A Representation and Algorithm for
Exact Computation of Cascaded Polygon
Intersections with Fixed Storage Requirements

Clifford A. Shaffer and Charles D. Feustel
TR 91-29

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

September 25, 1991

A REPRESENTATION AND ALGORITHM FOR EXACT COMPUTATION OF
CASCADED POLYGON INTERSECTIONS WITH FIXED STORAGE REQUIREMENTS

Clifford A. Shaffer*
Charles I, Feustel**

*Department of Computer Science and
**Department of Mathematics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

Given a collection of polygons (or a collection of sets of polygons) with vertex points specified
to some fixed-point precision, a technique is presented for accurately representing the intersection
points formed by elements in the collection. In particular, we recognize that in 2D, the result of a
series of intersections between polygons must be composed of line segments that are part of the line
segments making up the original polygons. While our techniques greatly improve the accuracy of
floating point representations for intersection points, we also provide algorithms based on rational
arithmetic that compute these intersection points exactly. The storage required to Tepresent an
intersection vertex requires a fixed amount of storage slightly greater than four times the number
of bits in the input resolution. Furthermore, no intermediate quantity requires resolution slightly
greater than four times the resolution resolution of input vertex values, so implementation on
existing computers at practical resolution can easily be done, Cascaded intersection operations
do not require ever greater amounts of storage for vertex points, as would normally be required
by a rational arithmetic approach. We also prove that a similar approach is not possible for any
reasonable set of rotations.

September 25, 1991

1. INTRODUCTION

Computing the union or intersection of two or more objects is an important operation in
computational geometry. It is of fundamental importance in Geographic Information Systems (GIS)
and CAD applications, and is also used in Computer Graphics animation and ob ject space hidden
surface removal algorithms [Warn69, Weil77]. In this paper, we treat the problem of taking the
intersection of polygons represented by a series of line segments defining the boundary (i.e., the
traditional boundary representation in 2D). In particular, we wish to take two sets of polygons, and
return the set of polygons describing the area contained in both input sets. Furthermore, we wish
to take this result, and then produce the intersection with a third set of polygons (itself possibly
the result of an intersection operation). This type of operation would be used in CAD systems
based on constructive solid geometry (whether half-plane or primitive polygons/polyhedra) and in
GIS for analysis of the interactions betwoeen several map overlays.

While many intersection algorithms exist, nearly all implementations have ma, jor shortcom-
ings with respect to the accuracy of the result (see [Hoff89a, Hoff89b] for a detailed discussion of the
potential pitfalls and several suggested solutions). In particular, simply using floating point values
to represent input vertex coordinates and computed intersection point coordinates leads to serious
and well known problems of numeric stability. At each step, either increased precision is required,
or else the accuracy of the result is reduced. Reduced accuracy leads to topological inconsistencies
such as query points that are determined to fall within each of a pair of input polygons, but not
within their intersection. A series of cascaded intersections (i.e., the intersection of polygons A and
B intersected with C, intersected with D, ...) further increases the problems since typically either
the accuracy becomes arbitrarily small, or the precision required to represent a vertex becomes
unbounded.

One approach to dealing with the problem is to conceptualize the vertex points and resulting
line segments as a fuzzy specification with a region of uncertainty (see [Sega90] and related work).

1

The size of the uncertainty region grows rapidly with more intersections. Another approach is to
use rational arithmetic of infinite precision (for example, [Fran86]). When an intersection takes
place, the size of the numerator and denominator of the fraction representing the coordinate of the
intersection point grow as necessary for exact representation. If input resolution required D bits,
then each intersection calculation can require the size of each vertex to grow by D bits,

We present a technique for represrenting the intersections between line segments with vertices
of a fixed resolution. We recognize that the output polygon from a series of intersection operations
must be composed of pieces of the line segments that make up the input polygons. By keeping track
of the necessary input line segments (in their original form) along with descriptions of intersection
points along these line segments in parametric form, we greatly increase the accuracy of the resulting
intersection polygon when floating point numbers are used to represent the parameter values.
Furthermore, if rational arithmetic is used, we can limit the size of the representation for such
intersection points to be less than four times the size of the input vertex points. This approach
is similar to the method for an exact rational arithmetic representation presented in [Hoff89a)].
However, our method, based on fixed precision vertex points rather than a fixed set of lines,

is simple to tmplement and quite efficient. This paper provides a precise implementation of the

“method. Our empirical timings of the method compared favorably to a fioating point representation

for the parameters. Finally our method, unlike that of [Hoff89a), is closed nnder translation of vertex
points by integer units of the minimum resolution,

Note that we do not deal in any way with accuracy of the input data. Particularly in
GIS, there is a serious debate on how to Mmanage error when input data is not entirely correct, yet
sufficiently well correlated to result in tiny “sliver” polygons (see [Good89]). Our output will be
noe more “correct” than the input data. However, our approach allows us to avoid creating any

additional errors due to numeric operations.

