The Synergy Between
Object-Oriented Programming and
Open Systems Interconnection

R. Greg Lavender
Dennis Kafura

TR 91-31

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

November 22, 1991

The Synergy Between Object-Oriented
Programming and Open Systems Interconnection

R. GREG LAVENDER DENNIS G. KAFURA
MCC Dept. of Computer Science
3500 W. Balcones Center Dr. 562 McBryde Hall, Virginia Tech
Austin, TX 78759-6509 Blacksbug, VA 24061-0106
Tel: 512.338.3252 Tel: 703.231.5568
Fax: 512.338.3600 Fax: 703.231.6075
lavender@mee.com kafura@es.vt.edu
Abstract

The software engineering practice of building distributed object-oriented applications can be
significantly improved by exploiting an observed synergy between object-oriented program-
ming (OOP) and Open Systems Interconneetion (OSI). The synergy arises because there are
corresponding and complementary elements in each of QOP and OSI. These elements are
detailed and the synergy resulting from their integration is explained. The architecture of a
prototype implementation, the goal of Project Synergy, is described. The environment created
by Project Synergy supports application development using abstract classes defined in an
implementation-independent manner, implemented in possibly different programming lan-
guages, and executed in a distributed environment on possibly heterogeneous processor archi-

tectures,

Area of Research (both authors): object-oriented programming, distributed computing,

communication protocols, concurrency, persistence, actor model.

1. Introduction

A powerful synergy exists between the object-oriented programming model and the layered
communications model for Open Systems Interconnection. The purpose of this paper is to
explain how this synergy can be used to simultaneously:

* empower the object-oriented paradigm by infusing it with the distributed programming
capabilities inherent in open systems communication, and

* harness the power of an open system by organizing its services within an object-oriented
language framework.

In the context of object-oriented software engineering practice, OSI can be considered both an
existing technology and a new technology. Work on OSI standardization and implementation
is over a decade old; considerable experimentation and implementation has been done at the

lower layers (transport and below), In this sense, OSI is an existing technology. However, only

1

recently have full protocel stack implementations been readily available. Moreover, few appli-
cations offering advanced services (other than mail, directory, remote terminal, and file trans-
fer services) have been defined and implemented. In this sense, OSI is a new technology —
one ready to be fully exploited. In the words of Marshall Rose {Rose 901, “Work began on OSI
in 1978....the market is still waiting for OSI's promise.” The position taken in this paper is
that the promise of OSI can best, and perhaps only, be realized by merging object-oriented
programming concepts with the upper layers defined by OSI. The upper layer structure
(abstract syntax notation, application service elements, presentation and session services)
offers a rich set of communication services. The potential result is an environment within

which sound engineering of distributed object-oriented applications can be undertaken.

The integration of object-oriented structures and OSI services also performs an important,
two-way technology transfer function. Technology transfer usually means the transfer, within
a single domain, of knowledge, tools, or techniques from laboratory research to practical appli-
cation, However, in this paper, the term technology transfer is also used to mean the transfer
of knowledge, tools, and techniques between different domain; in this ease, between the pro-
gramming languages domain and the communications domain. The term technology transfer
is appropriate in either case because the desired goal is the same — improving software engi-
neering practice. The technology transfer process associated with the integration of QOP and
O8I is two-way because the software engineering practice of both domains are improved. This

symmetric improvement is another reflection of the synergy between OOP and OSI.

2. Background

The synergy between object-oriented programming and open systems interconnection arises
from complementary elements in each. In this section, the corresponding elements are identi-
fied and their complementary nature is explained. Figure 1 depicts the corresponding ele-
ments. The elements from object-oriented programming are persistence, communication, and
concurrency; while the elements from OSI are layered services, structured communication, and
remote operations. The integration of these elements results in a computational {(application
development) paradigm based on persistent, communicating, active objects. The diagram in
Figure 1 suggests that when corresponding two-dimensional entities are properly related the
resulting three-dimensional entity possesses qualities inherently different, in a positive
sense, than the original entities. The remainder of this paper provides justification that such
a dimensional change does occur when the elements depicted in Figure 1 are combined appro-

priately.

