The Application of Concurrent Object-Oriented
Techniques to Reactive Systems

Dennis G. Kafura and R. Greg Lavender

TR 92-12

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 13, 1992



The Application of
Concurrent Object-Oriented Techniques to
Reactive Systems

Dr. Dennilis Kafura R. Greg Lavender
Department of Computer Science MCC
Virginia Tech 3500 W. Balcones Center Dr.
Blacksburg, VA 24061-0106 Austin, TX 78759-6509
kafuralcs.vt.edu lavender@mece.com
Abstract

Reactive systems are so named because they are intended to
sustain an extended interaction with an environment which
evolves outside of the direct control of the program of the
reactive system. A language and system nodel combining
concurrency, abstract communication and an object orientation
offers several advantages in the design and implementation of
large-scale reactive systems. An cbject-orientation captures
the abstraction and variety of entities inhabiting the
environment while the autonomy of actual entities is clearly
reflected by expressions of concurrency in the program of the
reactive system. Abstract communication is necessary to
achieve data sharing among heterogeneocus systems. However,
attempts to design and implement a paradigm unifying these
three features have encountered unexpected difficulties.
These difficulties include: the interference between
concurrency control (synchronization) and inheritance,
inadequate application-oriented communication abstractions,
the absence of a useful model of exception handling for
concurrent object-oriented applications, and the lack of a
powerful and useful theory of computation based on

asynchrony.

I. Introduction

A distinction may be drawn between transformational programs
- those intended to terminate after producing a final result,
and reactive programs - those intended to maintain an ongoing
interaction with an external environment which itself evolves
outside of the direct control of the progranm [Manna&Pnueli]
[Harel et.al.]. Into this later category fall such familiar
programs as operating systems, embedded control systems,
command and control systems, and human-computer interfaces.
The term reactive systems, emphasizes the interactive
character of the software - in the simplest case a reactive
program interacts with its environment while in more



realistic systems the “program” is a collection of elements
interacting with each other as well as with their common
environment.

This paper considers what might be termed large scale
reactive systems. Distinguishing characteristics of such a
system are the following. First, the system has considerable
spatial extent., In different applications the system’s
components may stretch over metropolitan areas, may involve
interaction among components located around the globe or may
integrate space-based and ground-based components. Second,
the system’s components exhibit strongly autonomous behavior.
The interactions are best viewed as the collaboration of peer
entities each of which has a separate purpose and exlstence
Third, the components are both numeérous and specialized.
These components are more likely to be considered “agents”
than either clients or servers as these later terms are
understood presently.

The technical challenges raised by large scale reactive
systems are 1in three related areas: communication,
concurrency and representation. The spatial distribution of
the system implies the need for communication among
heterogeneous machines using possibly different lower layer
protocols. The highly autonomous nature of the components
implies pervasive concurrency, each agent possessing its own
thread of control., This granularity of concurrency is finer
than “process” concurrency supported on most commercially-
available systems (exceptions exist). Finally, the need to
model, design and implement numerous, specialized agents
implies a programming paradigm founded on principles of
generalization/specialization in design and modeling and
encapsulation in implementation.

The technologies relevant to these technical challenges are:
08I wupper-layer protocols, actor-based concurrency and
object-oriented programming. These technologies are briefly
discussed here and in greater detail, as needed, in
subsequent sections.

The OSI model and protocols, embodied in international
standards, helped to initiate the popular concept of “open
computing” among heterogeneous systems. Universal adoption of
0SI was prevented by a combination of market and technical
forces centered on the lower layer (i.e., transport)
protocol. However, it is the upper layer protocols which are
increasingly recognized as the area where substantial
engineering effort should be focussed [Clark&Tennenhouse]. It
is also the upper layer protocols which are relevant to large
scale reactive systems. In such systems, the significant
communication issues are those related to connection
establishment, data translation and synchronization. The



services of the lower layers (routing, flow control, error
control) are necessary but exert far less impact than the
upper layers on the character of applications. Fortunately,
the upper layer OS5I protocols can be implemented above
different transport protocols [Rose86]1. Unfortunately, the
current implementation of the upper layer protocols are not
suitable because the complexity of the service interface 1is
not effectively abstracted. The solution to this problem is
stated below and discussed in Section 3.