2. METHOD

We restrict input vertex values to be fixed precision numbers. In particular, we assume for
the remainder of this paper that the vertex coordinates are integers in the range -16383 to 16383
— l.e., 14 value bits and one sign bit. If necessary we could consider the input as the result of a
“polygon normalization” operation [Mile88] where some polygon whose vertices with real number
coordinates have been modified to have integer coordinates in such a way as to preserve appropriate
topology. We prefer to view the input as coming from a user working at a raster-based system,
whether in a CAD or GIS environment. Qur suggested resolution is far greater than the resolution
of modern computer monitors, and also higher than any reasonable expectation for manual precision
from an input device such as a cartograplic digitizing table. The stored precision could be greater if
necessary, but by selecting 15 bit precision we simplify the implémentation of our rational arithmetic
approach.

A polygon is represented in our system as a collection of consecutive line subsegments (as
opposed to the more typical view of a collection of connected vertices). A line subsegment is some
portion of a line segment that is represented by (i) two endpoints with integer coordinates whose
precision is 15 bits and (i) two parameter values. This line segment specified by the vertex points
will be referred to as the ¢ priori line segment. The parameter values specify the extent of the
line subsegment that actually makes up some part of the polygon boundary. These parameters
represent positions some fraction of the distance from the first to the second a priori vertex points.
For polygons that have not undergone any intersections, each boundary subsegment will be the
complete a priori line segment. Thus, the parameter values of such subsegments will be 0 and 1
(specifying the beginning and the end of the & priori line segment, respectively). In addition, one
could use a direction flag to indicate whether this particular line subsegment goes from vertex 1
to vertex 2, or vice versa. This would allow for sharing of a, priori line segment objects among a
set of polygons. This approach has some similarity to that used in [Nels86] for representing linear

3

feature data in a quadtree to allow for recombination of data that has be split by an intersection
operation.

The combination of a priori line segments and associated parameters for computed poly-
gon boundary subsegments is the key to exact precision calculations within bounded space. This
approach requires that the parameter values merely be representable and comparable. Most im-
portantly, we need not represent the muliiplication of two such parameters, with the attendant loss
of accuracy (or increase in precision). If we choose to use foating point numbers for parameter
representation, the result will always be consistent so long as all possible parameter values are
distinguishable. This depends on the resolution hoth of the vertex points and the floating point

number,

Exactness can be guaranteed through the use of rational arithmetic, Here, parameters are
described by two 32 bit quantities, representing the numerator and denominator of the parameter,
The denominator will always be a positive 32 bit integer. For parameters describing points on the
line segment, the numerator will be between 0 and the value of the denominator (i.e., the parameter
is between 0 and 1). For computed results, the numerator can be outside this range when the point

of intersection for the two line segrents does not actually fall on the line segments.

Our intersection routines consist of calculating the parametric values of the intersection
point between two a priori line segments (i.e., one set of numerator and denominator for each line
segment). Given these parameter values, we now need only decide if the new intersection point lies
to the left or the right of the old one along a subsegment to determine the intersection polygon’s

new boundary line.

The parameter value for the intersection point between two line subsegments is calculated
as follows. First, compute the intersection of the a priori line segments, taken from the structure

definitions of the subsegments. The intersection routine returns TRUE if the line segments intersect

4

and are not parallel, and FALSE otherwise. A structure is also returned that describes the intersec-
tion location by its parameter values along each of the two intersecting a priori line segments, and
information about the direction of crossing for each parameter — i.e, whether the line intersection
is going from in to out, or out to in.

