
the values themselves would have no bearing on their course evaluation. They were also
told that a negative impact on their course evaluation would occur if they did not record
their development information honestly and completely. The tally sheets were coded such
that no subject name was ever connected to particular data.

The group means for each productivity variable are depicted graphically in Figures
3 and 4. These charts give a rough indication of how the groups compare although
statistical analyses are required to verify perceived differences. In each analysis, a
difference in means was considered significant if the p-value for the test was less than 5%
(p < 0.05), which is an accepted norm. Since our research questions all predict the
direction of difference, all tests were performed in a one-sided manner.

As indicated above, initial analysis of the task factor determined that the difference
between the two tasks played no role in influencing any of the productivity variables (all p-
values for task effects were = 0.2073). In other words, the two tasks were determined to
be equally difficult and did not interact with other factors. The lack of task effects is
attributed to the careful design of task specifications and the blocking of subjects across
grade point average. Therefore, all further analyses ignore the task factor, effectively
creating 42 observations on which to perform the tests, which gives them more statistical
power. The number of observations per group is given in Figure 2.

Number of Runs

Number of RTEs

Time (minutes)

(a) Number of Runs
100 -

B Proc. Runs
Bd OOCRuns

No Reuse Moderate Strong
(b) Number of Run Time Errors
100 5 B Proc RTE
] B OORTE
80
80
40 -
0 p=
No Reuse Moderate Strong
{¢) Time to Fix Run Time Errors .
500 - Proc Time
] OO Time
400 -
300 -
200 -
100 -
0 -

No Reuse Moderate

Figure 3. Group means for primary

productivity variables.

(a) Number of Edits

500 - B Proc Edits
£
=
S
-]
1
S
_—
£
-}
Z.
No Reuse Moderate Strong
400 (b) Number of Syntax Errors
%
=]
i
™
=
k:
=
-
4 4}

No Reuse Moderate Strong

Figure 4. Group means for secondary productivity variables.

10

4. Experimental Results

This section draws conclusions from the analysis performed on the productivity
data. In general, the hypotheses suggested at the beginning of this paper are supported,
with some notable exceptions.

The experimental questions posed in Section 1 will be used as a framework for
discussion of the statistical analysis. Each question will be addressed separately, giving the
results of the appropriate analysis.

1) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm?

The third column in Table 1 list the means of the productivity variables calculated
from all subjects using the procedural language, including subjects who reused as well as
those who did not. The fourth column shows similar means for subjects in the object-
oriented categories. Our hypothesis is that the values for the object-oriented paradigm will
be lower than those of the procedural paradigm, indicating a higher productivity for the
object-oriented subjects.

Means
Significant? p-value Procedural 0-0
Runs Yes 0.0066 59.27 47.50
RTE Yes 0.0078 65.00 50.20
Time Yes 0.0104 354.41 261.70
Edits No 0.3469 271.55 263.65
Syn. No 0.8675 183.67 202.40

Table 1. Language Main Effect

For each productivity variable, a p-value was computed for the difference between
the means. The p-value is the probability that the difference could have been obtained by
chance, rather than reflecting a true difference in productivity. Following conventional
criteria, a difference is deemed statistically significant if its p-value is less than 0.05. In
such cases, it is extremely unlikely that the difference in means is due to chance, and we

11

conclude that productivity was indeed higher for subjects using the object-oriented
paradigm,

There is a significant difference between the means of the three main productivity
variables (Runs, RTE and Time), favoring the object-oriented paradigm. In addition, the
mean for the Edit variable in the object-oriented case was also lower than in the procedural
case, although not to a significant degree. The means on the Syntax Errors variable did not
differ in the predicted direction. Considering the nature of the Edits and Syntax Errors
variables, the lack of significance is attributed to the subjects lack of practice using the
object-oriented language. The results of the analysis on the main variables indicate that the
object-oriented paradigm does promote higher productivity than the procedural paradigm.

2) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm when programmers do not reuse?

The means listed in Table 2 are calculated for subjects who did not reuse. The third
column represents subjects using the procedural language, and the forth column represents
subjects using the object-oriented language. Our hypothesis is that the object-oriented
values will be lower than the procedural values. Surprisingly, none of the variables
indicate a significant difference.