Actor-based concurrency [Agha] provides a suitable foundation
for designing and implementing agent-based systems. The
features of the actor model that are Aimportant in this

context are: autonomy - each actor operates independently
with all other actors; reactivity - an actor is driven by
message directed to it by other actors; interaction - the

message passing among actors does not diminish the autonomy
of the communicating actors and avoids the imposition of
unnecessary, complicating control structures; evolution — 1in
response to changes in the real world, an executing system of
actors can extend {contract) itself dynamically through the
creation (destruction) of actors and by changing the topology
of communication among existing ones; encapsulation - the
private state of an actor 1s secure from unintended
manipulation and allows the actor to react in a time-
sensitive (history dependent) manner.

Object-oriented programming provides a language and modeling
framework within which limited forms of domain knowledge can
be represented. Inheritance, the defining feature of object-
oriented languages [WegnerS90al, allows specialization and

variety among entities to be explicitly captured. A class
which extends or redefines attributes of an existing class is
an example oOf specialization. Cclasses derived by

specialization from a common class allows the variety of
similar, but distinct, entities to Dbe represented. Codifying
these relationships allows & substantial model of the real
world to Dbe defined. The combination of actor-based
concurrency and object-oriented programming allows both the
variety and specialization of entities and their autonomy to
be represented. This representation is more accurate than one
which can be achieved by using either of the technologies
separately.

The synthesis of upper layer OS5I protocols, actor-based
concurrency and object-oriented programming is extremely
powerful but it is not without difficulties. A number of the
major difficulties are: synchronization -the interference
between inheritance and concurrency control; service
complexity - the immaturity of application—oriented
abstractions at the service interface of the upper layers of
the protocol stack; exceptions - the absence of a suitable

I



model for exception handling; theory - the immaturity of
algebrailc models for asynchronous, dynanic, concurrent
objects. The first two of these problems are discussed 1in
Section II and III, respectively, while Section IV discusses
the last two problems. Section V is a summary.

The subsequent sections of this paper discuss the problems
noted above in the context of three systems:

ACT++: a system for exploring the synthesis of object
oriented programming using C++ and actor-based
concurrency [Kafura&Lee90];

O0SL: a re-engineering of the upper layer 051
protocols in C++ [Lavender,Kafura&Tomlinson];

Synergy: a framework for distributed, heterogeneous,
multi-language applications incorporating both
ACT++ and QOS5I [Kafura&Lavender].

The first of these systems is operational, the second 1is
being implemented and the third has only begun in recent
months.

II. Synchronization

The observable behavior of an object is concerned with the
set of messages that the object will accept at a given point
in time, oOFr alternatively, the set of methods that are
visible in the interface of the object upon receipt of a

message. The term observable behavior captures the concern
with how the object appears to those clients that communicate
with the object. our notion of observable behavior is

motivated by the similar notion described in [Milner];
however, in our work to date the machinery of ccs is used in
specifying and reasoning about the observable Dbehavior of
individual objects, not systems of objects.

In dealing with the observable behavior of concurrent objects
(algso termed concurrent behavior), the relationship between
the (internal and invisible) state of an object and the
subset of methods which define its (external and wvisible)
observable behavior 1is critical. This relationship 1is
precisely what defines the semantics of a concurrent object.
In order to understand concurrent object behavior, we must
investigate this relationship.

The concurrent behavior of an object is captured in part by
the class definition of the object and in part by the
mechanism employed by the class to guarantee synchronization.

g



The inheritance anomaly occurs when we attempt to specialize
concurrent behavior using an inheritance mechanism. The
anomaly occurs because the inheritance mechanism and the
synchronization mechanism interfere with one another,
limiting the ability of the subclass to reuse the method
implementations of the superclass. Furthermore, the anomaly
has been observed across a spectrum of concurrent object-
oriented languages regardless of the xind of synchronization
mechanism emplioyved [Americal, [Briot&Yonezawal],
[Kafura&Lee89], [Nierstrasz].

The types of concurrent object-oriented systems we are
interested in are composed of actor-like objects with
properties similar to those described in [Agha]. Each object
possesses its own thread of control and communicates with
other objects via message passing. Concurrency in our system
is limited to inter-object concurrency which is achieved
using message passing and an actor-like become operation.
The become operation results in a replacement behavior
(object) with its own thread of control. Fine—grained intra-
object concurrency is not a feature of objects in our system.