Persistence sk Concurren Layered Structured
Ocl}'}:?;::d v Services 53?5,1::;% Communication
Programming Programming

Communication Remote Operations

Object-
Oriented
Open Systems
Computing

Persistent Communicating Active Objects
Figure 1. Elements of the Synergy

The three elements of object-oriented programming contributing to the synergy are not acci-
dental, they arise naturally from the requirements of contemporary and envisioned software
systems. Wegner [Wegner 90] uses the term “mega-programming” to refer to systems which
exhibit distribution, concurrency, persistence, and heterogeneity. The National Collaboratory
is cited as an example of a system imposing these requirements. Similar requirements are
given by Zdonik and Maier [Zdonik 90] for systems developed by data intensive programming
in-the-large. Such systems, exemplified by CAD tools, are large and complex in both function
and data. Concurrent access by independent, distributed users to long-lived entities is typical
for such applications. Finally, Hewitt describes the needs of an Open Information System
(OIS) — a system which is open-ended, incremental and evolutionary [Hewitt 84]. An OIS is
exemplified by an enterprise-wide information system of the future [Hewitt 90]. A prototype
OIS [deJong 91] relies on concurrent, distributed objects. The three elements from OSI are
necessary for the exchange of structured data between distributed computing agents. Layered
services are necessary in order to maintain a separation of concerns, Structured communica-
tion channels are necessary for interactions in which the abstraction of a simple byte stream
channel is insufficient. Remote operations enforce a common semantics on the interactions

between agents.

The combination of the elements from the object-oriented programming domain and those

from the open systems domain offer the potential for building software systems with require-

ments congruent to those just enumerated. The characteristics of these elements are elabo-

rated on in the following sections,

2.1 Elements from Object-Oriented Programming

From a programming language perspective, the object-oriented paradigm may be viewed as a

union of the following paradigms [Wegner 901:

* a paradigm of program structure,
* a paradigm of state structure, and

¢ a paradigm of computation.

Only the later two paradigms are relevant to this paper. Objects, the data they encapsulate,
the mechanisms for controlling and synchronizing access to the data, and the life-time of an
object are all elements of an object-oriented paradigm of state structure. The ability of objects
to execute independently and to interact via communications are the essential elements of an
object-oriented paradigm of computation.The essential elements derived from this composite

view of the object-oriented paradigm are: persistence, communication, and concurrency.

Persistence

An object is persistent if it outlives its execution environment. The only part of an object that
must minimally persist is the encapsulated state, represented by the set of typed instance
variables. However, since objects interact by communicating it is also advantageous to make
the state of the object interface persistent. For example, if objects communicate via message
passing, then the interface message queue should also be persistent. If an object communi-
cates with a remote object using a communication protocol, then the state of the protocol
machine should be part of the persistent state. Furthermore, if an object is a concurrent object
requiring synchronization control, then the state of the synchronization mechanism should be
considered part of the persistent state. Thus, an object which is potentially persistent, which
communicates, and which is concurrent, can be viewed as having at least three state compo-

nents: an encapsulated state, a communication state, and a synchronization state.

From the perspective of a method, only the encapsulated state is part of the “real” object since
the encapsulated state and a run-time stack frame provide the total environment required by
a method. Both the communication state and the synchronization state are “meta” states in
the sense that they exist as part of the meta environment of the object. Thus, any approach to
persistence in which objects possess a communication state and a synchronization state must

consider the meta environment of the object.

Communiecation

Computation in an object-oriented system is realized by inter-communication amongst
objects. The interface of each object defines a protocol for client interaction with the object. By
separating the communication interface of an object from the method implementations, a uni-
form view of object interaction is offered regardless of whether the object is local or remote to
a client attempting to communicate. For example, remote objects may be represented locally
by an interface which specifies their interaction protocol. To a local object, interaction with a
remote object requires no additional effort and therefore leads to conceptual economy when

programming a system of interacting objects, some of which may be remote.

Concurrency

The central notion in concurrent object models is the interaction of independent objects
[Hoare 88], [Milner 89], [Agha 86]. Synchronization is necessary when concurrent access to a
shared state must be serialized in order to ensure a consistent state. New language mecha-
nisms have been proposed for synchronizing concurrent interaction of objects. The reason new
synchronization mechanisms are required is that the inheritance mechanism in most object-
oriented languages interferes with the synchronization mechanism [America 87], [Briot 90],
[Kafura 89], [Matsuoka 90], [Tomlinson 89]. Recent promising steps towards understanding
the inheritance of concurrent object behaﬁor have been suggested using the formalisms of
CCS as a starting point [Lavender 90), [Nierstrasz 901. Since the object interface defines the
observable behavior of an object, synchronization mechanisms for concurrent objects focus on
controlling the visibility of methods in the interface. The synchronization mechanism “hides”

a method if its execution will result in an inconsistent state.

2.1 Elements from Open Systems Interconnection

In the current section the following essential elements of open systems programming are pre-

sented: layered services, structured communication, and remote operations.