Means
.. Procedural 0-0
Significant? p-value NoReuse No Reuse
Runs No 0.8909 75.38 83.17
RTE No 0.7506 81.25 87.17
Time No 0.1607 446.38 385.00
Edits No 0.2360 416.00 392.00
Syn. No 0.1733 311.00 290.33

Table 2. No Reuse (Procedural vs. Object-Oriented)

Interestingly, the group means do not consistently favor one language or the other.
The means for the object-oriented groups are lower for Time, Edits, and Syntax Errors, but
the means for the procedural groups are lower for Runs and RTEs. According to this

12

analysis, we must conclude that when reuse is not a factor, the object-oriented paradigm
does not promote higher productivity. In other words, in the absence of reusable

components, either approach works equally well.

3) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm when programmers reuse?

Given the answers to the first and third questions, the answer to this question
should logically be yes. The results in Table 3 confirm this expectation for the three main
productivity variables. The means listed are for subjects who did reuse, with the third
column representing subjects using the procedural paradigm and the forth column
representing subjects using the object-oriented paradigm. Once again, our hypothesis

favors the object-oriented paradigm.
Means

o Procedural 0-0
Significant? p-value AllReuse All Reuse

Runs Yes 0.0001 50.07 32.21
RTE Yes 0.0005 55.71 34.36
Time Yes 0.0153 301.86 208.86
Edits No 0.8380 189.00 208.64
Syn. No 0.9767 137.14 164.71

Table 3. Reuse (Procedural vs. Object-Oriented)

Variables Runs, RTE and Time all proved significant with means favoring the
object-oriented group, but the Edits and Syntax Errors variables did not differ in the
hypothesized direction. Given the importance of the main productivity variables, we can
conclude that the object-oriented paradigm does promotc. higher productivity than the
procedural paradigm when reuse in employed. Note that most of the support given to the
first question comes from differences between the groups which were encouraged to reuse.
Therefore, language paradigm differences are far more important when subjects reuse than
when they do not.

13

4) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm when programmers are moderately
encouraged to reuse?

This question and the next one further refine the analysis of the previous question
by examining the language paradigm comparison within the context of distinct managerial
influence levels. The means listed in Table 4 are for subjects from the moderate
encouragement groups only, representing moderate encouragement by management to
reuse. The third column represents the subjects using the procedural paradigm and the
fourth column represents the subjects using the object-oriented paradigm. Our hypothesis
is that the values for the object-oriented group will be less than the procedural group.

The Runs and RTE productivity measures were significantly lower for the object-
oriented group. The means favored the object-oriented group for the Time and Edits
variables as well, but not to a significant degree. The Syntax Errors variable barely favored
the procedural paradigm.

Means

o Procedural 0-0
Significant? p-value Moderate ~ Moderate

Runs Yes 0.0023 45.13 2775
RTE Yes 0.0178 49.50 32.00
Time No 0.1179 264.25 196.13
Edits No 0.4660 192.13 189.50
Syn. No 0.5688 143.25 146.75

Table 4. Moderate Encouragement (Procedural vs. Object-Oriented)

Since two of the three primary measures significantly favored the object-oriented
paradigm, and four of the five variables overall showed a tendency in the same direction,
we conclude that when subjects are given moderate encouragement to reuse, the object-
oriented paradigm does promote higher productivity than the procedural paradigm.

14

5) Does the object-oriented paradigm promote higher productivity than
the procedural paradigm when programmers are strongly encouraged
to reuse?

The means listed in Table 5 are for subjects from the strong encouragement groups -
only. The third column represents the subjects using the procedural paradigm and the
fourth column represents the subjects using the object-oriented paradigm. Our hypothesis

is that the values for the object-oriented group will be less than the procedural group.

Means

Procedural -0

Significant? p-value Strong Strong

Runs Yes 0.0043 56.67 38.17
RTE Yes 0.0035 64.00 37.50
Time Yes 0.0305 35200 225.83
Edits No 0.0854 392.00 23417
Syn. No 0.9929 129.00 188.67

Table 5. Strong Encouragement (Procedural vs. Object-Oriented)

All three primary productivity measures were significantly lower for the object-
oriented group. The means favored the object-oriented group for the Edits variable,
although not significantly, but not the Syntax Errors variable. We conclude that when
subjects are given strong encouragement to reuse, the object-oriented paradigm does
promote higher productivity than the procedural paradigm.