We are specifically interested in expressing and inheriting
concurrent object behavior in ACT++ [Kafura&lLee90] a
prototype object-oriented language based on the Actor model
and C++. ACT++ is a collection of classes which implement the
abstractions of the Actor model and integrates these
abstractions with the encapsulation, inheritance, and strong-
typing features of C++. The language falls in the
heterogeneous category of concurrent object-oriented
languages [Papathomas] since we have both active and passive
objects. Active objects are instances of any class derived
from a special Actor class. Any instance of a class not
derived from the Actor class is a passive object. Concurrency
is achieved using an actor-like become operation which 1is
implemented in the Actor class. The become operation permits
an object to specify a replacement behavior.

There is a general consensus that we do not yet fully
understand what it means to inherit concurrent behavior
[Wegner90b]. To provide a solid foundation for approaching
this issue we have sought a guiding formalism. A formalism
based on CCS is presented which exposes the essential

elements of concurrent object behavior and leads to

conditions which must exist if the inheritance anomaly 1is to
be avoided.

The notion of behavior abstraction was previously proposed in
ACT++ [KafurasLeeB89] as a mechanism for capturing the
behavicr of an object. Upon initial examination, behavior
abstraction seems powerful since synchronization can be
achieved naturally by dynamically modifying the visibility of



the object interface using the become operation. The
efficacy of this mechanism and its degree of interaction with
the ACT++ inheritance mechanism has been examined by others
[Papathomas], [Matsuoka,WakitasYonezawa] and has been found
to have serious limitations. The most serious limitation
occurs because a behavior abstraction is not a first-class
entity in the language and is thus subject to the effects of
the inheritance anomaly.

Enabled sets ([Tomlinson&Singhl improve on the notion of
behavicor abstraction by promoting the control of the
visibility of an object's interface to a dynamic mechanism
which can be manipulated within the language; i.e., enabled
sets in Rosette are first-class entities.

The flexibility offered by enabled sets caused us to
investigate the combination of behavior abstraction and
enabled sets which resulted in the notion of a behavior set
[Lavender&Xafura]. The ACT++ mechanism which captures the
idea of a behavior set has the following properties:

» it is a natural extension of formal methods for
specifying concurrent object behavior,

e it does not interfere with the ACT++ inheritance
mechanism,

¢ it is free from known inheritance anomalies,
* it can be expressed entirely within ACT++, and
* it can be enforced efficiently at run time.

To represent concurrent object behavior within the ACT++
language, we rely on three first-class entities expressible
within the language:

* state functions whose boolean results represent tests
applied to the current (internal) state of the object,

* a next behavior function representing the mapping from
internal states (as determined by the state functions) to
the observable (external) interface, and

e behavior sets representing elements of the observable
behavior (powerset of the set of methods).

The excerpt shown in Figure 1 demonstrates how each of these
entities is expressed and used in an ACT++ class definition
of a bounded buffer. In the example, a class named
BoundedBuffer is derived from the base class Actor and
defined to have methods named in and out for inserting and



removing items,respectively. The implementation permits at
most N items to be maintained at any one time. The state
functions, appearing in the protected section of the class
definition, are empty() and full{() which return true when the
buffer contains no elements or can receive no additional
elements, respectively. The nextBehavior method uses the
state functions to select one of three possible BehaviorSets:
7ero — containing only the method in, N - containing only the
method out, and Other containing both methods. The
initialization of these three BehaviorSets is shown in the
class constructor.

class BoundedBuffer : Actor {
...//private instance variables

protected:
BehaviorSet %ero, N, Other;

virtual bool empty () {...}
virtual bool £ull() (...}

virtual BehaviorSet nextBehavior() {
if (empty()) return Zero; else
if (full () ) return N; else

return Other;

}
public:

LinearOrd() { //constructor
Zero = BehaviorSet (&in);
N = BehaviorSet (&out});
Other = Zeroc + N;
become nextBehavior();

Figure 1: Bounded Buffer expressed with Behavior Sets

In this section we have attempted to explain the relationship
between concurrent object behavior and inheritance. In doing
so, we are forced to first define the meaning of concurrent
object behavior as it occurs in our actor-based concurrent
object-oriented language. We have offered a formalized
approach for specifying and reasoning about concurrent object
behavior based on CCS behavior equations. This approach



emphasizes the relationship between the state of an object
and subsets of the set of methods in the interface to the
object, called behavior sets. This relationship i1s embodied
in the mapping given by the behavior function. If the
inheritance anomaly is to be avoided, behavior sets and the
behavior function must be first-class, inheritable, and
mutable. We have shown that the language mechanisms of ACT++
(and therefore C++) are sufficiently expressive in this
regard.

