Communicational Measurement

Kevin A. Mayo
Sallie Henry

TR 91-30

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

October 11, 1991

Communicational Measurement

Kevin A. Mayo
Sallie Henry

Computer Science Department
Virginia Tech
Blacksburg, VA 24061

(703) 231-6931

mayoka@vtodie.cs.vt.edu
henry@vtodie.cs.vt.edu

Abstract

A software system is an aggregate of communicating modules. The interfaces supporting module
(procedure, etc.) communication characterize the system. Therefore, understanding these inter-
faces (areas of communication) gives a better description of system complexity. Understanding in
an empirical sense implies measuring, and measuring interfaces involves examining both the com-
municational environment and the exchanged data. These measures can lead to better design and
aid in software quality assurance.

There are several different measures associated with the communication environment. Obviously,
the structure or nesting level at the communication point is very interesting. The need to measure
the data communicated also raises some very interesting questions concerned with data type and
expressional form.

This paper reports on the efforts at Virginia Tech to measure, and thus, capture the complexities of
software interfaces. Analyzing an Ada system of 85,000 lines of code validated the measures pro-
posed here. The results of this research are very encouraging.

This research was sponsored in part by: Seftware Productivity Consortium (SPC), The Center for
Innovative Technology (CIT), and Software Productivity Solutions (SPS).

Keywords: Software Design, Software Design Tools, Metrics, Software Quality Assurance,
Interface Complexity, Ada Design Metrics

1. Introduction

In todays age the cost of software development is sky rocketing. Software Engineering tries to cap
these costs with methodologies and tools to perfect the software development process. One such
tool is the use of software quality measures. These product measurements can be taken at different
stages of the life cycle, and have shown to be useful in error prediction and maintenance activity.
[WAKSS88] [LEWKS88] [KAFD87] [BASV84] [CURB79a]

Metrics, as software quality measurements have become known, attempt to capture different
aspects of designs or codes. The aspect depends upon the type of metric applied. There are many

3

different measures that fall into three types: code, structure, and hybrid metrics. Within these

different categories exist automatable and nonautomatable metrics, and it can be seen that if a metric
is used it must be automated.

A metric only measures a single aspect of code or design written in a PDL. While this aspect can
be meaningful, a single measure cannot suggest total system quality. A collection of metrics
spanning over different aspects must be examined to derive meaning [YOUR89]. For example, a
count of the system's procedures is meaningful, but does not indicate to total system quality
because it neglects the complexity of each procedure.

This paper introduces a new set of metrics and shows their applicability to measuring communica-
tional interfaces. It is our contention that viewing the communicational structure with weights
associated with each data flow or invocation between modules gives an excellent indication to
overall system quality and complexity. The next section gives background by introducing work
already done in software quality metrics. Section III describes the metrics derived within this
research and their importance. Because this research was performed over the Ada language, a
section, 1V, was devoted to Ada specific issues. Section V analyzes the data, while section VI
discusses the conclusions and gives direction for future work.

II. Past Work in Metrics ‘_
—

Within code there exist objects, or tokens, that can be enumerated. A simple example could be a
count of the relational operators (<, >, <=, etc) within a piece of code. Token counts, or functions
of counts, from either a source or PDL representation are code metrics. Code metrics are well de-
fined and tested throughout the literature [CONS86]. These metrics are often applied on a per
module/procedure basis. These measurements include: Lines of Code (LOC), Halstead's
Software Science (N, V, E) [HALM77], and McCabe's Cyclomatic Complexity (CC) [MCCT76],
among others. The reader is directed to Appendix A for a full definition of: LOC, N, V,E, and
CC. There also exist modifications to these measures, for example, modifications on CC include
[HANW78] and [MYEG77] among others.

Examining token counts singularly ignores the internal structure of the code. Internal structures
can be examined by viewing the data flow or nesting/looping structures within PDL or source
code. Structure metrics try to capture the internal structure (interconnectivity) of source or PDL
representation. Obviously, structure measurements are much more costly (in time and computing
power) to gather than code metrics, but this effort pays for itself, Research in this area includes:

Mayo/Henry Communicational Measurement Page 2

McClure's Module Invocation Complexity [MCCC78], Chapin's Module Complexity [CHAN79],
Woodward's Knots [WOOM?79], and Henry-Kafura's Information Flow [HENS81b] among
others.