We now describe how to calculate the parameter values for the intersection (if there is one).
First we check bounding boxes for a quick non-intersection test. Assuming the bounding boxes
intersect, we generate the equation for the infinite line from the endpoiﬁts for one a priori line
segment. Substituting the two endpoints from the other line into this equation results in two values
each of which is negative, positive, or zero. ¥ the signs of the two values are the same, then the
two lines do not intersect (i.e., both endpoints of the second line segment are to one side of the first
line segment). If the signs are different, then we repeat the process with the roles of the two lines
reversed. If the result of this second test gives two values with different signs, then we know that
there is an intersection between the a priori line segments, This is stronger than sayihg that the a
priori lines extended to infinity have an intersection. If the lines extended to infinity cross, but the
line segments themselves do not cross, then one pair of intersection parameters will have different
signs, but the other pair will have identical signs.

The equations that we use for the substitution of the endpoints of line 1 into the equation
for line 2 are given below. This will be important later when we explain how to calculate the actual

Intersection point. We use the following line equation;

(Y = Y1)(Xe - X1) ~ (X = X3)(Ya— 1h) = 0

when substituting point (X, Y) into the line with endpoints (X1, ¥3) to (X2, Y2). We evaluate the
equation four times, first substituting the endpoints of line segment () into the equation for line
segment P, then substituting the endpoints of line segment P into the equation for line segment

@. This is done by calculating the four quantities t, b, c and d defined as follows:

¢ = (Quy — Pry)(Pez ~ Pz} ~ (Q1z — Pro)(Pay ~ Pyy)

b= (QZy - Ply)(P2m - Plx) - (Qh' - Pl-r)(P%' - PI@;)

c= (-Ply - QI"J)(QE:L‘ - le) - (Pla: - Qlw)(Q2y - Qly)

d=(Pay ~ Q14)(Q22 — Q1) ~ (Paz — Q12)(Q2y — Q1)
Once we know that there is a propér intersection between the two a priori line segments, we must
calculate the two intersection parameters, each defined by their numerator and denominator. To

do this, we need to solve the following vector equation for parametric variables s and #:

(1-t)P 4 t+Pp = (1-8)Q1+3%Q;

which can be rewritten as

{Py = P)+5(Q1 — Q3) = Oy — P

We solve this equation by calculating three determinants. We define s = sdet/det and ¢ = tdet/det

where det, sdet, and tdet are defined as:

det = (Pog ~ Pro}(Quy — Qay) — (Pay — P1p) (@12 — Q2z)
sdet = (Pop — Plr)(Qly - Pry) = (Poy — Py)(Q1z — Piz)
tdet = (Q1e — Pro)(Q1y ~ Q2y) — (Q1y — Pry)(Q10 — Q1)

By suitable rearrangement, we find that det - a—b, sdet = o and tdet = —¢. Thus, our work to
check if there is a proper intersection between the two line segments by substituting the endpoints
into line equations provides most of the calculation required to determine the parameters of the
intersection point. Note that each parameter (s and 1) is actually stored as a numerator and
denominator of a fraction. It should be easy to see from the above equations that if the initial
endpoints for lines P and Q require n bits for their representation, than these numerators and
denominators will each require at most 22 4 1 bits plus a sign bit. The Algorithm in the appendix
shows Pascal-like pseudo-code for calculating the intersection point between two line subsegments.

Given the parameter definition for an intersection point, we must also be able to calculate

the relative position of two such intersection points along a line segment. In other words, we

6

must determine if one intersection point is to the left or to the right of another intersection point
along the line segment. This is used in the polygon set operation algorithms to do their work of
deciding which part.s of the a priori line segments will actually be in the answer, This calculation is
straightforward since doing so is equivalent to deciding which of the fractions %i- and g—z is greater
by comparing the two products Ny + Dy and N 2 * D1. This requires a (temporary) further doubling
of the resolution, to 4n + 4 bits, including the sign bit. For our implementation, we allow original
vertex points to be 15 bit unsigned integers, The numerator and denominator of the parameters s
and ¢ are each 32 bit signed integers. The intermediate calculations for comparing the magnitude of
the parameters require multiplication of two 32 bit quantities, which can easily be done in software

if 64 bit integers are not provided by the compiler.

3. ROTATIONS

Ideally we would like to extend our algorithm for exact intersections o include rotations.
So that all computations can be made exactly, rotation matrices should have rational entries, and
the numerators and denominators of these entries should have a fixed bounded magnitude. We also
require a “reasonable” numbér of distinct rotations — while the four rotatioﬁs provided by multiples
of 90° meet our requirements for rational entries in the rotation matrix, clearly four rotations are
not enough!