I1I. Service Complexity

This section describes features of an object-oriented
implementation of the OSI upper layers, called O0SI (ooo-zi),
which is in the final stages of development. OOSI is
implemented in C++ and is the result of an almost complete
re—engineering of the core elements of the IS0 Development
Envirconment (ISODE) [RoseB89], a widely wused research
implementation of the upper layer OSI protocols. It 1is
relevant to explore how object-oriented language features can
be used in the implementation of a layered protocol
architecture. Constructing layered systems using object-
oriented techniques is an area of interest to several others
as well. Relatively recent work includes Choices [Campbell],
the Conduit [Zweigl, and OTSO [Koivisto].

The work on OOSI is intended to be of interest to different,
audiences. First, we want to communicate to software
engineers that the deep integration of object~oriented
programing technigues with upper layer protocols facilitates
and enhances the implementation of distributed applications.
Second, we want to convey to language designers and protocol
implementors that object-oriented language features
(inheritance, subtyping, and polymorphic functions) are
useful in building communication protocols.

A deep integration of object-oriented techniques and layered
protocol architectures has profound implications for
distributed object-oriented applications. The resulting rich
and flexible communications infrastructure is a useful one on
which to build next generation distributed applications. In
general, development of OSI-based applications, if undertaken
at all, is a difficult and time consuming process. Major
difficulties are understanding the use of the multi-option
service primitives offered by each layer, use of standard
application layer service elements such as remote operations,
being facile with the BAbstract Syntax Notation One (ASN.1)
data representation language, and mapping application
services onto an appropriate set of communication services.



The difficulties in building OSI-based applications may be
overcome by using the boundary surrounding an application
entity object to encapsulate:

+ complexity: as noted, the existing interfaces to
application services entail lengthy argument lists
containing system structures which the user must retain
and supply with later uses of the service. These system
structures can be better represented, and hidden from
view, as internal data of objects.

+ distribution: an application process may be composed of
both locally communicating -objects and remotely
communicating cobjects. The application developer need
make no, or at least minimal, distinction between objects
in these two groups.

+ protocol: each pair of peer application entities uses a
separate, but not necessarily unique, protocol. The
protocol used in interacting with a remote object may be
completely hidden from the application developer.

 heterogeneity: the need to encode and decode data passed
among systems with dissimilar data representations 1s a
time-consuming and error—-prone effort. The encoding and
decoding functions can be treated as methods of a class,
hiding from the user the details of how the object passes
data to remote objects. Furthermore, the existence of a
class hierarchy simplifies the programming of the
encoding and decoding methods.

Structuring application service elements as objects creates
an application environment with simpler, more abstract
services and one which is safer as the control of arguments
and the proper use of defaults can be insured by the class
designer.

Finally on this point, we note the experience of one of the
authors with the Carnot project at MCC. Here it is apparent
that extensible concurrent object-oriented programming
environments, like the one offered by Rosette
[Tomlinson, Scheevel&Singhl, in conjunction with a rich set of
communication abstractions, provides the application layer
infrastructure for a much broader open systems technology
base than is common in current practice. Typical client~-
server network applications, such as file transfer,
electronic mail, and remote virtual terminal, impose
relatively weak demands on the upper layer protocol
abstractions. However, of more interest are powerful
application models based on peer—-to-peer communication, such
as distributed workflow coordination and distributed
communicating agents. In programming applications in an



inherently concurrent environment, it becomes apparent that
design choices embodied in the communication infrastructure
impact, in a limiting way, the applications infrastructure.