Finally, hybrid metrics are a function of code and structure metrics. Through a combining func-
tion, aspects captured by both code and structure metrics are distilled into a single hybrid metric.
The cost to generate these metrics is the cost of generating both the underlying code and structure
metrics, and then combining them to form the final hybrid metric. These include: Henry-Kafura's
Information Flow (INFQO) [HEN S81b] and Woodfield's Review Complexity (WOOD) [WOOS 82]
among others. The reader is directed to the appendix.

Each category of metric (code, structure, and hybrid) has its own strengths and weaknesses.
Applying code metrics over singular modules, as done in the past, does not maintain information
on design or source code innerconnections or structure. On the other hand, structure metrics
ignore syntactic complexity only to measure interconnectivity. Hybrid metrics attempt to measure
both aspects. It is the contention of this research that hybrid metrics are the most useful. They
contain the most information and are not trivial.

The motivation behind this research is that previous metrics are inadequate. They fall short of
maintaining all the information needed to model a non-trivial indicator of source and PDL code in-
terfaces. In other words, past metrics only viewed specific problem areas, and thus were applica-
ble only to those areas. For example, while INFO is modeled within the scheme of data flow anal-
ysis, it ignores the inherent complexities that different data structures introduce, McClure weights
the different structures by selection or repetition; however, this approach neglects the complexity
associated with each of the constructs' (selection/repetition) control clause. Also, various styles of
repetition constructs (Test-Before, Test-After) were put into a single class; whereas, there could
possibly be a difference in complexity among these structures, The interface complexity metric at-
tempts to gather these aspects that INFO and McClure overlook, i.e.: how much data is passed (a
weight), and a better understanding of the nesting/looping structures within the source or PDL rep-
resentation.

It is the contention of this research that measuring the complexity of a communication interface in-
volves understanding what complexity is and how the human mind deals with it [SCHBS0]
[WEIG71]. This aspect, psychological complexity, is not the theme of this report so it will not be
addressed directly, only indirectly through the definition of the interface complexity measures.

Mayo/Henry Communicational Measurement Page 3

III. Interface Measurements

Defining a new set of measures must be predicated by a need. All too often researchers define and
test measures that are not necessarily meaningful. It is not the intention of this research to present
just another set of metrics, but to present a useful set of metrics that can be manipulated and modi-
fied for the software engineer’s use.

To measure the interface between modules, this communication must be understood and easily rec-
ognizable. There are three types of communication that can occur: direct, indirect, and global. ,
Direct communication is data passage through a procedure call. Indirect communication is com-
mon data passed between sub-procedures through procedure calls (e.g., A calls B sending 'x’,
then A calls C sending 'x’ -- indirect communication between B and C has occurred). Global com-
munication involves data passage from one procedure to another through a non-local data item.
The interface complexity captures all three types of communication,

Once communication has been determined to exist between two modaules, then the interface mea-
surement is gathered. As mentioned before, to measure correctly the interface complexity both the
data (parameters to communication, Parameter Complexity) and the environment (Environment
Complexity) must be considered. This implies the interface measure is a two-tuple. To gather
both metrics several underlying measurements are taken,

Parameter Complexity

To measure the data passed within a communication (e.g. parameters), a weighting convention ,
must be adopted with respect to the data, Measuring a data expression (e.g. 'x+y") implies that
both operands and operators must be considered which has not been done in the past. This
research uses a weight associated with the data's defined type as the contribution of the operands.
Psychologically is should be obvious that INTEGERs and RECORDSs have different complexities.
Therefore, there is a need for a consistent data type measure. This ranks types according to
psychological complexity as perceived by this research.

Single valued base types, or parent types like INTEGER or REAL, have user defined constant
complexity levels. Type complexities of aggregates of component data are calculated as functions
of the components' data type. Aggregates include arrays, records, and files. To calculate array
and record type complexities use the following formulas:

Mayo/Henry Communicational Measurement Page 4

Array Complexity = Element Type Complexity * (Indices + 1) * Multiplier + Adder

#
2. Component Type Complexity * Multiplier + Adder

Record Complexity = # of Components + Component Adder

The design of the formulas centered on each structures’ cognitively difficult aspects. Within the ar-
ray formula there is consideration for the array element type with the number of dimensions. Yet,
no consideration is given to each dimension's span -- understanding a dimension implies under-
standing the span. The record type formula regards each component's type (sub-fields) and the
number of components.

