A Workload Emulator Architecture
for Distributed Systems

Marc Abrams, John Arnesen,
Alan Batongbacal, Chockanath
Chandraseka, and Jay Wang

TR 91-35

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 31, 1991

0S/2 is a registered trademark of the IBM Corporation.

A Workload Emulator Architecture for
Distributed Systems®

Marc Abrams’', John Arnesen?, Alan Batongbacall,
Chockanath Chandrasekar', and Jay Wang'

IDepartment of Computer Science,

Virginia Tech, Blacksburg, VA 24061-0160
21SSC, Capacity Planning IBM Corporation,
Bethesda, MD 20817

TR 91-35
January 3, 1992

Abstract

This report presents the initial design of a general purpose workload emulator
that emulates workstations, terminals, and communication equipment attached
to host computers and servers in a distributed computing environment. The
workload emulator can be programmed to model the time dependent behavior of
a workload for performance evaluation of distributed systerms.

1 Introduction

Emulation is often used to evaluate the performance of a complex distributed
computing environment which consists of workstations, terminals, and communi-
cation equipment connected to one or more host computers. Qur objective is to
design and build a tool called a Workload Emulator (WE), which is capable of em-
ulating arbitrarily large numbers of heterogeneous workstations, terminals, and

*This project is supported by an IBM Innovative Solutions grant.

comrunication equipment attached to host computers and servers. Workstations
are assumed to have a mouse and use a graphical user interface.

The initial purpose of this project is to build a tool that predicts and evalu-
ates the performance of two environments. The first is a business support system
developed by IBM, called ADMIN/EASE (release 6.0)[1]. The ADMIN/EASE
application runs on IBM PS/2 model 80’s (0S/2) and provides front-end pro-
posal and billing applications to IBM sales staff. ADMIN/EASE users can create
and modify maintenance quotes and initiate billing activities for their customers,
using a database under CICS in a host computer. The ADMIN/EASE system
provides a window-driven graphical interface. The second is to model a mixture
of interactive Unix terminal sessions and clients on Unix workstations that access
server machines. In this documentation a fargef system refers to the system to
be emulated.

There are six objectives in the design of the Workload Emulator:

1. Scalable: There must be no inherent limit on the size (e.g., the number of
workstations) of the configuration that it can emulate.

2. Modular: The Workload Emulator must be modular so that program mod-
ules emulating equiprent from any vendor using any operating system and
communication protocols can be added. The Workload Emulator will be
built using the object model and C++ to achieve modularity.

3. Adaptable: The Workload Emulator must be adaptable such that if the tar-
get system to be emulated is upgraded, the Workload Emulator still works
with the upgraded system without any or at least no major modifications.

4. Programmable: The Workload Emulator must be programmable through a.
scripting language. A script is an input to the Workload Emulator, which
defines configuration of emulated system and instances of workload, for ex-
ample, number and interconnection of workstations, number of user sessions,
and sequence of screens that each user transmits in a session.

9. Unoblrusive: The Workload Emulator must help a user to formulate a work-
load model by monitoring one or more workstations and terminals in the
system to be emulated to collect statistics on, for example, how frequently
users enter different commands or use different application screens, and how
long users think before entering. The Workload Emulator must not alter
the workload being observed.

6. Versatile: 'The Workload Emulator can be used with different user-end op-
erating systems, application programs, and communication protocols.

The rest of this documentation is organized as follows. Section 2 decides what
an ideal emulator would provide. Section 3 examines the technical problems in

2 Functions of an Ideal System

Two design alternatives for the Workload Emulator are the following:

1. Run the actual application programs from the target system on the Work-
load Emulator.

The first alternative is simple to build, but has two severe disadvantages: (1)
Executing each application program requires certain computer resources, such as

may not be able to run on the Workioad Emulator due to the differences in
machine architectures and operating systems. This is true especially when the
target system involves heterogeneous workstations,

We use alternative (2), however it does necessitate the learning facility de-
scribed below. To achieve the objectives discussed in the first section, the Work-
load Emulator has to perform the following functions:

produce such bitstreams.

However, except for a few cases (such as remote terminal emulation in which
the bitstreams are basically character streams with only X-on and X-off pro-
tocols), learning the mapping function of ap application program (e.g. an

Script .
* Werkstation

Weorkstation Emulator

Application
Program Emulator

Protocoi Protoco]

J bitstreams

Network

Host

Figure 1: System Comnfiguration

scripts. If errors are introduced by the Workload Emulator, we return to
the evaluation phase and re-calculate the mapping function through addi-
tional learning and then test the resulting function again. The procedure
proceeds until a reasonable mapping is achieved?!.

2. Monttoring a Network: To help characterize the workload of a target system,
the Workload Emulator should be able to monitor the network and collect
statistics {e.g., frequency of commands) of user activities.