Layered Services

A common technique used in modeling a complex system is to hierarchically partition the ser-
vices of the system into successively dependent layers. A layered partitioning of services pro-
vides a functional separation of concerns by defining a service at a layer N in terms of the
services available at layer N-1. The seven-layer ISO Reference Model [ISO 7498] is commonly
partitioned into upper and lower layers. The upper layers consist of all services above the
transport service; the lower layers include transport through physical. From a conceptual

point of view, the transport layer offers a logical partitioning point because the upper layers,

5

to a large degree, can be insulated from the particular type of transport service offered. The
purpose of the transport service is to provide either a reliable unstructured byte-stream ser-
vice or an unreliable datagram service. A specific transport protocol in conjunction with an

appropriate network protocol is able to offer one of these services.

Remote Operations

An open systems application is a computational process in which a relatively significant por-
tion of the computation is concerned with establishing and managing associations with other
application processes residing on different nodes in a network. Internally, an application pro-
cess is a collection of application entities, each representing some communication aspect of the
application process. Remote communication is realized for each application entity through the
use of one or more application service elements (ASEs). ASEs provide common abstractions
needed by most application entities and a higher-level interface to the services offered by the
presentation layer. Two common ASEs are the Association Control Service Element (ACSE)
and the Remote Operations Service Element (ROSE) [ISO 9072-1). The ACSE provides a ser-
vice for binding and unbinding an association between two application entities. The ROSE
provides the general request/reply invocation services required to implement various remote
interaction semantics, including traditional RPC semantics. Structuring the ASEs as objects
creates an application environment with simpler, more abstract services and one which is
safer as the control of arguments and the proper use of defaults can be insured by the ASE
designer.

Structured Communications

Next to basic connectivity issues, the most important aspect of distributed programming is
the ability to impose the structure of application data onto the otherwise unstructured bit
stream offered by the underlying communication service. Peer application entities request
operations and transmit application data values as arguments and results. The interacting
entities may reside on machines whose hardware architectures differ in their representation
of common values, such as integers. Such heterogeneity necessitates techniques enabling the

consistent invocation of remote operations and the correct interpretation of data values.

A common approach to structured communication is to provide a remote procedure call (RPC)
protocol [Birrell 84] and a machine independent data representation language. Various RPC
protocols and data representation languages exists; for example, Sun Microsystems provides a
popular datagram based RPC [Sun 871 used in conjunction with the External Data Represen-
tation (XDR) [Sun 88] language for specifying C language data types.

Abstract Syntax Notation One (ASN.1) [ISO 8824] is defined as an ISO standard data repre-
sentation language which is more powerful than XDR. ASN.1 is used in conjunction with the
Remote Operations Service Element to provide a remote operations service for OSI-based

applications.

There are two points of synergy between the object-oriented paradigm and structured commu-
nications. First, ASN.1 and the ROSE offer sufficient mechanisms for supporting remote com-
munication among cooperating objects. In particular, ASN.1 has the representational power
to express the strongly-typed method signatures found in a typical class definition. Second,
the encapsulation properties of objects allow the translation mechanics implied by XDR or
ASN.1 to be concealed from the user of the object.

3. Capturing and Exploiting the Synergy

Recently, we initiated the Synergy Project to develop a prototype system synthesizing object-
oriented programming and the OSI upper layer protocols. As justification of the synergy
between OOP and OSI, the major improvements brought to OSI and object-oriented program-
ming by their integration, and their relation to RPC, are discussed first in this section. Subse-
quently, the communication infrastructure and the application infrastructure of Project

Synergy are detailed.

3.1 What Does OSI Gain?

First, the structuring facilities of object-oriented programming can be used to hide the com-
plexity of the OSI protocols from the application developer. By applying an object-oriented
approach to protocol implementation, the richness of the OSI communication services become
available through a clean and simple interface. Behind this interface can be hidden all the for-
bidding detail which currently complicates application development. Second, object-oriented
programming can be used to control the complexity of the protocol implementation, We have
observed, for instance, that the OSI protocol stack neatly divides into two primary inheritance
hierarchies (described below). Greater structuring permits easier experimentation and cre-
ates opportunities for performance improvement (e.g., by multi-threading). Third, several
experimental systems (e.g., [Dixon 89], {Leddy 89], [Campbell 87]) have demonstrated that
inheritance is a useful mechanism for disseminating and specializing the layered services (in

our case, OSI communication services) provided by an underlying system.