As mentioned, the base type complexities may be modified, also the aggregate type formulas con-
tain ‘tuning’ parameters. These 'tuning’ parameters include: Array Adder / Multiplier, and Record
Multiplier / Adder / Component Adder. By raising or lowering these constants the software engi-
neer may derive an optimum set of weights based on environment and experience.

While not as important, the impact of operators must be considered on the data expression com-
plexity. Clearly, to show the difference in psychological complexity consider addition (+)and
division (/). Figure 1 depicts the relationship between types and operators as they influence the
data expression complexity,

Type Complexity
Measure . .
Expression Complexity
Measure
Operator Complexity
Measure

Figure 1: Expression Complexity

It is not necessary to limit the expression complexity to data within module communication. The
expression complexity can be applied to all expressions within the code or PDL. This affords the
ability to rank expressions, and find complex expressions. (With the software engineer defining
what ranks are ‘complex’.)

Mayo/Henry Communicational Measurement Page 5

This measure represents the first of two different measures of the parameter complexity. The sec-
ond measure captures the modifications to the variables. This other measure is described later.

Environment Complexity

The second interface complexity aspect is capturing the complexity at the place or environment of
the communication. This involves analyzing the code or PDL for complex structures. Program or
PDL code is a union of three structures: concatenation (straight line code), repetition (path through
code is repeated several times), and selection (path is determined by validity of a condition). Of
these structures repetition and selection adds to the complexity by changing the execution flow.

This research defines the environment complexity as a function of the code or PDL structure as
seen through the selection and repetition statements. In other words, the further down within
nested code (either selection or repetition) the more complex the environment. To measure these
structures’ influences upon the environment, a weighting scheme is needed. These weights try to
capture the psychological complexity of the given structure, These weights can be changed by the
software engineer to test for special effects or aspects,

Examining just the structures are slightly misleading. There also must be an investigation of the
structure control variables or expression. Combining the structure complexity with the expression '
complexity of the control variables therefore defines the environment complexity. Nested struc-
tures add their environment complexity to the environment complexity of the outer level. Figure 2
sketches the relationship between expression complexities, structure complexities and environment
complexity.

Expression Complexity

Measure Environment Complexity
Measure
Structure Complexity
Measure

Figure 2: Environment Complexity

This defines the environment aspect of the interface complexity tuple,

Mayo/Henry Communicational Measurement Page 6

Reference Complexities

As mentioned above, there are two different ways to measure the parameter complexity. The first
method, already described, lIooks at a function of the variables type and the operators within the
data expression. The alternative method is measured from the modification complexity of the vari-
ables and the operators within the data expression. In other words, the second accounts for how
often a variable is modified and to what extent,

To measure how often or to what extent a variable is modified, Separate measures for each variable
within source or PDL code must be maintained. Two measures are taken for each variable within
each procedure/module: Ref Read and Ref_Write. Ref_Read maintains the number of accesses
and the sum of environment complexities for each access. While Ref_Write keeps up the number
of modifications and the sum of expression and operator complexities for each expression. In
these ways, Ref Read indicates how often and in what context a variable is used. Ref Write
reports on how often and to the extent of modifiability. Figure 3 shows an example of the
measures.

X=x+1;
y=XxX%*z;

Ref Read to variables: X, Z, Numeric_Costant

Ref_Write to variables: x, y

Figure 3: Ref_Read and Ref Write

IV. Ada |
-

Until this point the discussion has been language unspecific. The formulas and ideas can be ap-
plied to any language. Yet, this study was performed over an existing Ada system currently in use
[CHAB90]. Ada, large as it is, caused several problems. This section addresses a few of these
problems and presents solutions.

Ada has an extensive typing system supporting all manner of structures and variations. The first

area of concern is that of type modifiers, e.g., DELTA, RANGE, etc. These, like the base or par-
ent types, have weights defined by the software engineer. Adding these weights to the base type

Mayo/Henry Communicational Measurement Page 7

complexities yield the modified type complexity. Another aspect is that of private types, raising the
question "Is there a type complexity associated with a variable of a private type, and if so, is the °
complexity less because of the unknown implementation?" This research took the position that the
complexity is known though the implementation is not.