The particular appropriateness of object-oriented programming
to the implementation of communication architectures is the
second issue considered in this section. The 0O0SI experience
shows that the the use of object-oriented programming results
in a type structure that reflects the architectural model and
increases the run-time performance of the protocol machines
at each layer. Having worked with and examined in detail the
ISODE code, it became obvious that inheritance, subtyping,
and polymorphism could be used to explicate the implicit
type structure of the layered protocol machines and improve
their efficiency. An aesthetic benefit , which is appealing
from a software engineering perspective, is that the type
structure reflects the service encapsulation and vertical
composition of the layered model, making it easier to map the
components of the model to corresponding elements in the
implementation. At the same time, the type structure enforces
the proper run-time access control, enables compact vertical

composition of methods (inlining), and produces an
encapsulated and localized state structure for each instance
of the protocol machine hierarchy. The performance

improvement results primarily from a simplified control
structure induced by the explicit type structure and
selective function inlining.

This experience is important since it contradicts the
assertion by some that layered protocol architectures, such
as the ISO Reference Model, necessarily suffer in performance
because of layering, thus forcing implementors to violate
the layering principle in search of efficiency. The result
substantiates the experience of others, notably Clark
[Clark&Jacobson], that sound network programming methodology
leads to efficient implementations that are also
understandable.

Much of the advantages found in OOSI result from its use of
vertical integration of layers. In vertical integration each
layer consists of multiple protocol machine instances, each
with an independent state structure vertically related to the
state structure of the protocol machines in adjacent layers.
An object-oriented approach based on class inheritance
between well-defined types naturally represents the vertical
structure. Vertical partitioning has been shown to have a
positive influence on performance in certain contexts
[Hufnagell].

Applications in which each object is allocated its own thread
of control can benefit from the vertical integration used in
00SI since each object can have its own instance of a



protocol machine hierarchy. In addition, the protocol machine
. implementations can be greatly simplified since the vertical
partitioning stream lines the bi-directional control flow
between service layers and offers opportunities to optimize
the layer interfaces based on the code dependency
relationship between objects representing each service.
Furthermore, it obwviates the need for intra-layer
multiplexing within the protocol machines, and inter-layer
communication is reduced toO superclass/subclass method
invocations within a single composite object.

In this section we have briefly described our experilence with
using object-oriented technigues in the implementation of
layered communication protocols. The communication
infrastructure thus created was also seen as a desirable
pasis for the construction of distributed applications. The
overall conclusion to be drawn from this experience is that
language and system designers need to pursue the deeper
integration of language structures and communication
abstractions.

Section IV: Exception Handling and Theory

A general view of exception handling reveals that there are
five distinct roles: the requestor, the customer, the
faulting server, the receiver and the handler. The requestor
is the entity initiating the request which ultimately leads
to the occurrence of the fault. The customer is the entity
which is awaiting the result of the request. The occurrence
of the fault, of course, prevents this expectation from being

satisfied. The faulting server is the entity which is

attempting to perform the reguest but which 1s unable to
complete its responsibility due to the occurrence of a fault.
The receiver is the entity which immediately receives the
notification that the server has faulted. The receilver is
initially assigned the responsibility for identifying and
initiating the handler. The handler is the fifth role. The
handler is charged with responding to the fault and taking
whatever corrective action is possible or necessary.

In sequential languages a number of the five roles are
unified. Usually the requestor and the customer are the same.
The faulting server and the recelver may also be the same in
cases where a server can deal with (at least some) exceptions
which it causes. Finally, the handler may be part of the
server or the requestor/customer entity. Furthermore, the
sequential ordering among these entities allows the exception
handling to be implemented as a “gtack unwinding” process.
Each layer in the stack, corresponding to an intermediary
entity between the requestor and the server, may nominate

. A



handlers for specific exceptions. The stack is unwound until
a handler is discovered.

I

handling situation is more complicated because no simple
relations exist among the five roles. Beyond the simple fact
that the five roles may be assumed by five distinct entities
the following complications also apply:

* the requestor May no longer exist at the time of the
fault,

* the customer may not know the identity of the server,

* the customer may be known to the server, but possibly not
to the receiver or the handler,

* there is no clear model of how the receiver is to be
identified, and

* there is no clear model of how the receiver identifies
the handler.

f

on why the request was made has potentially been lost and is
unavailable in the recovery process. The second implies that
a blocked customer may remain indefinitely blocked and has no
ability to Qquery the server. The 1last three points simply
underscore the lack of a widely accepted model of how the
elements of the exception handling environment should be
related.