3.2 What Does OOP Gain?

First, objects become naturally distributed. The object-oriented paradigm assumes the dimen-
sions of a distributed development paradigm. Second, OSI-based communication provides
interaction among objects executing on heterogeneous processor architectures, employing fun-
damentally different data representations and implemented in different languages. Third, the
tight coupling between OSI and object-oriented programming expands the notion of persis-
tence to include persistent communication state as well as the state of an object's encapsu-
lated application data. The key point is that substantial improvements cannot be achieved in
isolation; only by integrating the ohject-oriented paradigm with OSI can they be effectively

realized.

3.3 Relation to RPC
Remote procedure call mechanisms have two principal aims:

* preserving familiar programming structure within a distributed computing environment;
and,

* providing transparent interoperability among heterogeneous architectures.

The advantage of OOP/OSI over RPC appears in three ways. First, both OOP/OSI and RPC
preserve familiar programming structures: objects and procedures, respectively. However, an
object is a more robust programming structure — that is, after all, the major contribution of
object-oriented programming. Second, asynchronous communication semantics, often
expressed in a message-passing (datagram) metaphor, are a more natural basis for remote
operations than the synchronous procedure call semantics offered by RPC. RPC suggests only
one (albeit, a useful one) model of interaction — a client/server model. Object-based communi-
cation, while permitting client/server Interaction, also permits asynchronous peer-to-peer
communication. Third, both RPC and OOP/OSI are supported by mechanisms for achieving
transparent interoperability. In fact, there is little fundamental difference between the tech-

niques each uses to achieve this goal.

The principal difference is that OSI is an international standard unifying all users; contend-
ing, incompatible RPC protocols create only isolated islands of users. Recent efforts to bridge
different RPC protocols (heterogeneous RPC [Bershad 87]) is, we believe, fundamentally
wrong. The international networking community has converged on the OSI standards. While
debate may continue to rage over specific technical merits of OSI, there is no productive, long-

term alternative to its use.

From an object-oriented perspective, application entities are objects which communicate with
remote objects using a remote operations mechanism. From this perspective, the boundary

surrounding an application entity object can be exploited to encapsulate:

* complexity: the existing interfaces to application services entail lengthy argument lists
containing system structures which the user must retain and supply with later uses of the
service. These system structures can be better represented as objects,

* distribution: an application process may be composed of both locally communicating objects
and remotely communicating objects. The application developer need make no distinction
between remote and local objects.

* protocol: each pair of peer application entities uses a separate, but not necessarily unique,
protocol. The protocol used in interacting with a remote object may be completely hidden
from the application developer.

3.4 Communication Infrastructure

In order for an application to exploit the combination of components depicted previously in
Figure 1, a communications infrastructure must exist. The communications infrastructure
used in Project Synergy is based on an object-oriented re-engineering of the ISO Development
Environment (ISODE) [Rose91], a widely used C language implementation of the OSI upper
layers. The C++ programming language is used for obvious reasons. The primary advantage
of applying an object-oriented rationalization to the ISODE is that classes and class inherit-

ance (both single and multiple) facilitate the following:

* reduced complexity of the service access point interfaces and internal protocol machine
structure at each layer,

* encapsulation and physical concatenation of the state of upper layer protocol machines,
* higher performance through inter-layer function inlining, and

* enhanced support for concurrent operations and asynchronous communication.

At this stage in Project Synergy, the claim of a reduction in complexity is based on qualitative
evidence obtained by comparison of the amount of information that the programmer must
provide and maintain when requesting service from a service access point. Intuitively, an
object-oriented rationalization offers g simpler paradigm of service interaction for the applica-

tion developer.

An N-service access point, or N-sap, provides the access point to a set of functions representing
the service at layer N. An N-protocol machine, or N-pm, provides the mapping between N-
saps. Figure 2 depicts the set of N-saps and N-pms that arise when two peer application enti-

ties communicate. The similarity between the properties of N-saps/N-pms and the properties

of an object are striking. Furthermore, the hierarchical structure of the N-saps and N-pms
depicted in Figure 2 strongly suggests a compositional approach to structuring the layers of
the ISO Reference Model based on inheritance of function. A typical compositional approach is
to view the protocol stack as a monolithic, horizontally composed structure in which N-pms
contain the machinery required to multiplex associations among N-saps. An alternative is to
view the protocol stack as a vertically composed structure of independent instances of related
sets of N-saps and N-pms. An obvious coneclusion is that each N-sap and N-pm can be repre-
sented by a pair of classes implementing the N-service. Furthermore, class inheritance can be
used to compose each N-layer in a manner enforcing the strict encapsulation required by each

service layer.