The next area of significance concerns overloaded operators and operands. Many cases are re-
solved through parameter type checking. Overloaded operators have an operator complexity de-
fined by the software engineer. Tn this research, overloaded operator defined complexity differed
from standard operator defined complexity by at least an order of magnitude.

Packages also added different concepts to this intra-module communication model. For example,
several packages within the system analyzed contained only variable definitions, e.g., a null pack-
age body. Yet, these packages, and their variables, are throughout the system creating data flows
from procedures to these null-package bodies. This situation easily exists within Ada, but other
languages do not allow for this circumstance,

V. Data and Results |
N

To validate the measurements proposed here, a system of considerable length was to be analyzed.
Software Productivity Solutions (SPS), Inc., in Melborne, Florida came to the rescue with a sys-
tem of about 85,000 lines of code. Written entirely in Ada, this system contains several thousand
procedures. The function of this sample system is to analyze an Ada PDL.

Data Gathering Tool

At Virginia Tech there exists a System that can gather several validated metrics. These metrics in-
clude: LOC, N, V, E, CC, WOOD, INFO. This system is a three phase automatic metric generat-
ing tool. Figure 4 depicts the outline of the system:

Mayo/Henry Communicational Measurement Page 8

Code Metrics
Language > & 5] Code
BNF = %o Metrics
o
g s "
INTRINSIC & g Structure
Function File > A g g > Metrics
g K Interface 5
Pre-Defined g £ [Complexities —P] O Hybrid
- 3 .
Weights File ——] = . < s% P Metrics
=] elational
S % 5 |—— Relations —P Interface
Source Code ———4 § Language Code s ~— Metrics
a P
W _/ W,
Phase 1 Phase 2 Phase 3

Figure 4: Analysis Tool

This system takes source code, in phase 1, and generates a generic representation in relation lan-
guage along with code metrics. This representation contains all the necessary information to pro-
cess the structure metrics. This representation also offers several advantages, such as hiding pro-
prietary data. There are several languages that phase 1 can work over: Ada, C, Pascal, and
FORTRAN.

The second phase calculates all interface complexity metrics as well as the information flow rela-
tions. [KAFD82] The actual calculation of the Henry-Kafura Information flow metric takes place
in phase 3. Phase 3 is also a display tool to show all metrics generated. These may be displayed
by procedure level, or user defined module level.

Data Reduction

Analysis shows 20,975 observations of communication throughout the system. Each
communication has associated with it the interface complexity tuple:

Interface = (procl, proc2, accn, acc, paral, para2), where:
*procl The communicating procedure
*proc2 The invoked procedure, e.g., pl communicates with p2
*accn Number of calls (or accesses)
*acc - Access complexity (environment aspect of interface)
*paral Data complexity calculated with expression complexity
*para2 Data complexity calculated with modification (ref_write) complexity.

Mayo/Henry Communicational Measurement Page 9

These 20,975 tuples capture all the communication within the
While it is possible to examine each of these tuples individually,

system in the above measures.
the interface complexity should

represent the complexity of a single procedure to all other procedures. Collapsing the data is nec-
essary to view the data by per procedure basis. For each procedure, all calls to and from are

joined. This produced eight measures for each procedure:;

Collapsed interface for each procedure i is:

(CallsTo, CompTo, ParalTo, Para2To,
CallsFrom, CompFrom, ParalFrom, Para2From),

where:

CallsTo The sum of CALLS (or accesses) from 1 TO all other procedures
(accn), i.e., Procl = i, and Proc2 =k, for all k.

CompTo The sum of the access COMPIexity (acc) from procedure 1 TO all
other procedures, i.e., Procl = i, and Proc2 =k for all k.

ParalTo The sum of the first PARAmeter complexity (paral) from procedure
i TO all other procedures, Le., Procl =1, and Proc2 = k for all k.

Para?To The sum of the second PAR Ameter complexity (para2) from proce-
dure 1 TO all other procedures, i.e., Procl =i, and Proc? = k for all
k. '

procedures (accn), i.e., Proc] = J» and Proc

CallsFrom The sum of CALLS (or accesses) to procedure 1 FROM all other

2 =1, for all j.

