Requirements for a Software
Maintenance Methodology

By Richard E. Nance, James D. Arthur,
and John A. Ciaramella, Jr.

TR 91-21

FINAL REPORT
(Appendices Not Included)

*Cross-referenced from Technical Report SRC-91-003; Systems Research Center; VPI&SU; Blacksburg, VA
24061; 17 May 1991. Work supported by the Naval Surface Warfare Center under contract number N60921-83-
G-A165 B048. This report is not to be reproduced nor cited, in total or in part, without the written permission
of the anthors. For information on obtaining appendices, please contact the authors at the address listed above.

ABSTRACT

 This project ventures into the domain of software maintenance methodologies, an area
given relatively little attention in software engineering. Project efforts are divided into three
tasks:

(1) definition of maintenance methodology requirements,
(2) development of a model of the AEGIS maintenance process, and
(3) specification of the requirements for an AEGIS maintenance methodology.

The focus of this report is on the third task, performed in the period 1 July 1990 - 20 May
1991.

The research utilizes the Objectives/Principles/Attributes (OPA) framework developed
for software quality assessment for time-critical, embedded systems. The overriding
maintenance objective is to “realize desired changes in an efficient and effective manner.”
Four principles are identified that support achievement of this objective. Principles
identified in the OPA framework are also applicable. As a consequence, eleven (11)
requirements are derived for an AEGIS maintenance methodology.

The AEGIS maintenance process model is used to determine the potential points
where any of the requirements can be met. Recommendations are made with respect to
restructuring the process, noting the most appropriate place for meeting requirements, and
acquisition or development of software utilities to support maintenance. Recommended as
an approach for meeting long-term needs is the AEGIS System Evolution Environment,
supporting both systems and software maintenance activities.

[Appendices Not Included]

CR Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications; D.2.7 [Software Engineering]: Distribution and
Maintenance.

General Terms: Documentation, Management.

Additional Key Words and Phrases: Methodologies, reverse engineering, model,
maintenance.

AEGIS Maintenance Methodology

1. Imtroduction

This is the final report for the project entitled, Development of an AEGIS
Maintenance Methodology (N60921-83-G-A165-B-048). The project is separated into
three tasks:

1. Definition of maintenance methodology requirements, investigating the
differences in approaches, techniques, and methods that contrast the maintenance
and development phases of the software life-cycle.

2. Development of a model of the AEGIS maintenance process, based on earlier and
on-going work by NAVSWC and contractors, and through active guidance and
participation of an Advisory Panel.

3. Specification of the maintenance methodology based on general requirements for
maintaining time-critical embedded systems but also recognizing specific needs
of the AEGIS application domain.

The report focuses on the third and final task of the project which covers work
performed in the period 1 July 1990 - 20 May 1991,

2. Background

In preparation for Task 3, Task 1 provides a definition of maintenance methodology
requirements and Task 2 develops AEGIS maintenance process models using both
detailed and aggregated representations. A brief review of prior work is given below to

provide a context for understanding the most recent effort.

2.1 Task 1: Definition of Maintenance Methodology Requirements
The foundation for the Task 1 research is from an earlier project exploring software

development documentation potentials using current technological advances, such as

hypermedia, mass storage technology, and knowledge representation. The final report for
that project, "Documentation Production and Analysis Under Next Generation
Technologies,” (N60921-83-G-A165 B043-01) proposes the Abstract Refinement Model
(ARM) as a means for depicting iterative refinement of development documentation in
the specification of a software system. The critical importance of development
documentation in the early maintenance activities is demonstrated by the ARM. The
ARM also allows one to characterize the objectives of reverse engineering more
explicitly than any model to date. Linking maintenance to development more directly
than prior models, the ARM underscores the necessity for a software maintenance

methodology for time-critical embedded systems.

2.1.1 Literature Search
To bring such a methodology'into existence for the AEGIS Combat System, the
approach in Task 1 relies on an extensive analysis of software engineering literature,

seeking to

(1) compare and contrast the activities of development and maintenance,

(2) recognize explicit treatments of software maintenance for time-critical embedded
systems, and

(3) derive requirements for an “ideal methodology" that can form the target for a
process model and an AEGIS maintenance methodology (to be developed by the
Advisory Panel).

To derive requirements for an "ideal methodology," numerous definitions of
maintenance are considered, and a categorization of maintenance forms is presented.

Notably absent in the software life-cycle models is the depiction of an explicit linkage

between development and maintenance activities. A detailed explanation of life-cycle

model deficiencies can be found in the subtask 1 interim report.

2.1.2 Requirements and Principles: OPA Perspective
In conjuction with complementary research findings presented by other authors, the
principles defined by the OPA approach provide significant insights into what one might

expect from a maintenance methodology:

(1) The objectives of a particular methodology are, to a large extent, reflective of
requirernents imposed by a set of system specifications. Within the maintenance
framework, for example, a requirement to provide access to development
documentation commensurate with the maintenance form underlies an objective of
realizing desired changes in an efficient and effective manner. Identifying
requirements and recognizing their role within 2 methodological framework is crucial
because one must be able to assess the impact of constraining or sacrificing a
particular requirement. The significance of this statement becomes even more
evident when one considers that a single requirement often impacts several
objectives.

(2) Recognizing the impact of requirements on methodological objectives is not, in and
of itself, sufficient to define or guide a maintenance activity. Because maintenance
tasks within the time-critical embedded systems domain can have wide-spread
impact, a well-defined, systematic approach to performing maintenance activities is
essential. Moreover, that approach must recognize, encourage and support the
achievement of system-wide objectives through the enunciation of complementary
methods and techniques.