Since we want the operations of rotation and intersection to commute, the set of rota-
tions should be closed under matrix multiplication. We show below that one cannot satisfy these
constraints, first offering a proof for 2D then extending it to 3D.

We suppose that G is a finite set of 2 X 2 rotation matrices closed under multiplication,
and each element of G has rational coefficients. From a theorem of Da Vinci [Wey52], any finite
semigroup (having n elements) of direct isometries (i.e., distance preserving transformations) of
the plane is a cyclic group of rotations. In particular, any finite semigroup of rotation matrices is

7

a cyclic group; i.e., the elements have inverses and there is an identity rotation. Note that the set
must be finite because of the limitation on size of the numerator and denominator of the rotation
matrix entries. There is a natural isomorphism f of the set of rotation matrices onto the set of
complex numbers with modulus 1 which carries the matrix
(cosa —sino)
sihnae cosa

to cos e+ ¢sine. Since the group G is now seen to be a finite cyclic group of order n, if¢ € G and
f(z) = cos o + isina, there is an integer & such that no = 2kr.

Tt follows that the set G is generated by a rotation of 27}7- radians. Visually, imagine 2
vertical line segment that can be subjected to n rotations, forming n equal size pie slices. Thus
f(G) is the set of roots of 2™ — 1 = 0 (this should be familiar to anyone who has studied Fast
Fourier Transforms). Let { be a root of 2 — 1 = 0. Then ¢ (i.e., the complex conjugate of () is
also a root; so ¢ and ¢ are algebraic integers. ({ +) = 2Re(() is an algebraic integer and rational,
This forces ¢ 4 ¢ to be an integer [Lang71]. ¢+ CIKIC+ | C=2. Thus, Re (¢) can only be —1,

3 O, %, orl. We note th&t Re (C) o= % imphes Im(C) = '\/1 —_— (%)2 = % Which ig i]_‘]_-a,tiona']_, and

Nli—‘

conclude that the only possible rotations are by multiples of 90°.
In 3D, a finite set of matrices, each of which has determinate one, which is closed under
. multiplication, is a group. The finite subgroups of the orthogonal group, which consists of matrices
such that AA™ = I, are well known (see any book on crystallography). Those that have rational
coordinates have order less than or equal to 24. In other words, the largest finite subgroup is the
set of rotations which carry a cube to itself [Yale68].
From the foregoing proofs, we conclude that approximations must be made. One can either
(1) take an exact rotation matrix, perform the rotation, and then truncate the result {the approach
suggested in [Hoff89a]) or (2) approximate each rotation matrix. Using floating point numbers is
effectively equivalent to (1). We see that in (2) the product of matrices approximating rotations
of a® and §° is only an approximation to the matrix approximating a rotation of (e + 8)°. In

8

both cases, exactness is lost; however, in (2) the linear transformation representing a rotation has
determinate near one and is thus a topological map, i.e., a continuous one-to-one map which distorts
objects slightly, but does not displace vertices across lines.

We can extend the methods .previously described to support some operations involving
rotations. Specifically, we can do the following requiring oﬁly a fixed increase in sforage. We
can rotate an object by some specified angle (actually, we then do an operation that is almost
a rotation by that angle, and is topologically consistent). By using the standard technjqﬁe of
storing the original polygon and its rotation angle, we can do an arbitrary number of rotations on
a polygon, preserving all topological properties without a growth in storage requirements. We can
take the intersection of two rotated objects (if the rotations are the same), and it will identical
to the rotation of the intersection of the original objects. We can perform point in polygon on a
polygon with some query point (which is the intersection point of two a priori lines) and get the
same answer as we would get if we rotated the polygon and the query point, and then performed

the query.

4. CONCLUSIONS

We performed an expeﬁment to compare the time required to use our exact intersection
representation with the floating point representation of parameters. Note that with 15 bit vertices
and 64 bit floating point values, we were unable to find any case where the floating point repre-
sentation produces incorrect results. We took the intersection of a large number of quadrilaterals
generated at random such that they all share a common central region so that the intersection
would not be empty. We performed the test both on a DECstation 50.00 (for 10,000 polygons) and
a-MaclI (for 1,000 polygons) so as to compare the performance on different architectures. The pro-
gram was implemented using the C programming language. On both machines we found that both
versions of the program ran in roughly the same timé, with the floating point version being perhaps

9

20% faster than the integer version. However, neither implementation was optimized. Code tuning
could easily change the relative timings. Thus, the most that we can conclude from this experiment
is that use of the accurate intersection approach is not significantly slower than the floating point
approach.