CompFrom | The sum of access COMPIexity (acc) to procedure 1 FROM all other
procedures, i.e., Proc] = J» and Proc2 =i, for ail]

ParalFrom | The sum of the first PARAmeter complexity (paral) to procedure 1
FROM all other procedures, i.e., Procl — J» and Proc2 =1 for all j.

].

Para2From | The sum of the second PARAmeter complexity (para2) to procedure
i FROM all other procedures, Le., Procl =

j» and Proc2 =1 for all

Figure 5 shows relationship among the interface complexity and the collapsed interface complexity

measures.

Mayo/Henry Communicational Measurement

Page 10

Procedure jD

CallsFrom
CompFrom

ParalFrom !

Para2From CProcedureD CallsTo
CompTo

ParalTo

Para2To

= Combining Function, used to reduce the data

f = Observation of Communication (Interface Complexity Tuple)

Figure 5: Diagram of Data Reduction

The analysis of this data is in two parts: numerical analysis (correlational analysis, functional cor-
relation), and subjective examination. A three part approach is because no error history for the
System is available, and therefore no causative study can be included. Also, the type and operator
weights used within this study were set by the researchers. Since there was no data history for re-
verse analysis -- the researchers choose the most intuitive set of weights they could.

Numerical Analysis

The first step is correlation analysis. Pearson correlations serve to show whether the interface
complexity measures correlate to established metrics, This question is important because of the
need not to generate useless or redundant measures. Table 1 lists the correlations among the estab-
lished metrics defined within Appendix A -- LOC, V, V, E, CC, WOOD, and INFO, with
CallsTo, CompTo, ParalTo, Para2To, CallsFrom, CompFrom, ParalFrom and Para2From.

Mayo/Henry Communicational Measurement Page 11

_CallsTo CompTo ParalTo Para?To CallsFrom CompFrom ParalFrom Para?From
LOC 0.575] 0.5071 0.610] 0.394| 0.025{ 0.057 0.033 | -0.006
N 0.924| 0.695] 0.943 _0.566 | 0.031] 0.062 | 0.048 0.001
v
E
CC

0.949] 0.694| 0.953] 0.622| 0.027{ 0.054 | 0.042 0.001
0.930| 0.648 | 0.935{ 0.642]| 0.004] 0.011 | 0.030 -0.001
0.620 | 0.6511 0.690] 0.545] -0.017 [-0.008 | 0.049 -0.011
WOOD | 0.933] 0.646| 0.922]| 0.656(0.019] 0.031 0.043] 0.005
INFO | 0.064] 0.034(0.063| 0.018{ 0.448) 0.389 0.655] 0.166
Table 1: Correlations Among Established Metrics and Interface Measures

There are several interesting points that Table 1 raises. The first, consider the correlatidnal distinc-
tion between the two different methods of calculating the data complexities. Table 1 shows higher
correlations among the first method (ParalTo and ParalFrom) to the code metrics than the second
method (Para2To and Para2From). Yet, this is a by-product of the type and operator weights se-
lected for this study. These measures and their correlations are different for different sets of
weights,

Notice that there is a very high correlation between N, V, and E with CallsTo, CompTo, and
ParalTo. Token counts make up these measures to some degree, and this is the cause of the corre-
lation. Apparently CallsTo, CompTo, and ParalTo gather data somewhat like Halstead's Software
Science, and therefore considering these separately would be redundant. However, given a system
design with only the interfaces an indication to Halstead's Software Science can be attained. Thus,
at a design stage Halstead's metrics can be predicted for the system.