(3) Intrinsic to a maintenance methodology, and providing the driving force behind many
of the maintenance activities, is a set of principles that must be employed to achieve
the objectives emphasized by that methodology.

(4) Finally, the OPA framework provides a basis for arguing the importance of a well-
defined, systematic approach to performing maintenance and of the crucial role of
principles in supporting the maintenance process. One should recognize, however,
the significance of principles in the shaping of the maintenance environment. The
effective employment of methodological principles often requires the use of tools
with specific capabilities. A study of such principles should yield requirements for
tool capabilities, and subsequently, assist in the identification and selection of tools
appropriate for the maintenance environment.

The OPA approach provides a framework in which maintenance requirements can
be expressed. The elements used are methodology objectives, the principles by which

the objectives can be achieved, and the attributes of the tesultant system.

The objectives and attributes for a maintenance methodology correspond closely to
those for development. One new objective can be stated as “realizing desired changes in
an efficient and effective manner,” the primary objective of maintenance, which the

methodology must promote.

The fundamental maintenance objective - effective and efficient change - leads to the

identification of four new principles:

Scope Delineation- The initiation of every task should be the identification of bounding
(document) components.

Varied Abstraction - Representations that support multiple levels of abstraction and the
transitions among them should be utilized in the maintenance Process.

Change Propagation - Recognition of the need to propagate specification changes
through multiple levels of abstraction (i.e., throughout the maintenance
document set).

Quantification with Abstraction Resolution - Quantification of the product quality should
be a constant goal: the potential for quantification is inversely related to the
level of abstraction.

2.1.3 Requirements for a Software Maintenance Methodology.
In concert with the principles enunciated in section 2.1.2, requirements for a
software maintenance methodology are derived. The requirements are built upon the

insight provided by the OPA framework and work toward the fundamental maintenance

objective. Each requirement is stated with a description and reference to the governing

principles. Also included are the heuristic rules for applying them to the process model.

1) Access to development documentation commensurate with maintenance forms.

Principle: Varied Abstraction.

Purpose: A mechanism for accessing development documentation is the first need, but
secondly, this access should be guided by the form of maintenance. The need for
accessing specific levels of documentation for particular maintenance forms is
described by the Abstraction Refinement Model [NANRS9].

Rule for Application: This requirement applies to any activity which utilizes

development documentation.

2) Provide for decisions which maximize product availability (consider system

availability). .

Principle: Varied Abstraction

Purpose: This requirement relates to the global objective of the maintenance process
being both effective and efficient. The methodology should seek to ensure that
quality is not sacrificed but changes are accomplished efficiently.

Rule for Application: This requirement might be interpreted in two ways (neither is
incorrect). First, the decisions could minimize time spent in the maintenance
process. Second, the decisions could maximize product quality, and in particular,
reliability. Both should be combined since neither alone is adequate. However,
the application of this requirement is necessary where decisions of either type are
made.

3) Each modification activity should include the Jollowing sub-activities:

(a) ldentify source and target (order is source dependent).

(b) Define and effect transformation process.

(¢) Record source, process, and target.

(d) Test:

(1) Identify original test specifications
(2) Modify original test specifications for target.
{3) Revise test procedures and apply them.

Principles: Varied Abstraction, Scope Delineation, Change Propagation.

Purpose: The major steps in making a modification are prescribed. Actually making
the modification requires the identification of the source of the maintenance
actions, the target of the actions (a solution) and the means for realizing that
target. Complementing these activities is the recording of the source, target and
the process (including design decisions) to ensure compatibility of the
documentation with the programs. Finally, testing is required to ensure that the
correct target is achieved.

Rule for Application:This requirement governs the modifications made during
maintenance, and so impacts these activities. It is not necessary that each of the
parts of the requirement occur in sequence with no separating activities,

4) Promote the identification of alternatives, the evaluation of alternatives (risk
assessment) and support documentation of both.

Principle: Varied Abstraction.

Purpose: The maintenance (and development) activities involve the consideration of a
number of alternatives. The recording of these alternatives and their evaluation
provide a justification of the selected change strategy that may be useful for later
maintenance,

Rule for Application: Many alternatives arise in maintenance. The ones governed by
this requirement should be those which impact the system at a lower level of
decision making. In general, these would be alternatives with more than
two choices and would not be of the nature "does the system pass this test?"

5) Recognize and resolve potential interference among concurrent maintenance activities
Principle: Scope Delineation.
Purpose: Maintenance activities might require changes which interfere or interact in

some way. Recognizing and handling this interference helps ensure that
combinations of modifications have a positive result. Otherwise, these

modifications might combine to form an undesired change or one that is obviated
by a subsequent change.

Rule for Application: This requirement applies in the initial consideration of a
modification,

6) Require and facilitate auditing of the maintenance process (metrics and methodology).
Principles: Quantification with Abstraction Refinement.
Purpose: An audit of the maintenance process measures the success of the process in
terms of product quality. The methodology should support auditing to
guarantee the correctness of the process and the quality of the product.
Rule for Application: This requirement impacts all activities which involve
preparation for and evaluation of the maintenance Process.

7) Support (enforce) uniformity in maintenance processiactivity (procedure,
documentation).

Principles: Change Propagation, Varied Abstraction.

Purpose: Providing for uniformity in the maintenance process means that the
procedures used in the maintenance process are the same. The impact of
uniformity in the process is uniformity in documentation. Uniformity in
documentation increases the maintainability of the system by facilitating
understanding of the system.

Rule for Application: This requirement should apply to all activities of the process.