We have presented the details for representing one or more collections of polygons so as to
accurately compute their intersection. This representation is quite easy to implement, and does not
have unreasonable space requirements. It is quite efficient as compared to straightforward floating
point calculations. We also démonstrated that a generalized scheme for accurate computation with

rotations is not possible,

The 2D version of this method as described in this paper can be used directly for GIS
using a vector model for representing regions, 2D CAD systems, and object-space hidden surface
removal algorithms (i.e., such as Warnock’s algorithm [Warn69)] or Weiler and Atherton’s algorithm
[Weil77]. Our method should be fairly easy to convert to 3D. A related approach based on a fixed

set of planes is presented in [Hoff89a).

5. ACKNOWLEDGEMENTS

We wish to express our thanks to Daniel Farkas, who provided the proofs in Section 3.

6. REFERENCES

1. [Fran86] W.R. Franklin, P.Y.FF. Wu and S. Samaddar, Prolog and geometry objects, [EEE
Computer Graphics and Applications 6, 11{November 1986), 46-55.

2. [Good89] M. Goodchild and S. Gopal, Eds., Accuraéy of Spatial Databases, Taylor & Francis,
London, 1989.

3. [Hoff89a] C.M. Hoffman, Geometric & Solid Modeling: An Introduction, Morgan Kaufmann, San
Mateo, CA, 1989.

4. [Hofi89b] C.M. Hoffman, The problems of accuracy and robustness in geometric computation,
IEEE Computer 22, 3(March 1989), 31-41.

10

5. [Lang71] S. Lang, Algebra, Addison Wesley, 1971, p. 240.

6. [Mile88] V. Milenkovic, Verifiable implementations of geometric algorithms using finite precision
arithmetic, Artificial Intelligence 37, (1988), 377-401.

7. [Nels86] R.C. Nelson and H. Samet, A consistent hierarchical representation for vector data,
Computer Graphics 20, 4(August 1986), 197-206.

8. [Sega90] M. Segal, Using tolerances to guarantee valid polyhedral modeling results, Computer
Graphics 24, 4(Aungust 1990), 105-114.

9. [Warn69] J.E. Warnock, A hidden line algorithm for halftone picture representation, TR 4-15,
Computer Science Department, University of Utah, Salt Lake City, Utah, 1969.

10. [Weil77] K. Weiler and P. Atherton, Hidden surface removal using polygon area sorting, Com-
puter Graphics 11, 2(Summer 1977), 214-222,

11. [Weyl52] H. Weyl, Symmetry, Princeton University Press, 1952, p. 65.

12. [Yale68] P.B. Yale, Geomeiry and Symmetry, Holden-Day, 1968, p. 107.

7. APPENDIX

The algorithms presented in this appendix are written in PASCAL, augmented with a
return construct. The following subroutines are used in the pseudocode without formal definition.

maxmin(a, b, mazval, minval) returns in mazval the greater of values ¢ and b, and returns
in minval the lesser of values o and b.

sign(z) returns 1 if 2 is positive, 0 if 2 is 0, and —1 if z is negative.

type
DBLINT = array [0..1] of integer; { 64 bit integer }
POINTRANGE = -16383 .. 16383; { Vertex value range }

ENDPOINT = record { A priori segment vertex }
z,y : POINTRANGE

end;

SEGMENT = record { A priori line segment }
first, last : ENDPOINT
end;

PARAM = record { Intersection parameter along SEGMENT }
num, denom : integer
end;
SUBSEGMENT = record { A computed subsegment }
apriori : SEGMENT:;
direction : boolean;
ParOne, ParTwo : PARAM
end; '

11

INTPOINT = record { An intersection point descriptor }
seg: array [0..1] of SEGMENT;
par : array [0..1] of PARAM;
a, b, c, d : integer

end;

function SubSegmentIntersect(ss/, ss2: {SUBSEGMENT; var ipt : TINTPOINT) : boolean;