3. Generating Workloads: The Workload Emulator produces a set of bit-
streams based on a script that specifies the workloads of the system, pro-
vided by the user of the Workload Emulator and is based on the statistics
from step 2. The Workload Emulator then sends the corresponding bit-
streams to the host as if they were the tasks generated by the workstations
and terminals of the real system. This function is ustrated in Figure 1.

!For a complex system, an ezact mapping function may not be obtainable. However, system
performance evaluation is indicated by the average of the statistics. Therefore an approximate
mapping, which occasionally introduces errors, may suffice.

3 Approaches and Problems

As discussed in the last section, determining how user keystrokes and mouse
selections that drive an application are mapped into a bitstream is usually not
straightforward. Teaning a bitstream mapping is thus challenging and requires
the theory of machine learning in the area of Artificial Intelligence. Many machine
learning methodologies are discussed in literatures. Some methodologies [2] are
listed below.

Learning

1. Learning by Ezample: In this method, the domain application is run re-
peatedly with different combinations on its input values. The solution to
the problem is established through some analysis on the serial inputs and
outputs. For example, the ADMIN/EASE application or commands in a
Unix terminal session is executed for a number of times with different field
values and the resulting bitstreams are examined by the Workload Emulator
to determine the mapping function.

2. Learning by Rote: This is a simple kind of machine learning. Here the
machine records all data and situations it comes across and applies 1t when
the same or similar situation arises. The system tries to solve the problem
and when it cannot go farther, it applies its static evaluation function to
the problem and continues from there. In the ADMIN /EASE case, we can
execute for a number of times and store all the situations and results. Later
the same results can be emulated in similar situations. In contrast an X-
window session may permit too rich a variety of behaviors to permit rote
learning.

3. Concept Based Learning: Begin with a structural description of one known
instance of the concept. Call that description the concept definition. Ex-
amine descriptions of other known instances of the concept. Generalize the
definition to include them. Examine descriptions of near-misses of the con-
cept. Restrict the definition to exclude these. Thus we can approximately
form a structure description of the mapping and revise it as we go through
the examples.

4. Learning by Analogy: Analogy is a powerful inference tool. It allows similar-
ities between objects to be stated succinctly. It is finding correspondences
between aspects of two situations. Assume that knowledge about objects
is represented in a collection of frames. Then learning by analogy can be
described as the transfer of values from the slots of one frame (the source)

f(Ho,X1,...4n)

System

Modeled [Yo,¥1,...¥n

Figure 2: Bitstream Conversion

to the slots of another (the target). This transfer is done in two steps: (1)
Use the source frame to generate proposed slots whose values can then be
transferred to the target frame. (2) Use the existing information in the tar-
get frame to filter the analogies proposed in the previous step. If we know
the mapping of one frame in our problem, we can use this technique and
compare with other frames, in the subsequent executions.

Problems

Several questions may arise from the learning methodologies discussed above:

1. How can the Workload Emulator observe user key strokes from a particular
workstation?

2. Can the Workload Emulator passively observe another machine and learn
everything?

3. Is it always possible to estimate the mapping function, say f(x), with a
finite number of observations of input and output (Figure 2)}7 For example,
obtaining the mapping function appears impossible if f(x) encrypts x, or
finds the root of a function.

4. Observing the bitstreams, how does the Workload Emulator determine the
boundaries between data items sent by the application?

0. What restrictions will we need to permit learning? For example, if the
mapping function permutes its arguments in using a deterministic rule, the
Workload Emulator could learn the function.?

6. How much information do we need from the software designer of the appli-
cation program? For example, does the program encrypt or optimize the
data? If yes, are the algorithms available? What separates the fields in a
bitstream?

2A deterministic mapping appears to be the case for ADMIN /EASE and Unix terminal
session.

A Observe B
-~ 0.5. Cails
Wﬂpplicntiun tolearn Fppiicatinn ¢
Obserpve t
Network Packets Protecol Protocol Application
to Learn

N

§m7

Protocol

Network

Observe Fiie
Contents to
Learn

Host

Figure 3: Three Approaches of Collecting Bitstreams

In collecting the bitstreams, basically there are three approaches (Figure 3).
That is, we can tap the wire at the physical network data links (method A),
listen to the service calls made by the application program to the operating
system or protocol (method B) by instrumenting the operating system, or collect
the bitstreams from any intermediate data storage (e.g., a file) created by the
application program (method C). Among these, method C is the easiest because it
need not deal with operating system calls or network protocols. However, method
C only applicable to the cases that an intermediate data storage exists. For
others, namely method A and B, each of themn has its advantages and drawbacks.
Basically, one’s advantage is the disadvantage of the other. The following are
some pro’s and con’s of method B.