8) Enable prioritization and coordination of maintenance forms and activities.
Principle: Change Propagation,
Purpose: Various maintenance forms attach not only a practical order, but also a
theoretical order to tasks. The practical order captures the necessity for
certain modifications following sequentially. The theoretical order implies that

certain tasks should be performed first for efficiency and effectiveness. The
methodology needs to recognize the ordering in the decision-making process.

Rule for Application: This requirement influences planning and scheduling activities,
but also the initial consideration of a problem (i.e. CPCR).

9) Enforce recording of source, process, target, test documentation, decision alternatives,
evaluation, and final decision.
Principles: Scope Delineation, Change Propagation.
Purpose: To provide for the documentation necessary for future maintenance.
Rule for Application: This requirement enforces the recording of information from a
variety of sources including modifications, design decisions, and testing.

10)Enable, promote and enforce the quantification of the process and product quality.
Principle: Quantification with Abstraction Resolution.
Purpose: Metrics can play a major role in the auditing process if proper
support is stressed. . :
Rule for Application: This requirement impacts all activities.

11) Facilitate access to documentation that reflects the impact of changes made during
maintenance,

Principles: Scope Delineation, Varied Abstraction, Change Propagation.

Purpose: Documentation access is a critical aspect of the planning process for
maintenance. While Requirement 1 establishes the necessity of a means for
accessing development documentation according to levels of abstraction, this
requirement is intended to deal with the fact that development documentation is
gradually repiaced by documentation which reflects the activities of maintenance
on the system.

Rule for Application: This requirement impacts all activities which utilize
documentation of any form. In general, these are planning and analysis activities
for modification and testing.

2.2 Task 2: Evaluation of the AEGIS Maintenance Process

The software maintenance principles and generic requirements derived from Task 1
are used in the development of a methodology in the classical top-down definition. In
developing a model for the AEGIS maintenance process, the process models developed
at the Naval Surface Warfare Center (NAVSWC) by government personnel and SAS
Consultants are joined with the software maintenance principles and requirements from
Task 1. The derivation of abstract models of maintenance process intent assures that

particular domain-specific requirements for embedded system software are preserved in a

hard-real-time application. In the attempt to maintain relevancy and realism, factors
related to the AEGIS application domain, such as system architecture, programming

language, and organizational structure, are included from the beginning.

2.2.1 Understanding the AEGIS Domain

Three models of the AEGIS maintenance process are constructed, each with a
different objective in mind. The initiall model, also called the detailed model, attempts to
represent the process as it currently is performed and understood by all those involved.
The high-level process relationship model has the objective of describing the
communication between individual processes in the éverall AEGIS model. The mid-
level or aggregated model is derived from the detailed model as an expression of intent.
As such, the aggregated model is intended to represent what is being accomplished in the
detailed representation but excluding the more precise characterization of Aow the intent

is currently achieved.

2.2.1.1 Refinement of the Detailed Process Model

The working (detailed) model developed by NAVSWC and SAS Consultants, with
review by Virginia Tech System Research Center, divides the AEGIS maintenance
process into nine subordinate processes. During review of each process deficiencies are
cited with recommendations for improvements conveyed to NAVSWC. The result is an
updated version of each process which reflects a more appropriate flow of the

maintenance activities.

2.2.1.2 Development of the Aggregated Process Model
The aggregated model of the AEGIS maintenance process is formed with the goal of
identifying the methodological intent of the activities. The model is derived by

aggregating detailed activities to describe clearly identifiable functions. The report "Task

2: Modeis of the AEGIS Maintenance Process” provides the aggregate model for each

process.

2.2.2 Realization of Requirements within the AEGIS Domain

The application of the principles and requirements from Task 1 is utilized to
configure the "ideal" maintenance model. Specifically, the application is used to identify
those points in each process where stated requirements can potentially be met. From the
potential sources of improvement, the selection of the most effective or most efficient

points of application can be made (Task 3).

Task 2 emphasizes the application of the requirements for an AEGIS maintenance
environment to the AEGIS aggregated process model. FEach aggregated process is
assigned requirements in the areas where the requirement should be applied. For each
process, the designation of activities to which the requirement applies suggests the

potential for improving the activity.

3. Task 3: Toward a Specification of the AEGIS Maintenance Methodology

Utilizing the aggregated model from Task 2, Task 3 addresses the requirements at
the detailed level. Specification of the ARGIS maintenance methodology (Task 3), is
separated into two parts. First, the requirements as applied to each process of the
aggregated model are mapped onto their detailed counterparts. In applying the
requirements to the detailed model, we further refine the aggregated level and assign
requirements to specific block(s) in each process. Secondly, key requirements are

extracted from a global perspective and then at a level local to each individual process.

3.1 Application of requirements to each process

Closer examination of the aggregated process medel, in conjunction with the
supporting documents provided by NAVSWC, allows the application of requirements to
be refined to a more detailed level. At the aggregated level requirements are associated
with several blocks in the corresponding detailed process. The detailed process model
enables a more definitive application of requirements to block(s). Detailed diagrams for

each process and associated requirements are located in Appendix A,

The application of requirements to blocks within a process is achieved through an
in-depth examination of supporting documents. The fbﬁowing information is utilized:
(1) Key performer of task (organization or individual responsible),
(2) Description of process (activity occurring within each block),
(3) Supporting organizations (organization assisting in the activity),
(4) Product(s) created/updated (output of the activity), and

(5) Products used (information or products required to accomplished the task).

An important observation is that several requirements span entire processes, i.e. they
and are not limited to any subset of blocks within a process. For example, requirement 9
(Enforce recording of source, process, target test documentation, decision alternatives,
evaluation, and final decision) is applicable throughout Process 400 and cannot be

limited to a single block within that process.