Application
— @
AP Presentation PSAP
SSAP .
Session

TSAP
E E ;% Transport

T NSAP Network
l Data Link

Physical

Figure 2. Service Access Point and Protocol Machine Structure

Figure 3 illustrates the inheritance hierarchy derived from a vertical partitioning of the upper
layer N-saps and N-pms depicted in Figure 2. The inheritance hierarchy is an inversion of the
upper layers. The inversion occurs because the inheritance relation is a reuse relation rather
than a specialization relation. The concept of a virtual N-sap class is introduced as a light-
weight interface between protocol machines in the hierarchy. The idea is that a subclass of a
virtual N-sap, such as a protocol machine, is a trusted service user and therefore need not be
subject to the usual access point checking mechanisms. The top-most class in the hierarchy
represents a virtual Tsap (transport service access point) which is the logical partitioning
point of the upper and lower layers. The bottom classes represent the service access points of

presentation service and are meant to be extended further by protoco! machine and service

16

access point classes representing application service elements, such as the ACSE and the
ROSE.

LTsap—l LSPM]

|__Ssap | [Teem

Virtuasap

Figure 3. Upper Layer Inheritance Hierarchy

The advantage of a class inheritance structure of the upper layer protocols is that the entire
state of an association, represented by a hierarchy of N-saps and N-pms, can be encapsulated
and collapsed into a single composite run-time object. Encapsulation implies locality of state.
Locality of state in conjunction with a synchronization protocol for establishing a communica-
tion synchronization point facilitates the controlled interruption of communication. Con-
trolled interruption of communication enables techniques for making remote communication

persist beyond the execution life-time of application entities.

The class inheritance mechanism of C++ provides access control which ensures that the
encapsulation of the protocol layers is maintained. Up-calls and down-calls through the proto-
col layers are accomplished by super/sub-class method invocations within the composite object
produced by the compiler. Heavy use of inline functions makes many of these “inter-layer”
method invocations less expensive than standard function calls, resulting in better perfor-
mance without compromising conceptual structure. In addition, the vertieal partitioning of
the protocol layers in this manner facilitates concurrent method invocation among separate
instances of the protocol stack since the state of the protocol machines of an instantiated pro-
tocol stack is protected. Further implementation details of implementing the upper layer pro-

tocols using object-oriented techniques is the subject of a forthcoming paper [Lavender 91].

3.5 Application Infrastructure

The communication infrastructure just described has been the primary foeus of Project Syn-
ergy since its inception. In this section, the preliminary concept for the applications infra-

structure is described.

The developer of a distributed application, the user, will have available a universe of existing
classes (types) which have been previously implemented and made available for reuse by pro-
viders. These classes will be defined in a programming language-independent fashion. The
class definition notation we use is Abstract Syntax Notation One (ASN.1), although any other
similar type definition language with equivalent expressive power could, in principle, be used.
We chose ASN.1 primarily because it is part of the OSI standards and there exist freely avail-
able tools for processing ASN.1 specifications {Rose 91].

Retrieving classes for reuse from the universe of predefined classes is an interesting question,
but one which is beyond the current scope of the Synergy Project. One could foresee, however,
employing the Synergy environment to build a distributed system aiding in the identification
and retrieval of needed classes. The retrieval system itself illustrates the kind of application
we imagine Synergy would support — systems requiring access to persistent objects (the long-
lasting ASN.1 descriptions of available classes) in a distributed and heterogeneous environ-
ment (classes may be offered by other systems/organizations without prior agreement) and
which may be implemented in various languages (the classes offered by a system/organization
will be implemented in the developing organization's language of choice which may differ

from the user's language of choice).

The provider of a class fully implements the class in the provider's language of choice. A con-
verter examines this implementation and produces the class specification expressed in ASN.1.
This ASN.1 specification is made available (ideally through a distributed data-base) to poten-
tial users. The ASN.1 specification is input to a responder generator. This generator produces
“boilerplate” methods needed to interface with the OSI-based run-time environment on the
provider's side, The responder methods and the methods developed by the provider are bound
together by the compiler/linker to produce an entry in a library. Once installed in the library

the class is available for use. This is all that the supplier need be aware of.

A user examines the available class specifications and selects those which are appropriate for
use. While the user may examine the specification in the ASN.1 syntax, in Figure 4 we show
that a converter is used to generate a class definition in the user's language of choice. Selected
class definitions are added to the application code under development and are also input to an

initiator generator. This generator produces a boilerplate class whose methods interface to the

12

ISO-based run-time environment on the user's side. The full application and the output from

the initiator generator are bound together by the compiler/linker..