Another point to address is the low correlation of CallsFrom, CompFrom, ParalFrom and
Para2From to the code metrics. Logically these metrics measure the complexity associated with the
communicating procedure, not the current procedure.,

The correlations are interesting, yet, if taken singularly they fail to take advantage of the interface
complexity measures taken as a whole. Functions of the interface complexity measures exploit
their richness. Managers and software engineers both view these metrics. Hence, it is important
to create functions that intuitively hold meaning for both manager and software en gineer. Once at-
tained, this function could easily be used by both parties, and quickly enters a working environ- ;
mert,

Mayo/Henry Communicational Measurement Page 12

This study examines several functions of the interface complexity measures. These functions are:

* Fl, =(CompTo * ParalTo) + (CompFrom * ParalFrom)
* F2, =(CompTo * Para2To) + (CompFrom * Para2From)
* Flx = (CompTo * ParalTo) * (CompFrom * ParalFrom)
* F2«=(CompTo * Para2To) * (CompFrom * Para2From)

In each function there are two influences: data flowing into the procedure, and data flowing out of
the procedure -- represented by the first and second term respectively. The equations are coded
using the following format; F(parameter complexity used)Combination Method- Therefore, F 1, and _
Fls both deal with the first parameter complexity measurement method, while F2, and F2« deal
with the second. Like wise, F1, and F2 + are combined using addition, while F1« and F2x use
multiplication. This gives several combinations of the interface complexity measures. These
combinations were derived to be simplistic but meaningful, and their format was based upon the
'style’ of metric functions derived in the past (i.e., the use of addition and multiplication), Most of
all, these functions must be usable by both software engineers and managers alike.

Table 2 lists the correlations among these four functions and selected code (LOC, E, and WOOD)
and structure metrics (INFO)., Established metrics that were not chosen (N, V, CO) correlated
very high with the metrics listed (LOC, E, WOOD, and INFO), and therefore, left out due to te-
dundancy. -

Fl, F2, Flx F2x
LOC 0.285 0.340 0.033 0.033
E 0.477 0.577 0.030 0.030
WOOD 0.498 0.590 0.062 0.062
INFO 0.510 0.068 0.920 0.920

Table 2: Functions of Interface Complexity Measures vs. Established Metrics

The first function, F1,, correlates moderately to both code and structure metrics. These correla-
tions imply that this function measures aspects of both code and structure metrics as a hybrid met-
ric should.

Functions F1x and F2.« are similar down to the hundredths place. Therefore, it is not important to
examine both of them with these type and operator complexity weights. Yet, an interesting aspect

Mayo/Heriry Communicational_ Measurement Page 13

of these functions is their high correlation to the structure metric INFO. This implies that these '
functions capture information like INFO, yet, on second inspection this correlation could be the
influence of the rapid growth due to the multiplication. Also, this multiplicative growth produces
poor correlations to additive growth code metrics, ie., LOC, E, and WOOD. Therefore, these
functions do not prove to be of much interest on their own.

Comparing the functions F1, and Fl« shows questionable relationships when compared to F2,
and F2.. Functions F2, and F2« correlations demonstrate an inverse effect. Function F2, has
moderate correlations with code metrics (ie., LOC, E, and WOOD,) and low correlation with the
structure metric INFO; while, function F2« has the reverse (i.e., very low code metric correlation
and very marked correlation with structure metrics.) This characteristic is interesting in itself, yet,
this pattern is not continued over the functions F1, and Fl.. This difference lies in the calculation

of the different methods of data complexity.

Finally, the question "What of F2,7" Obviously this function does not correlate with the INFO
structure metric, but can meaning be derived from the correlations with the code metrics? A better
question is "Should meaning be derived?" With all the metrics available today, it is not wise nor
profitable to produce redundant metrics.

These correlations depend upon the underlying complexity functions. These complexity functions
rely on the type, operator, and structure weights. Therefore, changing these weights can change
these correlations, To 'tune’ these weights correctly to an optimum set an error history or access to
the programmers is crucial. This study had neither of these available, so there was a subjective ex-
amination of the code.

Subjective Examination

The SPS data included the source code for the entire system. Therefore, a comparison among the
eight interface complexity measures per procedure with the procedure's source code was possible.
The procedures were ranked ordered for each eight measures. Procedures selected from these lists
corresponded to extremely high measures with relation to their respective lists. In fact, all the se- _
lected procedures were within the top 1% of the measure in question.