3.2 Extraction of Key Requirements

On completion of the detailed process model, key requirements are extracted at two
levels: 1) global to all processes, and 2) inherent to an individual process. This
distinction of key requirements allows for prioritization at both levels and provides a

basis for identifying tools and techniques to help meet those requirements.

10

3.2.1 Global Requirements

Key requirements from the global perspective are identified in one of two ways.
First, if only one or two points within the entire maintenance process offer the
opportunity to meet a particular requirement, then that requirement is classified as a
global key requirement. Requirements 5 and 8 are two that meet such a criterion.
Recognizing the limited capability for responding to these requirements is essential. The
importance of such requirements is also echoed at the individual process level for

emphasis.

The second criterion for determining global requirements entails evaluating a
requirement as applicable to a single process. The requirements in this category are 7, 9,
and 10. Uniformity, recording, and quantification of all activities must be realized over
entire processes. For each global key requirement, recommendations of actions for

attaining the requirement are listed below:

(1) Support uniformity in maintenance processiactivity. (Requirement 7)
SQA must lead the effort in defining uniformity. Configuration Management
should assist in the insurance that requirements are met. A teview should be
conducted by the AEGIS SQA and the Program Office would give the final
approval.

With respect to documentation PMS 400 should be advised of the need to
negotiate an update of the documentation requirements for AEGIS deliverables to
better reflect the progression of documentation requirements stipulated in DOD-
STD-2167A, This recommendation is not to force adherence to 2167A, but to
recognize the intent therein.

(2) Enforce recording of source, process, target, test documentation, decision
alternatives, evaluation and final decision. (Requirement 9)
An efficient and effective means of recording all aspects of AEGIS maintenance
activities requires an integrated environment (explained in Section 5). Such an
environment would then become the foundation of configuration management,

11

with an adjunct to provide SQA functions. The Functional Development Folder is
an indispensable method for recording all relevant maintenance information and
should be considered the basis for recording the evolution of change in a product.

(3) Enable, promote and enforce the quantification of the process and product quality.
(Requirement 10)
Metrification of the process. Any time a change is made it should be done in
accordance with a measurement to determine the final effects on the system. For
example, what is the effect on quality (increase, decrease, or no change) as a
result of a maintenance activity? A justification for the change is also required.
Alternatives should also be examined relative to the effects they would impose on
the system.

A maintenance program that adheres to the OPA framework would provide the
most effective results. In particular, such a program allows the effects to be
reflected in terms appealing to and understood by management. In following this
framework the metrics necessary to derive software quality measures should be
applied throughout the change process.

3.2.2 Local Process Requirements

The detailed model is examined to determine the most crucial requirements in each
process. Key requirements are identified in two Ways: 1) requirements that are crucial to
the success of the individual process and 2) requirements which exist only in limited
segments of a process. Identifying key requirements leads to general recommendations
for each process. Figure 1 provides a chart listing the processes and the
recommendations for meeting key requirements. Appendix B provides a more elaborate
explanation of the general recommendations and also includes Areas of Support which

further refine the recommendations.

4. Guidelines and Recommendations

Review of maintenance activities with AEGIS management and SAS Consultants
has led to recommendations for restructuring the process to provide a more efficient and
effective maintenance environment. Achieving key requirements can be ameliorated by

the adoption of recommended techniques and tools.

12

SUOHEPUAUINNY §53001 | AmT1yg

QUNaseq IX0U Aq PAIIBYIE JI 90U PUR YD) Jo Aousgin 550ssYy (g

ared1idnp © st 94D J1 suTINRp 01 1qd 950 (T
SNIATION SUBUAUIRW JUILINIUOD IIPISUO]) (|

(006) 1sanboy a3uwey
wiesdolq Jmndwoy

SIUAS[I LWAISAS IAYIO U0 5109)J9 ISIDAPE OU sey ymed ainsuy (7

(008) ssa%01g

SUOnBINI0ads 159 Futuap ur pre pue sysi 1503/[EdTUYI) en[eAd 03 spiodas syquon a5y (] arepdp yomng
ssaooxd ynoydnony) ydoy s1 Lirwrojiun 2INSUTL 0) SPIJ JIPNE Y (T (009) 98exorg L19a112(
{p212211p 30npoad) uoneuogur pue {p:da1p s53001d) sourfoping aziseydws o3 SPOIU MATADI HONBHAWNIO((| diys v dojsasg

. UT SIANRUII[E PUB SUOISIIAP 18 proaay (g
SJURUAULRUL JO SULIOY dz1rodaien) (g

(005) ss9001g

sassacoud Burmorioy oyy 1o uonepunoy TBIONID ¥ PIINg SOANRUINIE PUe SYSH FunenjeAs (] 03uey) vopesyidadsg
] 3An2adsar Ay ur pajuaUNIOp 2q ISt WSS ap 01 safueyd Auy (¢
150} wsAs uj sty swapqoad
uaym pansand Lpider oq ueo pue Paynuapt ApIoidxa a1e saARUIdE oS LIS Aq pasn st ydesry Louapuadacy oLreuas (7 (00F) 159, pure

00F HI01H 210J3G PIPISU MIIALI SSOUTPEY UonwIFaNy (oA T-ySig (1

uonerdouy uraiskg

Add Y W p3p10331 99 pnoys saguwyd [y (4
HOISIOOP L2PIS 9U) Ul PIA[DAUT 9q 0) SPIDU YY) WAISAS (¢
9PEW AIE SUCIEOYIPOW pue SOFURYD SE OBQPIS} SNONUNLOI apiaoxd 07 spasu v (¢