ASN1
user et} database

I t
application B @"— converter impct;:lszn ed

provider

i Y

gencrator nerator
{initiator) responder)
I compiler/linker I | compiler/linker J
Run-Time Run-Time

y Environment Environment

application
object(s)
dispatcher i

ISO 1O
protocol protocol
stack stack
3 b
| | network ¥

Figure 4. Application Infrastructure

We now consider the events which occur when the application instantiates an object of a class
provided by another node in the network. The application instantiates a local object in the
boilerplate class produced by the initiator generator. The constructor of this class uses the
association control service element to establish an association with a dispatcher on the host
supplying the implementation of the desired class. Using this association, the user's object
requests the dispatcher to instantiate an object of the class, execute the object’s constructor
and bind the association to that object. The constructor of the user’s object completes when
the remote object has been completely created. Thereafter, invoking a method of the user's

local object results transparently in the invocation of the remote object’s methods using the

13

OSI remote operations facilities. Destructing the user's local object results in a termination

protocol being followed to destruct the remote object and close the association

4. Related Research

A brief review of research work deemed relevant to the work described in this paper is pre-
sented. The intent is to distinguish the work previously described as sufficiently different
from other recent work rather than provide an exhaustive survey of object-oriented distrib-

uted systems.

Distributed Operating Systems

Several experimental distributed operating systems have been implemented in which the
objective is fast network-based interprocess communication and support for lightweight
threads. Two deserving mention with regard to this paper are the Stanford V system [Cheri-
ton 88] and the Amoeba system [Mullender 89].

Vis interesting because it incorporates a fast and efficient transport protocol and heterogene-
ity via protocol-based system services. The VMTP (Versatile Message Transaction Protocol)
[Cheriton 89] is a request-reply transport protocol supporting remote procedure call seman-
tics. A lightweight application process communicates with other processes distributed among
a cluster of workstations and servers using an RPC mechanism based on VMTP, An interest-
ing departure V makes from typical distributed operating systems is the definition of system
services in terms of protocols. By defining services in terms of protocols, a degree of heteroge-
neity is introduced. Rather than the usual operating system view of heterogeneity as “the
same kernel on many platforms,” different kernels may be used, exploiting particular hard-

ware, but distributed kernel services interact through standard protocols.

Amoeba [Mullender 89] was designed as a homogeneous system and steps were taken to
exploit specific hardware features. Unlike the V system, Amoeba follows the “same kernel on
many platforms” approach to heterogeneity; gateways relying on traditional interconnection
techniques, such as X.25, interconnect remote Amoeba kernels [Renesse 87]. At the applica-
tion level, Amoeba does offer an object-oriented paradigm to programming distributed appli-
cations. However, Amoeba does not offer the same degree of heterogeneity provided by the V

system or by standard communication protocols.

14

Distributed Object Systems

Distributed object systems are commonly implemented on top of an existing network-based or
distributed operating system. For example, Emerald [Black 87] and Argus [Liskov 87] are
object-based or abstract data type systems, while ESP [Leddy 891, SOS [Shapiro 89], and
Arjuna [Dixon 89] are object-oriented systems incorporating inheritance. All are run-time sys-

tems implemented over traditional eperating systems, such as Unix,

ESP (Extensible Systems Platform) is a C++ run-time system supporting distributed C++
objects. The important contribution of ESP is the notion of uniform communication. Local and
remote method invocations, whether synchronous or asynchronous, are handled uniformly by
a single invocation mechanism. The advantage to this approach is that a high degree of con-
ceptual economy is realized on the part of the application developer. The major disadvantage
to inter-object communication is that only basic data types may be transmitted as part of mes-
sages. There is no high-level support for value transmission of user-defined types. That is,
there is primitive support for independent data representation beyond big-endian little-

endian transformations.

808, like ESP, is based on the distribution and inter-communication of C++ objects. A pri-
mary feature of SOS is the support for object persistence. SOS introduces language extensions
to C++ which facilitate the semi-automatic collection of the persistent state of an object, The
most interesting aspect of SOS is the notion that persistence and migration are similar. SOS
includes the concept of a “proxy” which supports the migration of an object from an object stor-
age server to the executable store of a machine. The developers of SOS made extensions to the
base C++ language definition to support persistence. However, their approach does not fully
consider persistence as a part of the meta behavior of an object in conjunction with communi-

cation and concurrency.