6) Does reuse promote higher productivity than no reuse regardless of
the language paradigm used?

From the results in Table 6, the answer to this question is clearly yes. The means
in the third column of Table 6 are calculated for all subjects who did not reuse, regardless
of the language used. Likewise, the fourth column shows means for all subjects who did
reuse. Our hypothesis is that the means will be lower for the reuse groups, indicating a
higher productivity for the subjects who were encouraged to reuse. This hypothesis is
strongly supported by all variables.

15

Runs
RTE
Time

Edits
Syn.

Means

Significant? p-value No Reuse All Reuse
Yes 0.0001 78.71 41.14
Yes 0.0001 83.79 45.04
Yes 0.0001 420.07 255.36
Yes 0.0001 405.71 198.82
Yes 0.0001 302.14 150.92

Table 6. Reuse Main Effect

This result is further supported by the charts in Tables 7 and 8, which view the data
across the reuse factor, but consider each language separately. Table 7 shows the means
for the procedural groups with respect to reuse, and Table 8 shows the means for the
object-oriented groups with respect to reuse. In both analyses, all variables showed a
significant difference in the hypothesized direction.

Means
L. Procedural Procedural
Significant? p-value NoReuse All Reuse
Runs Yes 0.0001 75.38 50.07
RTE Yes 0.0008 81.25 55.71
Time Yes 0.0047 446.38 301.86
Edits Yes 0.0001 416.00 189.00
Syn. Yes 0.0001 311.00 137.14
Table 7. Procedural (No Reuse vs. Reuse)
Means
o 0-0 0-0
Significant? p-value NoReuse All Reuse
Runs Yes 0.0001 83.17 32.21
RTE Yes 0.0001 87.17 34.36
Time Yes 0.0017 385.00 208.86
Edits Yes 0.0001 392.00 208.64
Syn. Yes 0.0001 290.33 164.71

Table 8. Object-Oriented (No Reuse vs. Reuse)

16

7) Is the extent of improvement due to reuse higher for the object-
oriented paradigm than for the procedural paradigm?

As shown by the results in Tables 7 and 8, reuse improved prodhctivity over non-
reuse for both the procedural and object-oriented paradigms. The seventh question asks
whether the extent of improvement is comparable for the two language paradigms. Our
hypothesis is that the improvement due to reuse will be greater for the subjects using the
object-oriented paradigm than for those using the procedural paradigm, indicating that the
object-oriented paradigm is particularly suited to reuse.

The third column in Table 9 shows for each variable the difference between the
mean of the procedural non-reuse group and the mean of the procedural reuse group. This
is a measure of the amount of improvement in productivity due to reuse -- the large the
difference, the greater the increase in productivity. The forth column shows comparable
mean differences for the object-oriented groups. Therefore, our hypothesis predicts that
values in the fourth column should be greater than those in the third column.

Mean Differences

. Procedural 0-0
Significant? p-value NR-R NR-R
Runs Yes 0.6009 25.31 50.96
RTE Yes 0.0062 25.54 52.81
Time No 0.3176 144.52 176.14
Edits No 0.8753 227.00 183.36
Syn. No 09716 173.86 125.62

Table 9. Interaction (Extent of Improvement)

On the Runs and RTE variables, the increase in productivity due to reuse was
greater for the object-oriented paradigm than for the procedural paradigm. The same
pattern occurred on the Time variable, although the difference in means was not large
enough to be statistically signifiéant. Once again, contrary to the main productivity
variables, the Edits and Syntax Errors variables seem to oppose the hypothesis. Given that
two of the three main measures of productivity (Runs and RTE) show significant
differences in the hypothesized direction, and that the third main variable (Time) favored

17

the same direction, we conclude that there is a significant difference between the extent of
improvement due to reuse across the two language paradigms. In other words, the results
show that the object-oriented paradigm demonstrates a particular affinity to the reuse
process.