Popau Y WASAg puk v Juswo ua2M13q diysuone[ar sy jo uoneajLED (3 (00€) 1891, 1awsg
siutod uonoenxs eiep Anuspy (g
SuORESYIPOW JO 3NSaI ¢ se $9A1193{qo Jupsoufuo SIEMIJOS 10 109713 9A135G0 03 sornawt Lojdwig (7 {00T) apoy pue
atmpayas yuanbasqns oty 398 puk safueyd 10350 0) panubar own 25ewNS? 0) Lysq 950 (1 uB1sa(] poreIaq] oI
(uors1oA Tenustod) ojqeraalap € se Paziug0dal 5q IS (JSHL) WOy SA[qRATRIAN 11V (7 {001) Arergry
1010 UOISIAA JO UOHRAIUT A 31eUSISIP V) Yiim ‘pue UonfUdeadr s191US suLesEq ¢ uaym reziudod aq 1snw) (] urei01 ysijqeisy

SUGTTEPUIURITTTY]

SSITTIg

4.1 Process Restructuring Recommendations

We recommend the following actions be taken:

(1) Process 400, System Integration and Test (SI&T), should provide a path back to
Process 300, Element Test. Currently, if a serious deficiency in a particular
element is located during SI&T, no provision for effecting a repair by the element is
indicated. The SI&T environment is not suitable for identification, analysis and
recording of alternatives specific to an element.

(2) A process model representation should be employed that supports the depiction of
parallel and/or concurrent activities among the elements. This recommendation is
extremely important to prevent conflicting maintenance activities from occurring
throughout the processes. Recognition of concurrent activities can also be used to
prevent the duplication of identical tasks in separate elements.

(3) Classification of the forms of maintenance (corrective, adaptive, perfective, and
preventive) should be done as early as possible to avoid grouping non-compatible
maintenance forms together. Combining multiple forms can lead to degradation in
the maintenance activities since conflicting requirements are presented with different
forms. For example, in corrective maintenance quality may be sacrificed in order to
correct the problem. If combined with adaptive maintenance, where quality cannot
be sacrificed, the conflicting requirement cause the maintenance activities to produce
unsatisfactory results. The risk assessment in terms of technical, schedule and
cost also differs according to the form of maintenance being performed.

(4) Use quality metrics to avoid combining source code elements of highly varying
quality. The demand for quality assessment of code and documentation is greater for
adaptive than for corrective maintenance.

4.2 Recommendations for Techniques and Tools
Meeting several of the requirements enunciated above can be accommodated

through adoption of new techniques or tools. Several recommendations are noted in the

following sections.
4.2.1 Risk Assessment

Risk assessment should be a vital component of the AEGIS maintenance

methodology. Assessment includes three areas of risk: technical, schedule, and cost,

14

Assessment should be initially performed within either the detailed design and code
activities (Process 200) or the quick update activity (Process 800). Technical risk is
especially important in the latter. Reassessment should accompany major changes in
design or code decisions in other processes. Figure 2 shows a risk assessment model
recommended for AEGIS that encompasses three levels of decision making: system,
element, and group. The model depicts a decomposition of risk assessment in a tiered
fashion, such that at each level estimat_es become more precise and focused. Synthesis of
risk assessment at each level leads to a well informed decision at a critical (design, code,
test) review. The risk assessment (reassessment) model would be employed in process

500 (Blocks 542 - 549).

PERT, Program Evaluation Review Technique, is recommended for estimating the
time required to effect changes and evolving a subsequent schedule. PERT would aid in
both schedule and cost risk assessment. PERT modeling for schedule and cost can be

used at the beginning of Process 200: Perform Detailed Design and Code.

4.2.2 Identification of Alternatives

Identification and recording of alternatives within each process is crucial if the ARM
[NANRS9] is to be used. Design modifications for corrective, and particularly adaptive
maintenance can benefit greatly from understanding what alternatives have been
considered and why a specific alternative has been selected. Such information is
especially needed when the in-service support agent is not the developer, as is the case

with AEGIS.

During System Integration and Test (Process 400), the identification of alternatives
can also be performed in another manner, Through the use of a Scenario Dependency

Graph (SDG), a test director is able to identify the dependency among test cases and

15

SaX

[PPOAl JUAUSSISSY NSty 7 undy
ON

(dno.an)
dupraamduy
SWw3)SAQ

suoyedjadg
[1 [¥
ool | T LT |1 L] e \Bea Rpo) “1ad

m A A A
il ol SILIIN 3po)) 1RA TIALT JNOUD
JuBLIA| Y (A9 dnoas uojeyuIMINI0(|
d
(uatdy) . . suopedyadg
Jupsaaudusy Moday N LT T LATE| [T LINTE 15
SWASAQ
[A A A
19A9F SIAJIA] UJSaq
woyskg [P497 Juaumdyg A ARA TIATT INTWHTH
. @wm%
b e suopjesyad

(@AW NOLLVN'IVAH ¥ NOLLJIIRIDSHU TIATT WHLSAS

procedures. Alternate test paths are made explicit for responding to problems during

testing, even in the absence of the test director.

A SDG represents relationships among test activities on two levels, as illustrated in
Figure 3. The more detailed level shows the required precedence among test cases
(following terminology in [ANSI83]) that make up a test procedure; i.e., each test case is
represented as a node in the graph and the edges convey the precedence requirements
among the nodes (test case @ must be completed before test case b is bégun). An
estimate of the time to complete each test case is included (although not explicitly shown
in Figure 3). Required precedence relationships and thé time estimates for completion of

test procedures are developed by aggregating the test case representations.

The utility of a SDG is two-fold:

1) The graph provides a readily accessible guide to alternative testing paths when
difficulties with an operational software component prohibit continuation of the
current test procedure. Note that the SDG does not identify alternatives when test
bed problems are encountered.