The focus of the Arjuna system is to provide fault tolerant distributed computing using a
transaction model. Like SOS, Arjuna supports persistent objects. Unlike the semi-automatic
persistence mechanisms in SOS, Arjuna provides an almost fully-manual persistence mecha-
nism. There is no notion of persistence as a meta behavior of an object. The implementor of an
object must specify completely the structure of the cbject's data components so that the migra-
tion mechanism can properly collect the object's state. The mechanisms of Arjuna can not be
considered a serious approach to persistent objects. A worthwhile note is that Arjuna uses the
class inheritance mechanisms of C++ to provide both the persistence and transaction mecha-

nisms,

15

Several current industrial research and development efforts have also given useful guidance
to the Synergy project. Similar architectures and goals are used in both DSG's Distributed
Software Engineering Toolset (DSET) product and NCR's Cooperation system, Project Syn-
ergy differs from DSET because Synergy integrates OOP into the OSI framework more exten-
sively. DSET, which is also based on the ISODE, does not go to the extent of applying an
object-oriented rationalization to the protocol layers. NCR's Cooperation and Synergy differ in
that Synergy places greater emphasis on the restructuring of the OSI protocol layers as a
foundation for open systems programming. The overall spirit of the Synergy project was
derived from many efforts focused on an open computing environment and the use of stan-
dards. Such efforts include the OSF/1 system and the X windows system. In the communica-
tion domain, Sun's recently announced transport independent communications mechanism
and the OSI RPC mechanisms are examples of current work which is attempting to instill

greater flexibility and independence in the interaction among objects.

The Object Request Broker (ORB) defined by OMG [OMG 91] offers an application infrastruc-
ture similar to that proposed by Project Synergy. Superficial differences are that Project Syn-
ergy is based on the OSI protocols and ASN.1 while ORB is based on IDL and RPC. The
correspondence of the IDL grammar and C++ seems to suggest a better fit than ASN.1, An
obvious difference between our work and OMG is that we do not restrict objects to only client-
server interaction. It is unclear at this time whether or not this is really a significant differ-
ence. The goals of the application structure of our project need to be further reviewed with

respect to the recent accomplishments of OMG.

Acknowledgments

Chris Tomlinson of MCC provided valuable feedback on the initial idea of using inheritance to
structure the upper protocol layers. Phil Cannata of Bellcore/MCC provided the environment

and support which allowed the further development of these ideas.

References

[Agha 86] Gul Agha, ACTORS: A Model of Concurrent Computation in Distributed Systems,
MIT Press, 1986,

[America 87] Pierre America. “Inheritance and subtyping in a parallel object-oriented lan-
guage,” Proceedings of the 1987 European Conference on Object-Oriented Programming
(ECOOP'87), June 1987, pp. 232-242.

16

[Bershad 87] Brian N. Bershad, Dennis T. Ching, Edward D. Lazowska, Jan Sanislo, and
Michael Schwartz. “A remote procedure call facility for interconnecting heterogeneous com-
puter systems,” IEEE Transactions on Software Engineering, SE-13(8), August 1987, pp.
880-894.

[Birrell 84] Andrew D. Birrell and Bruce J. Nelson. “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, 2(1), February 1984, pp.39-59.

[Black 87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. “Dis-
tribution and abstract types in Emerald,” IEEE Transactions on Software Engineering, SE-
13(1), January 1987, pp. 65-76.

[Briot 90] Jean-Pierre Briot and Akinori Yonezawa. “Inheritance and synchronization in
object-oriented concurrent programming,” in ABCL: An Object-Oriented Concurrent System,
(ed. A. Yonezawa), MIT Press, 1990.

[Campbell 86] Roy Campbell, Gary Johnsgon and Vincent Russo, “Choices: Class Hierarchiecal
Open Interface for Custom Embedded Systems,” Operating Systems Review, 21(3), July 1987,
pp. 9-17.

[Cheriton 88] David R. Cheriton. “The V distributed system,” Communications of the ACM,
31(3), March 1988, pp. 314-333.

[Cherition 89] David R. Cheriton and Carey L. Williamson. “VMTP as the transport layer for
high-performance distributed systems,” IEEE Communications Magazine, June 1989, pp. 37-
44,

{deJong 91] Peter dedong, “A Framework for the Development of Distributed Organizations,”
unpublished paper, 1991,

(Dixon 89] G. N. Dixon, G D. Parrington, S K. Shrivastava, and S. M. Wheater. “The treat-
ment of persistent objects in arjuna,” Proceedings of the 1989 European Conference on Object-
Oriented Programming (ECOOP’89), July 1989, pp. 169-189.

[Hewitt 84) Carl Hewitt and Peter de J ong. “Open systems,” in On Conceptual Modeling, (ed.
Michael L. Brodie), Springer-Verlag, 1984, pp. 147-164.