The subjective evaluation produced several interesting results. First, code metrics relate well to the
mnterface complexity measures in pin-pointing procedures with questionable measures. In other

Mayo/Henry Communicational Measurement Page 14

Utility routines were also flagged with questionable interface complexity measures. This is be-
Cause they are greatly used throughout the System. In futyre €Xaminations, utility routines should
be left out to search for more meaningful measyres,

V1. Discussion

A strong point of this research is that the System analyzed was an in uge commercial system. This
evades the 'student data’ problem that plagues many other studies. The tunability of the type, op-
erator, and structyre weights are aiso strong points of thig project. While it may seem that the
weights could be tuned to produce any results, it is the contention that proper weights should be
derived by reverse engineering with error histories,

Mayo/Henry Communicational Measurement Page 15

each development environment and methodolo

weights,

Biblio graphy

[BASVSE4]

[CHABS0]

({CBAN79]
[CONS86]

[CURB794]
[CURB79b)
[HALM77]
[HANW7S]
[HENS81a]
(HENS81b]
[HENS84]
[KAFDS7}
[KAFDS2)
[LEWKS$S]
IMCCT76]

IMCCC78)

Mayo/Henry

Basili, V. R., and Perriconne, B. T., “"Software Errors and Complexity: An Empirical Investigation”,
ications e » Vol 27, No. 1, Pp- 42-52, January 1984,

Chappell, B. T. §., Henry, S., Mayo, K., "Measurement of Ada Throughout the Software Development Life
Cycle", Proceedings of the Eigth Annual National Conference on Ada Technology, pp. 525-532, March,
1990,

Chapin, N., "A Measure of Software Complexity™, Proceedings of the 1979 National Computer Conference,
New York, pp. 995-1602, 1979,

Conte, 8. D., Dunsmore, H, E, and Shen, V. Y., Software Engineering Metrics and Models, The Benjamin
Cummings Publishing Company, Inc., 1986,

Curtis, B., Sheppard, 8., and Milliman, P., *Third Time Charm: Stronger Replication of the Ability of
Software Complexity Metrics to Predict Programmer Performance”, Proceed; f the ternatio:
Conference on Software Engineering, Pp. 356-360, September 1979,

Halstead, M. H., Elements of Software Science, Elsevier, New York, N.Y,1977.
SEIMEMS ol Software Science

Hansen, W. J,, “Measurerment of Program Complexity by the Pajr (Cyclomatic Number, Operator Count)”,
ACM SIGPlan Notices, Vol. 13, No. 3, Pp. 29-33, March 1978,
axM 16Plan Notices

Henry, S. M., Kafura, D., and Harris, K., "On the Relationships Among Three Software Metrics", Proceedings
of ACM SIGMET RICS, pp. 81-89, 1987

Henry, 8. M., Kafura, D., "Software Structure Metrics Based on Information Flow", IEEE Transactions on

Software Engineering, Vol. Se-7, September 1981,

Henry, $., Kafura, D., "The Evaluation of Software Systems’ Structure Using Quantitative Sofiware Merries",
Software Practice and Experience, June 1984, pp. 561-573.

Kafura, D., and Geereddy, R. R., "The Use of Software Complexity Metrics in Software Maintenance",

Transactions on Software Engineerin » Vol. SE-13, No. 3, pp. 335-343, March 1987,
e A wollware Bngineering,

Kafura, D., Henry, S. M., "Software Quality Metrics based on Innerconnectivity" Journal of Systems and
Software, Pp. 121-131, 1982,

Lew, K. 8., Dillon, T. S., and Forward, K. E., "Software Complexity and Its Impact on Software Reliability",

IEEE Transactions on Software Engineeri » Vol. SE-14, No, 1, pp. 1645-1655, Nov. 1988,

T SRERONS on soitware Engineering

McCabe, T. J., "A Complexity Measure”, IEEE Transactions on Software Engineering, Vol, SE-2, No. 4, pp.
308-320, 197s.

McChure, C. L., "A Mode! for Program Complexity Analysis", Proceedings of the 3rd Conference on Sofiware
Engincering, pp. 149-157, 1978,

Communicarional Measurement Page 16

[SCHB30] Schneiderman, B., Software Psychologx: Human Factors in Computer and Information Systems, Winthrop
Puinshing, Inc., Cambridge, MA, 1980,

[SHEB$1) Sheil, B. A., "The Psychological Study of Programming", ACM Computing Surveys, pp. 308-320, March
1981,

[STEW74] Stevens, W, P., Myers, G. L., and Constantine, .. L., "Structured Design", IBM Systems Journal, Vol. 13,
No. 2, 1974,