1. We need to deal with only application-generated bitstreams and need not
worry about the data appended to the bitstreams by the communication
protocol. This simplifies the learning and the generation of bitstreams,
because the Workload Emulator need not learn how the protoco! functions,

2. Actual calls to the operating system are visible, which is what should be
reproduced in the emulator.

3. Some existing tools (e.g., truss which lists the system calls used and the
actual parameters for a run of a program, available under Amiga UNIX
System V Release 4) provide functions to monitor system calls.

If a tool like fruss is not available then there are some problems in this ap-
proach:

1. We need a special C library that can monitor on every platform.

2. We need to re-link the application program to a special C library unless
a dynamic library (which is present on 08/2, and SVR4) is offered in the
operating systerm.

3. For the above reasons, the source code to C library may be required.

In the example of ADMIN/EASE, however, bitstreams are stored in a system
created file called request.blk. For every request sent to the host, the corresponding
bitstream is stored in this file, and then a lower level network file service is invoked
to transfer this file to a host. In this case, the bitstreams can be collected directly
from request.blk. ‘

4 Initial Implementation

The workload emulator consists of three major modules. They are, a learning
module, an emulation module, and a monitoring module. (Given a system, the
learning module determines the bitstream mapping function, and the emulation
module converts a user workload script into bitstreams based on this mapping
function. The monitoring module analyzes the traffic on the network to char-
acterize the workload of the target system. We divide the development of this
workload emmlator into two phases. In the first phase, we develop the emulation
module. Building the learning module and the monitoring module involves issues
in different domains, namely artificial intelligence and low level communication
protocols; thus the development of the learning module and the monitoring mod-
ule is deferred to the second phase.

An emulating module of the Workload Emulator is now under-construction
on IBM RS/6000 using C++. The emulating module includes the following,

1. Biistream Specification: A bitstream specification is required for the Work-
load Emulator to generate outgoing bitstreams and decode the incoming
bitstreams. In our initial implementation, bitstream specification is con-
trolled by hand rather than by learning in the first phase. A bitstream
specification langunage is defined to provide a way to specifying bitsiream
formats for different applications.

2. Scripting Language: A C++ based scripting lan guage is defined. This choice
makes the integration of the components of the emulator easier since the
emulator itself is built in C44.

3. Statistics Representation: The Workload Emulator maintains a time stamped
log of when bitstreams are sent to or received from a host, along with in-
formation describing the bitstreams. For the ADMIN/EASE sessions and
Unix terminal sessions, the log keeps the round trip delay of each CICS
transaction and the response time of each Unix command respectively.

4. Target Applications: In our initial mmplementation, the target systems of the
Workload Emulator include the followiing: (1) SNA-based ADMIN/EASE
systems with an IBM 370 as a server and with file transfer as application
protocol (2) TCP/IP based interactive Unix terminal sessions with Unix file
server and NI'S and with socket as application protocol.

5. Graphical User Interface: The Workload Emulator provides a graphical user
interface using X windows. A prototype of the graphical user interface of
the Workload Emulator is implemented in Nextstep, an interface building
environment for the NEXT.

In our initial implementation, the workload emulation is handled by a single
RS/6000. In order to meet the objective of scalability, in the latter phase multiple
loosely synchronized RS/6000s shall be used in parallel to divide the workload.

5 Concluding Remarks

The initial purpose of our Workload Emulator is to emulate the IBM ADMIN /EASE
system. To make this project more valuable to research work in system perfor-
mance evaluation, our goal is to build a tool which is adaptable to any system.
However, the implementation becomes more complex as the requirement of the
adaptability and the complexity of the target system increases (Figure 4a).

To make an emulator more adaptive, there should be less correlation between
the emulator and the target system. Hence, in this case, learning plays a more
important role and more understanding about the emulated system is required

(Figure 4b, 4c).

References

[1] ADMIN/EASE Release 6.0 Design Document, IBM, 1989.
(2] E. Rich. Artificial Intelligence. Mcgraw-Hill, 1983.

[3] C. Sauer, M. Chandy. Computer System Performance Modeling. Prentice
Hall. 1981,

Simple

Comples

e

Traditional RTE
- Mapping keystreams

IBM RDMIN/ERSE
- Mapping is One to

-]

fAny Sysiem
- Encryption may

to bitstreams is one, be used.
identity. - Protocol is - Protocol is not
- Protocol is only kKnown(SNA). fixed,
Xon-Xoff, - All communication
is via file transfer.
Figure 4a
Goal
] i
i i - I
1BM RDMIN/EASE
Run 100% of Run 0% of application, Run 0% of
application/protocol but 100% of protocol on Application/Protocol
on WE WE on WE
Figqure 4b
0% Application/Protocol
Source

Understanding

100% Application/Protocol

Figure 4: A Scale of Complexity

Learning Effort —am

Figure 4c

10