2) The time estimated for completion of test cases, and subsequent updates of these
estimates, provide a measure of test progress and the time required to complete
the testing schedule.

4.2.3 Metrics
The application of metrics, both documentation and code, provides a fundamental
foundation for assessing the effect of maintenance activities. Metrics also provide a

means for managing the maintenance process, however, the selection of metrics must be

17

SANP3adaid 131, puk sase) 159, Buowry sdiysuouray 9ouapasald Sunaydaq] ydery Louapuadagg oueuag g a3y

- e e e .]

— " ——

(L's %Y ' Q) gampososd 9891 Juoure satouapuadapiaqui (z) pue
sammpasosd 4807 Tsidinos ‘(e 'q ' ‘() s9su0 9899 Juome 2auapuadapraju (1) :sjaaa) omq
uo satnpasodd 9599 Juown sdiljsuolyujar ay) quasasdas umo jduay) Louspuada(g O{1eUasg y

goal oriented. A clear and consensus acceptance of the utility of the metrics employed is
essential for success. Multiple data extraction points also need to be recognized
throughout the process. For example, in Process 200, code metrics should be applied.
However, the location of the data extraction points should directly reflect the
measurement goal of each metric applied. If this stipulation is not followed, metrics

could be considered as bothersome busy work and uninformative,

4.2.4 Functional Development Folder

The use of a Functional Development Folder (FDF) provides a effective means of
recording risk assessment and identification of al£ematives. It also enforces the
requirement of recording throughout the entire process and creates a foundation on which
future maintenance draws information. The FDF is a vital part to the success of the

methodology and its importance should not be overlooked.

4.3 An Example: Process 200

This section provides examples as to how the methodology can be applied to a
process within the AEGIS maintenance environment. Figure 4, showing the model of
Process 200: Perform Detailed Design and Code, is used as an example. A number of
key requirements are recognized; a justification for the recommendations and how they
should be met is presented. The symbols underneath each block designate the point

where a key requirement should be met.

At the initiation of Process 200 a high level design review occurs along with an
identification of the impact of changes. At this point PERT (3¥) is used to assist the
Element Leader in estimating the time required to effect the changes proposed by the
design and in assessing how these changes will impact the subsequent schedule. During

blocks 200 and 201 it is also important to identify the type of maintenance to be

19

3PO) pue UBISa(pafIeIeQ W0y vy axngy

|
\4 \4 v
O
PO 301N0g 2poy) samog
arquidaooy arepdn aepdp
arduioy spdwoy) o —— dojaaag
R LA L 1 JUTOTH TOSUIIT
(012) (602) (802)
SUIqOLg
apdwioy
JAJOSOY
JUITTIT
(1) v
0T 0l
Lvagry 1591, MOTAIY
1380 . nugy awpdn o1qe1dons udisacq
wor) g —— Jdoranagg mwmmum mM AJirap
TUSIETH TS - SO S T TR
(LoT) (502} TS (v07)
O Ci
@) @)
m . | m
91T YIT 'S0 woLf ()
Y ® 5
MOIAY udsoq saduey) udsag
ugisaq parerag patea Jo 1oeduyg [PAYT-YSIH
10puc)) - dopanaq - T Knuapr - MITADY
JUINIT S |11°111 12 |* e JUTWOT TUESUTI
(£02) (z00) (100) (00z)

sinsay 159],

pue 44
MITATY

[pltel el
(s12)

9pOD) puB UFISI(] PajIeIR(] ULIOLIa]

"qp 3y

00€ 592014

TS

F17)

189,
un
ULIOJID]
IR |11 /|
(€10

e,

[1yssaoang
uonEuawarduy sy

Bunsay, 104
Alquiassy amng
PEOT WLIOYIa] -—
B |1 12,1 1]+ e
€12)

performed (@). This identification aids in assessing the time required to implement the
proposed changes. Different forms of maintenance demand more in terms of code
quality and documentation access. This must be taken into consideration if a realistic

schedule is to be constructed.

The detailed design development and review, which occurs in blocks 202 and 203,
should be performed in conjunction \yith risk assessment (O). Are any technical risks
tmposed by the detailed design, and if so, how do they affect the cost and schedule?
Questions such as these must be asked throughout the development and review of the
detailed design. Access to documentation must be pfbvided to aid in determining risk
factors. This is expressed through requirement 11 in blocks 201 - 204 ().
Documentation must also be provided within block 208, Develop Update Source Code.
The documentation should consist of the original documentation and all updates made

since the initial release of the current baseline.

Throughout Process 200 numerous points exist where data extraction must occur and
where metrics can be used to help guide and manage maintenance activities. Assuming a
goal-oriented approach to metrics, the goal of Process 200 for metric application would
be to determine if any software engineering objectives are affected by maintenance
activities. With this in mind design metrics can be applied at blocks 202 and 203 and
code metrics at 208 (). The information obtained from the metrics can then be
compared with existing values and the difference suggests any change in the software
engineering objectives. For each measurement, whether positive, negative, or
unchanged, a justification is required. This justification documents and enforces
decisions made throughout the maintenance activities and aids in backtracking should

future problem be encountered,

21

Whenever decisions are made that effect the schedule, cost, or technical risk of the
system they must be recorded in the Functional Development Folder. Situations such as
these occur in blocks 205, 209, 214, and 216. Changes made to the system occur in

block 208 and also must be recorded in the Functional Development Folder.

Appendix A contains the detailed diagrams for all nine processes along with the
application of requirements to them. By analyzing the key requirements in each process
techniques and tools can be applied to aid in meeting the requirements as the above

example shows.