In this section we also consider, very briefly, recent
developments 1in algebraic theories for asnychronous
concurrency.

The development of useful theoretical models is of immense
concern. Language designers have recognized the benefits that
flow from a language design grounded in a deeper and robust
mathematical theory. The best example of this is the theory
©of the lambda calculus and the class of functional
brogramming languages. However, software engineers and those
that build tools for software engineering are coming to

simple graphical levels, Determining equivalence and
demonstrating behavior require a pPrecise semantics and a deep



Many models of concurrent programming have adopted a
synchronous model of interaction. This approach requires that
both the sender and the receiver have reached a point in
their respective behaviors where they wish to communicate.
Mature theories of this form are Hoare’s CS8P and Milner’s
CCS.

Actor-based concurrency, and reactive system modeling in
general, require, however, an ability to reason about
asynchronous forms of interaction. The sender should be able
to emit a message without concern for whether the receiver 1is
able to accept this message at the same time.

Quite recently new theories based on asynchronous cCoORcurrency
have begun to appear. We mention two of these while
acknowledging that others of which we are unaware may quite
iikely exist. In 1990 Berry and Boudol [Berry&Boudol] defined
a model of asynchronous COncurrency pased on a paradigm of
chemical interactions. Termed the Chemical Abstract Machine,
the model envisioned molecules (processes) interacting via
reaction rules (messages). The global state of the system
defines a chemical solution undergoing stirring by a magicail
mechanism. Encapsulation was introduced via a membrane. In
1991 Honda and Tokoro [Honda&Tokoro] proposed a theory based
on objects communicating via messages in an asynchronous
fashion. Their theory includes a notion of bisimulation
similar to that in CCS. A number of very small examples hint
at the utility of the theory for realistic problems. It is
our goal to explore the utility of the Honda and Tokoro
theory in more detail.

The relevance temporal logic should also be noted. The
formalism of temporal logic, allowing one to reason about the
sequences of events in an execution trace, also seems to be
clearly relevant to the study of reactive systems. This
relevance is reflected in the title of the recent boock on
this subject [Manna&Pnueli].

Section V: Conclusions

In this paper we have considered a number of issues related
to large—-scale reactive systems. This term is taken tO
describe a class of problems in which the dominant features
are those of objects, communication and concurrency. The
reported experience with ACT++ and OQSI leads to the

conclusion that:

« the interference between inheritance and concurrency can
be moderated so as to achieve a useful form of interface

e et bt g [t



control which integrates well with an inheritance
mechanism, and

+« an object-oriented structuring of layered communication
protocols is peneficial to both the form and performance
of the protocol software and is also a proper foundation
for the construction of distributed applications.

A number of major issue remain unsettled. TwO of these issues
are the definition of a model for exception handling and the
development of a pertinent theory for asynchronous
concurrency. Promising work in the later area was noted.

References

[Agha] Gul Agha. Actors: A Model of Concurrent Computation in
Distributed Systems, M.I.T. Press, 1986.

[America] Pilerre america. "Inheritance and subtyping in a
parallel object-oriented language, " ECOOP'87 Proceedings,pPp.
234-242, Springer-Verlag, 1987.

[Berry&Boudol] Gerard Berry and Gerard Boudol, “The chemical
abstract machine,” conference Record of the Seventeeth Annual
ACM Symposium on Principles of Programming Languages, San
Francisco, CA January 17-19, 1990, pp. 81-94.

[Briot&Yonezawa] Jean-Pierre Briot and Akinori Yonezawa.,
"Inheritance and synchronization in object—oriented
concurrent programming,"in ABCL: An Object—Oriented
Concurrent System, (ed. A. Yonezawa), MIT Press, 1980.

[Campbell] Roy H. Campbell, Gary M. Johnston and Vincent F.
Russo. "Choices (Class Hierarchical Open Interface for Custom
Embedded Systems}),™ Operating Systems Review, No. 21, July
1987, pp. 9-17. -

iClark&Jaccbson] pavid D. Clark, Van Jacobson, John Romkey,
and Howard Salwen. "An analysis of TCP processing overhead, "
IFEE Communications Magazine, June 1989, pp. 23-29.