[WAKSRS] Wake, §., Henry, S., "A Model Based on Software Quality Factors Which Predicts Maintainability",
Proceedings: Conference op Software Maintenance - 1988, pp. 382-387, Oct. 1988,

[WEIG'/'I] Weinberg, G. W, The Psychology of Computer Programming, Van Nosirand Reinhold Co., New York, NY,
1971,

[WOO0s82) Woodfield, . N., and Shen, V, Y., Dunsmore, H, E. "A Study of Several Metrics for Programming Effort”, The

Journal of Systems and Software, Voi. 2, No. 2, Tune 1982, Pp. 97-103.

[Y OURSg9) Yourdon, Editor. "Software Meirics: You Can't Control What You Can Measure", American Prog[amme[,
Vol. 2, No. 2, pp. 3-11, Feb. 1989,

Appendix A: Metric Definitions
This appendix defines the metrics that are useq within this research:

LOC: Lines of Code

N, V,E: Halstead's Software Science Indicators
CC: McCabe's Cyclomatic Complexity
WOOQOD: Woodfield's Review Complexity

INFO: Henry-Kafura's Information Flow Metric

Lines of Code (LOC)

This metric, most probably the oldest, is an enumeration of the lines of code. Simple, but indica-
tive of the complexity. There is, however, some debate what constitutes a line of code from one
language to the next,

Halstead's Software Science (N, V,E)

Halstead introduced a serjes of measures based op the countable aspects of source code, Software
Science [HALM?77], measures are based op:

0y = The number of unique operators

Mayo/Henry Communicationa] Measurement Page 17

02 = The number of unique operands
1 = The total number of operators
N> = The total number of operands

=1 + ny = Size of Vocabyl
N=N; + Nz = Length of the Program

mum volume over thege code sections. This minimum volume, or potentiat volume of the most
concise algorithm (V*), is defined but can never be calculated dye to its theoretical nature, With
this, Halstead defines the program level to be:

*

\

= —

Because V* can never be calculated an estimator must be attained:

_@*Ny
D= Gy -

Mayo/Henry Communicationa] Measurement Page 18

2
E=V#D=y* 1.V

E

\%
Effort, Difficulty, Program Level, and Volume are the Mmeasures that compose the Halstead
Software Science indicators,

McCabe's Cyclomatic Complexity (CO)

arc from the exit to the entry. With this framework, McCabe defined:

VG)=E-N+2= Cyclomatic Complexity, where:

E = Number of Edges in graph G
N = Number of Nodes in graph G

Here the complexity is defined in terms of the relationship of a procedure to its environment. This
relationship represents the flow of information into (fan-in) and out-of (fan-out) a2 module, The
terms are defined as:

Fan-in The number of local flows into the procedure plus the number of
data structures from which the procedure retrieves information,

Mayo/Henry Communicationa] Measurement Page 19

Fan-Out The number of local flows from the procedure plus the number
of data structures that the procedure updates,

Cp = (Fan-il.ap * Fan-out,)?2,
Fan-in, = Fan-in for procedure p
Fan-outy, = Fan-out for procedure p

Cp = Cpp * (Fan-in,, * Fan-out;)2, where:

Cip = Internal complexity of p
Fam-inp and Fan—outp are defined as before,

The hybrid form of the Henry-Kafura metric is used within this study as INFO,

Woodfield's Review (WOO0D)

A=:B Control] Connection: Module A invokes module B

A=4B Datg Connection: Module A modifies some variable that is
used within module B

A=;B Implicit Connection; Assumptions made within module A
are used within module B,

If any of these three types of connections hold, then there is a connection from module A to mod-
ule B. These connections form;

Mayo/Henry Communicationa] Measurement Page 20

The number of times that g module n

eeds to be reviewed, This is made up
from a combination of the connection

s for module i.

1t should be noted that the ideg of Fan

-in here differs from the Henry and Kafura model by includ-
ing the aspect of implicit connections,

With these definitions in mind, Woodfield continued on to build g rating called the Review Factor:

Fan-in,

RF;= Y Rc*! RC=
k=1

Wt

Where RC is the Ieview constant that has been used by Halstead. (HALM77]

Mayo/Henry Communicational Measurement Page 21