5. AEGIS In-Service Software Support: A Planning Perspective
The following assertions concerning the AEGIS Combat Systems Engineering

Program at NAVSWC seem incontrovertible:

(1) In-service software support is becoming more complex because of the increasing
numbers of: ships, baselines deployed, and diversity of combat system elements.

(2) The complexity stemming from technology pull, i.e. potential sophistication of
weapon and system elements, shows no sign of abatement.

(3) Increased quality is desired in the software systems being deployed to meet
adaptive and corrective maintenance requirements; i.c., the objective of reliability
continues to be emphasized, and maintainability is emerging as an objective
demanding high priority.

(4) Increased productivity in the software maintenance process is mandatory as the
increasing numbers of ships, baselines, and mixes of elements must be supported
with no corresponding increase in staff (and perhaps a reduced number).

Total Quality Management and Increased Productivity must move beyond
buzzword status in AEGIS just to keep pace with the increasing responsibilities and
complexities imposed by the combat system application domain. This section sketches

an ambitious, but realistically achievable, plan to increase quality and productivity to a

22

level exceeding the pacing advancements in numbers and technology. Such a plan
continues the high priority on reliability and raises maintainability to an equally high

priority.

5.1 Long-Term Needs

The terminology system evolution in contrast with software maintenance is
especially appropriate for AEGIS since the combat is expected to have a life of 30 years
or longer and the hardyare componcn‘ts are continuously changing (with introduction of
a new block or during ship overhaul). The primary role of a methodology is to order and
define decisions that must be made, as well as bring t6 the attention of decision makers
the appropriate system concerns. The long-term needs of AEGIS in-service support
mandate careful attention to the methodology requirements, the effects of combat system
evolution on the embedded software system, and the consequent efforts in training
AEGIS personnel. Responding to these long-term needs, the concepts associated with a

system evolution environment are outlined.

5.2 Recommended Approach: The ASEE/2000

ASEE/2000 (the AEGIS System Evolution Environment for the year 2000) is
advanced as both a programatic and a technical concept. Programatically, ASEE/2000
represents a goal and the outline of a strategy to reach that goal. Technically,
ASEE/2000 is an implementation of the emerging AEGIS Maintenance Methodology
supported by a set of integrated software utilities that provide combat systerns
engineering and software engineering support within a framework that embraces fraining

support as well.

The definition of the AEGIS Maintenance Methodology is seen as an evolving

process, as rightly it should be. However, the prioritization of objectives and the

23

recognition of guiding principles are prerequisite to the specifics of methods and
techniques prescribed in a methodology. Methods and techniques derived from
underlying principles also serve to define the requirements for software utilities that
enforce, encourage and enable the effective use of am evolving AEGIS Maintenance

Methodology.

5.2.1 The Conceptual Definition

ASEE/2000 is envisioned as a Combat System Evolution Environment following
a development process governed by the Objecfives/Principles/Amibutes (OPA)
framework for software quality assessmenf. Guiding the design of this environment is
the Abstraction Refinement Model (ARM), developed by VTSRC to furnish the
descriptive linkage between development and maintenance. The ARM has proved very
effective in (1) structuring the development process as successive transformations to
resolve abstraction, (2) emphasizing the differences in carrying out the different forms of
maintenance, €.g. adaptive versus éorrcctive, and (3} explaining the role of and necessity

for reverse engineering.

This conceptual definition is manifested in a seamless set of utilities that collectively

constitute:

@ asystems engineering environment,
@ a software engineering environment, and

@ the cornerstone of AEGIS training,
5.2.2 The Functional Definition
The systems engineering environment within ASEE/2000 utilizes dual

complementary simulation models of the AEGIS Combat System:

(1) a combat system performance model driven by the performance of the embedded
software system effectiveness, and

(2) a software system effectiveness model based on changes in system requirements,
software design, supporting computing hardware, supported sensors and weapons,
or schedule constraints.

This environment enables the effectiveness of the software system to be made
visible in the performance of the combat system and, likewise, enabling risk assessmeni
to include software quality objectives such as maintainability and reliability to be
factored into trade-off decisions. Such models, coupléd with quantitative assessment of
software quality, can produce tangible evidence of the importance of sound decisions

regarding the development process (specification, design, coding, testing, etc.).

Translation from the traditionally functionally oriented system specification to an
object-oriented representation is supported. Configuration management support at the
systemn level is aided by a communications infrastructure that includes hypermedia as

well as file transfer and electronic mail capabilities.

The software engineering environment provides formally derived methods based
on AEGIS Maintenance Methodology principles that recognize and promote
systems/software interrelationships. A primary provision is the software quality
assessment utilities based on the OPA framework, which relies on automatic data
extraction and analysis for a metrics-driven maintenance process. Software configuration
management utilizes automated procedures to a high degree and provides triggers and

alerters to prompt and audit human intervention where needed.

25

The training environment is possibly the most important of the three.
ASEE/2000 can provide a clear rationale for viewing AEGIS in-service support as
“system evolution“rather than "maintenance.” A centralized, uniform, and consistent

basis for methodology understanding and learning through utilities that:

(1) explain the role of metrics and the rationale for "metrics-driven software change,”

(2} convey the desired application of TQM initiatives within the software
maintenance context,

(3) show the necessity for and importance of decision support through metrification
of the product and process, and

(4) provide continuous monitoring and evaluation of training needs through
automated feedback on tool usage, assistance requests, and user/student
reactions. -

The training environment offers a clear prospect for improving software
productivity and job satisfaction. New hires and transfers can be rapidly introduced to
the AEGIS Maintenance Methodology, acquainted with the prioritization of objectives
set by management, and oriented to the taxing demands of embedded, time-critical
software systems. On-the-job learning is computer assisted, reducing the training

demands on other personne! and permitting individual pacing of the material.