(Hewitt 90] Carl Hewitt. “Towards open information systems semantics,” unpublished paper,
1990,

[Hoare 88] C. A. R. Hoare. Commaunicating Sequential Processes, Prentice-Hall, 1985,

[(ISO 74981 International Standards Organization. Information Processing—Open Systems
Interconnection—Basic Eeference Model, International Standard 7498.

17

[ISO 8824] International Standards Organization. Information Processing— Open Systems
Interconnection—Specification of Abstract Syntax Notation One (ASN.1), International Stan-
dard 8824, 1987.

[ISO 9072-1] International Standards Organization. Information Processing—Text Communi-
cation—Remote Operations part 1: Model, Notation and Service Definition, International
Standard 90721, 1988.

[Kafura 89] Dennis G. Kafura and Keung Hae Lee. “Inheritance in actor based concurrent
object-oriented languages,” Proceedings of the 1989 European Conference on Object-Oriented
Programming (ECOOP’89), July 1989, pp 131-45.

[Lavender 90] Greg Lavender and Dennis Kafura. “Specifying and inheriting concurrent
behavior in an actor-based object-oriented language,” Technical Report TR 90-56, Depart-
ment of Computer Science, Viriginia Tech, 1990.

[Lavender 91] Greg Lavender, Dennis Kafura, and Chris Tomlinson, “Implementing commu-
nication protocols using object-oriented techniques,” in preparation, 1991.

[Leddy 89] Bill Leddy and Kim Smith. “The Design of the Experimental Systems Kernel,” Pro-
ceedings of the Conference on Hypercube and Concurrent Computer Applications,Monterey,
CA, 1989.

[Liskov 87] Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert Scheifier. “Implemen-
tation of argus,” Proceedings of the Eleventh ACM Symposium on Operating Systems Princi-
ples, November 1987, pp. 111-122.

[Matsuoka 90] Satoshi Matsuoka, Ken Wakita, and Akinori Yonezawa. “Analysis of inherit-
ance anomaly in concurrent object-oriented languages,” extended abstract presented at the
ECOOP/OOPSLA'90 Workshop on Object-based Concurrency, October 1990.

[Milner 891 Robin Milner. Communication and Concurrency, Prentice-Hall, 1989.

[Mullender 891 Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, and Robbert
van Renesse. “Amoeba: a distributed operating system for the 1990s,” Computer, May 1990,
pp. 44-53.

[Nierstrasz 90] Oscar Nierstrasz and Michael Papathomas. “Towards a type theory for active
objects,” in Object Management, pp. 295--304, (ed. D. Tsichritzis), Centre Universitaire D'In-
formatique, Universite De Geneva, 1990.

[OMG 91] Object Management Group. The Common Object Request Broker: Architecture and
Specification, OMG Document Number 91.8.1, Draft 26 August 1991.

[Renesse 87) Robbert van Renesse, Andrew S. Tanenbaum, Hans van Staveren, and Jane
Hall. “Connecting RPC-based distributed systems using wide-area networks,” Proceedings
Seventh International Conference on Distributed Computing Systems, IEEE, 1987, pp. 28-34.

18

[Rose 901 Marshall T. Rose. The Open Book: A Practical Perspective on OSI, Prentice—Hall,
1990.

[Rose 911 Marshall T. Rose, Julian P. Onions, and Colin J. Robbins. The ISO Development
Environment User's Manual——%rsion 7.0, Vols. 1-5, X-Tel Services Litd, Nottingham, July
1991.

{Shapiro 891 Marc Shapiro, Philippe Gautrot, and Laurence Mosseri. «pearsistence and migra-
tion for C++ objects,” Proceeding$s of the 1989 Europeant Conference ol Object-Oriented Pro-
gramming (ECOOP'89), July 1989, pp.191~204.

{Sun 871 Sun Microsystems. «RPC: remote procedure call protocol speciﬁcation version 2,7
Request for Comments 1057, SRI Network Information Clenter, June 1988.

{Sun 88] Sun Microsystems. “XDR: external data representation standard,” Request for Com-
ments 1014,” SK1 Network [nformation Center, June 1987.

[Tomlinson g9] Chris Tomlinson and Vineet Singh. “Inheritance and synchron'zation with
enabled—sets,” ACM OOPSLA’89 Conference Proceedings, Qctober 1989, pp.103—-112.

[Wegner 90] Peter Wegner. «(ioncepts and paradigms of object-oriented programming,” OOPS
Messenger, 1(1), August 1990, pp- T-87.

[Zdonik 901 Stanley B. 7.donik and David Maier, spundamentals of Object—Oriented Data-
bases,” in Readings in Object-Oriented Database Systems, (eds. S.B. 7donik and D. Maier),
1EEE Press, 1990, pD. 1-32.

19