{ Calculate and return in ipt the intersection point for two subsegments. This function calls
SegmentIntersect to check for intersection of the a priori line segments, and then checks to
see if the intersection point actually falls within the parameters defining the endpoints of the
subsegments. }

begin { We assume that lines always go from the first endpoint to the second }

if (not SegmentIntersect(ssiTapriori, ss2lapriori, ipt)) then return(FALSE);

if (LessThan(sptf par[0], ss1] ParOne) or GreaterThan(ipt] par{0], ss11 ParTwo)) then
return(FALSE) _

if (LessThan(ipt par{1], ss2{ ParOne) or GreaterThan(ipt(par{1], s32] ParTwo)) then
return(FALSE)

return(TRUE)

end;

function SegmentIntersect(p, ¢ : ISEGMENT; var ipt : TINTPOINT) : boolean;
{ Return in ipt the descriptor for the intersection of a priori line segments p and g if there is such
_ an intersection. The function returns TRUE iff there is an intersection. }
var
maxl, minl, max2, min2 : integer; { For computing bounding boxes }
a, b, ¢, d : integer; { See equations in Section 2 }
begin
{ Check if bounding boxes for the segments intersect }
maxmin(pfirst.z, pllast.z, mazl, mini);
maxmin(q] first.z, ¢l last.z, maz2, min2);
if ((mazi < ming) or (minl > maz2)) then return(FALSE);
maxmin(p first.y, pTlast.y, mazl, mini);
maxmin(qT first.y, q1last.y, maz2, min2);
if ((maz! < ming) or (minl > mar2)} then return(FALSE);

{ Solve vector equation {1~ 1) % pl + ¢ p2 = (1 — s)* gl + s * 2. }
a = (gl first.y — pl first.y) « (p]last.z — plfirst.z) — g first.x — plfirst.y) * (pTlast.y — T first.y);

b := (qllast.y — plfirst.y) + (pllast.y — plfirst.y) — (qTlast.z — plfirst.z) * (pllast.y — pl first.y);
if (sign(a) = sign(bh)) then return(FALSE); { points both on same side or on line }

e := (plfirst.y — gt first.y) * (¢1last.z — qlfirst.z) — (pl first.z — g1 first.z) » (qllast.y — g1 first.y);
d := (pllast.y — gt first.y) * (¢Tlast.z — gl first.z) — (pllast.z — q1 first.z) » (q1last.y — g1 first.y);
if (sign(c) = sign(d)) then return(FALSE); { points both on same side }

iptlseg[0] = p; iptlseg[l] = g;

{ Used to determine directions of crossing }
pila = a; iptlh:=b; iptfe:=¢; ipt]d = d;
if ((¢ — b) > 0) then

begin

iptTpar[0].denom = a — b;

iptTpar(0].num = —¢;

12

iptTpar{l].denom = a — b;
iptTpar[llnum = q
endelse { at this point, (& — b) must be less than 0 }

begin
iptTpar[0).denom = b — a;
iptTpar[0].num = ¢;
iptTpar[l].denom = b — a;
iptTpar[l].num = —
end

end;

function GreaterThan(Parl, Par2 : PARAM) : boolean;
{ Return TRUE iff line subsegment parameter Par is greater than Par2. }
begin
return(LessThan(Par2, Parl))
end;

function LessThan(Par!, Par2 : PARAM) : boolean;
{ Return TRUE iff line subsegment parameter Par{ is less than Par2. }
var Resl, Res2 : DBLINT;
begin
{ Assume that all components are non-negative since this code is used with proper intersections
of line segments. }
mult(Par!.num, Par?.denom, Resl);
mult(Par?.num, Parl.denom, Res2);
if (Res1[1] < Res2[1]) then return(TRUE) -
else if (Resi[1] = Res2[1]) then
if (Res1[0] < Res2[0]) then return(TRUE);
return(FALSE)
end;

procedure mult(long!, long2: integer; var Result : DBLINTY);
{ Multiply two 32 bit integers, returning the result into array Result. Input values longl and long2
are positive. }
begin
Result[0] = (long1mod2!%) x (long2 mod2'8);
Result[l] = (longldiv 2'%) « (long2div 21°);
temp = (longl mod2'%) x (long2div 216); :
temp = temp + (longidiv 21°) * (long2mod216);
Result[1] = Result[1] + (tempdiv 216);
Result[0] = Result[0] + ((tempmod2'0) x 216)
end;

13