5. Summary and Future Work
The experiment in this paper has shown that:

(1) The object-oriented paradigm substantially improves productivity over the
procedural paradigm (question 1),

(2) Language differences are far more important when programmers reuse than
when they do not (questions 2 and 3),

(3) Under both moderate and strong encouragement to reuse, the object-oriented
paradigm promotes higher productivity than the procedural paradigm
{questions 4 and 5),

(4) Software reuse improves productivity no matter which language paradigm is
used (question 6),

(5) The object-oriented paradigm has a particular affinity to the reuse process
(question 7).

Given the reuse potential demonstrated by the object-oriented paradigm, greater
benefits can be achieved by using the object-oriented paradigm than by using a procedural
approach. Use of the object-oriented paradigm was shown to foster increased productivity
compared to the procedural paradigm under both moderate and strong levels of reuse
encouragement. Further analysis demonstrates that improper reuse practices influence
productivity when using the object-oriented paradigm. A comparison of Tables 4 and 5
shows a tendency for subjects under strong reuse encouragement to be less productive than
subjects under a moderate level of reuse encouragement. This effect is attributed to the
subject's reuse of inappropriate components due to the increased encouragement, Further
discussion of this effect is given in [LEWJ91].

18

An important facet of the experimental method is that the results are repeatable.
Experiments similar to the one described in this paper should be conducted to verify the
results of this experiment. In particular, the secondary variables of Edits and Syntax Errors
did not always support the analysis of the main variables, even when intuition says they
should. This tendency deserves further investigation. '

Other experiments should be conducted which independently investigate the two
main elements of this research: software reuse and the object-oriented paradigm. The
factors which affect software reuse are many and varied. Similar experiments can be
designed to determine the impact of human factors, code characteristics, and other language -
differences.

The object-oriented paradigm contains a wealth of possible benefits that have yet to
be proven empirically. Claims that associate the object-oriented approach with improved
design, less and easier maintenance, and higher reliability when compared to its procedural
counterpart demand further investigation. Experience reports alone, while useful, are not
enough to validate the assumptions that are associated with the object-oriented paradigm.
Experimental research into these areas is necessary to provide a solid base to support the
theories that shape state-of-the-art software production.

19

References

[BIGT87]

[BOEDg4]

[BRORSO]

[CURBSO0]

[FREP87]

[HENS90]

[KERB84]

[LEWJ91]

[MEYBg7]

Biggerstaff, T., Richter, C., "Reusability Framework, Assessment, and
Directions,” IEEE Software, March 1987, pp. 41-49.

Boehm-Davis, D., Ross, L., "Approaches to Structuring the Software
Development Process," International Journal of Man-Machine Systems, (to
appear 1991).

Brooks, R., "Studying Programmer Behavior Experimentally: The Problems
of Proper Methodology," Communications of the ACM, 1980, Volume 23,
Number 4, pp. 207-213.

Curtis, B., "Measurement and Experimentation in Software Engineering,"
Proceedings of the IEEE, 1980, Volume 68, Number 9, pp. 1144-1157.

Freeman, P., "A Perspective on Reusability,” Software Reusability,
Computer Society Press of the IEEE, 1987, pp. 2-8.

Henry, S.M., Humphrey, M., Lewis, J.A., "Evaluation of the
Maintainability of Object-Oriented Software,"” Proceedings of the Conference
on Computer and Communication Systems, Volume 1, Hong Kong,
September 1990, pp. 404-409. |

Kernighan, B.W., "The Unix System and Software Reusability," IEEE
Transactions on Software Engineering, September 1984, pp. 513-518.

Lewis, J.A., Henry, §.M., Kafura, D.G., Schulman, R.S., "Human Factors
and Software Reuse: An Empirical Study,” Technical Report Number xxx,
Virginia Tech, Blacksburg, Virginia, July 1991.

Meyer, B., "Reusability: The Case for Object-Oriented Design," IEEE
Software, March 1987, pp. 50-64.

20

[WEGP83] Wegner, P., "Varieties of Reusability," ITT Proceedings of the Workshop on
Reusability in Programming, 1983, pp. 30-44.

21