[Clark&Tennenhouse] David D. Clark and pavid L. Tennenhouse.
narchitectural considerations for a new generation of
protocols,™ ACM SIGCOMM' 90, pP. 200-208.

[Harel et.al.] wWgTATEMATE: A working environment of the
development of complex reactive systems,” IEEE Transactions
on Software Engineering, Vol. 16, No. 4, Aapril 1990, ppP. 403-
414.



[Honda&Tokoro] Kohei Honda and Mario Tokoro, ™“An obiject
calculus for asynchronous communication,” Proceedings, ECOOP
‘91, pp. 133-147.

[Hufnagel&Brownel Stephen P. Hufnagel and James C. Browne.
wperformance properties of vertically partitioned object-
oriented systems,® IEEE Transactions on Software Engineering,
15 (8) ,August 1989, pp. 935-946.

[Kafura&Lavender] "The synergy between object-oriented
programming and open system interconnection, ™ Workshop on
Harnessing in the Object-Oriented Revolution, Denver
Colorodo, February, 1992.

[Kafura&Lee89] Dennis G. Kafura and Keung Hae Lee.
"Inheritance in actor-based concurrent object-oriented
languages, " ECOQOP '8¢ Conference Proceedings, Cambridge
University Press, 1989, pp. 131--145.

[Kafura&Lee90] Dennis Kafura and Keung Hae Lee. WACT++:
puilding a concurrent C+* with actors,™ Journal of Object-
oriented Programing, Vol. 3, No. 1, pp. 25-37, May/June 19920.

[Koivisto 19901 Juha Koivisto and Juhani Malka. TOTSO — an
object—oriented approach to distributed computation,™ Usenix
c++ Conference Proceedings, April 1991, pp. 163-177.

[Lavender&Kafural vgpecifying and inheriting concurrent
behavior in an actor-based object-oriented language, " TR 90-
56, Department of Computer Science, Virginia Tech,
Blacksburg, VA 24061-0106.

[Lavender,Kafura&Tomlinson] “Implementing Communication
Protocls Using Object-Oriented Technigues, " submitted toO
QQPSLA '92.

[Manna&Pnueli] The Temporal Logic of Reactive and Concurrent
Systens, Springer-Verlag, 1992.

[Matsuoka,Wakita&Yonezawa] satoshi Matsuoka, Ken Wakita, and
Akinori Yonezawa. "Analysis of inheritance anomaly in
concurrent object-oriented languages, " extended abstract
presented at the ECOOP/OCPSLA'90 Workshop on Object-based
Concurrency, October 1990, to appear in SIGPLAN Notices.

[Milner] Robin Milner, communication and Concurrency,
Prentice-Hall, 1989.

[Nierstrasz] Oscar Nierstrasz. "Active objects in hybrid, "
OOPSLA'87 Proceedings, PP. 243-253, 1987.



[Papathomas] M. Papathomas. nconcurrency jssues in object—
oriented languages, " in Object oriented pevelopment, PP- 207~
245, {ed. D. Tsichritzis), centre Universitaire
D' Informatique, Universite De Geneva, 1989.

[Rose86] Marshall T. Rose- npsT transport gervices on top of
the TCP," Computer Networks and TSDN Systems, 12(3), 1986.

[Rose89] Marshall T. Rose. The Open Book: A practical
Perspective ©OD QS8I, Prentice—ﬁall, 1989.

[Tomlinson&singh] chris Tomlinson and Vineet singh.

vInheritance and synohronlzation with enabled—sets,“ ACM
QOPSLA'89 conference proceedings, October 1989, PP- 103-112.

[Tomlinson,Scheevel&singh] Chris Tomlinson, Mark scheevel,
and Vineet singh. Report on Rosette 1.1, MCC Technical Report
ACT—OODS—275~91, July 1991.

[Wegner%0al Peter Wegner. nconcepts and paradligms of object-
oriented programming," OOPS Messenger: vol. 1, No. 1, pp. 7
g7, August 1990.

[Wegner90bl Peter Wegner. Discussion panel on Issues in
Object—based Concurrencyy held in conjunction with
ECOOP/OOPSLA‘90, October, 1990.

[Zwelg] Jonathan M. zweig and Ralph E. Johnson. wghe condult:

a communication abstraction in C++," 1990 Usenix CH+
conference Proceedings, April 1990, PP- 191-203.

e T

I