5.3 ASEE/2000: A Summary

The ASEE/2000 proposal is ambitious, but the needs are apparent and the time to
plan for meeting those needs is now. Conceptually, the proposal recognizes that
methodological links are required betweeﬁ systems and software engineering, Similar
principles govern the application of both, and coupling the supporting environments
offers clear advantages. Complementary simulation models enable the evaluation of
software maintenance decisions in terms of software system effectiveness. Software
system effectiveness is made visible in the predicted impact on AEGIS combat
performance criteria. Coupled with a software quality assessment based on the OPA

framework, tradeoffs in effectiveness versus quality can be made (using software quality

26

indicators), permitting a form of risk assessment not previously recognized in the

software engineering research literature.

6. Concluding Summary and Recommendations
This in-depth investigation of the AEGIS maintenance process has proceeded in

three sequential, subordinate tasks:

® Understanding the relationships linking software development and software
maintenance, reviewing maintenance concepts for time-critical embedded
software systems, identifying principles governing the maintenance activities, and
deriving the requirements for an"ideal" model that forms the target for an AEGIS
maintenance methodology (Task 1); . ‘

® Reviewing and refining a detailed model of the AEGIS maintenance process
produced by NAVSWC and SAS Consultants, transforming the detailed model into
aggregated models that focus on intent as opposed to procedure, and overlaying the
requirernents and principles from Task 1 on the models (Task 2); and

@ Noting the opportunities for requirements to be met, evaluating the alternatives,
suggesting techniques and tools to assist in meeting the requirements, and
prioritizing the requirements based on the suggestions of tools and techniques.
(Task 3)

The following recommendations are ordered in decreasing priority, with some

explanatory comments included:

(1) Adopt a uniform process for maintenance across all elements and throughout the
AEGIS prograrn.

Uniformity in activities and procedures (Requirement 7) has the highest potential
payoff. Enabling and enforcing uniformity permits a single process model
definition at a very detailed level, allows a common environment (set of integrated
software utilities) to serve the entire program, and promotes personnel training,
mobility and productivity. The ASEE/2000 concept could serve as the basis for a
maintenance environment. A secure LAN is also a crucial element.

(2) Employ extensive recording of all pertinent data in performing maintenance
activities (Requirement 9).

27

The Functional Development Folder is a good start toward such a goal.
Maintenance personnel need to appreciate that a system with the lifetime of
AEGIS mandates that changes be made to prior modifications. Maintenance
documentation in time becomes more crucial than development documentation.

(3) Install a metrics program that enables quantification of product and process
quality, coupled with a mandatory responsibility for audit of the maintenance
process (Requirements 10 and 6).

AEGIS SQA needs to focus more on the process and less on the product.
Clarification of the relationship between Element and System SQA is needed. A
metrics program following the OPA framework would provide the most
comprehensive and instructive approach to meeting the AEGIS needs. A metrics-
driven maintenance methodology, although still an idea in development, is highly
recommended.

(4) Categorize the maintenance forms as early as pdssible and do not mix different
forms, e.g., adaptive and corrective, or combine components widely differing in
quality if at all possible.

Mixing maintenance forms unnecessarily complicates the task by introducing
confusion regarding the least common abstraction Ievel required and the
supporting documentation needed. Combining components of widely differing
quality leads to a "leveling" of quality rather than a consistent improvement,

Recommendations regarding individual process structuring and techniques and tools

specific to process activities are summarized in Figure 1.

28

———
Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Model, Maintenance

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188 }
y
ta. REPURT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS]
Unclassified f
2a. SECURITY CLASSIFICATION AUTHCRITY 3. DISTRIBUTION/AVAILABILITY OF REPCRT :
Unlimited
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
Systems Research Center SRC-91-003
5a. NAME OF PERFORMING GORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Systens Research Center (if applicabie) Naval Surface Warfare Center
6¢. ADDRESS (City, State, and ZIP Cade) 7b. ADDRESS (City, State, and ZIP Code)
320 Femoyer Hall : Dahlgren, Virginia 22448-35000
Virginia Tech
Blacksburg, Virginia 24061-0251 :
8a. NAME OF FUNDING / SPFONSORING Bb. OFFICE SYMBOL | 9. PRCCUREMENT INSTRUMENT I0ENTIFICATION NUMBER !
ORGANIZATION (if applicable)
Naval Surface Warfare Center
Be. ADDRESS (City, State, and ZiP Code) ' 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROZECT TASK WORK UNIT
Dahlgren, Virginia 22448-5000 ELEMENT NO. | nNO. NO. ACCESSION NO. i
3
11. TITLE (include Security Classification) '] ;
Requirements for a Software Maintenance Methodology: Final Report (Appendices Not Included)
12, PERSONAL AUTHQR(S))
Richard E. Nance, James D. Arthyr, and John A. Ciaramella, Jr.
13a. TYFE OF REPORT 13b. TIME COVERED 14. DATE QF REFORT (Year, Month, Day) 115. PAGE COUNT
inal FROM_7/1/90 10 5/20/91 1991 May 17 28
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBIECT TERMS (Continue on reverse if necessary and identify by block number} %
FIELD GROuP SUs-GROUP Documentation, Management, Methodologies, Reverse Engineering, ;

19. A8STRACT (Continue on reverse if necessary and identify by block number)

This project ventures into the domain of software maintenance methodologies, an area given relatively little attention in software
engineering. Project efforts are divided into three tasks: (1) definition of maintenance methodology requirements, (2) development of a model
of the AEGIS maintenance process, and (3) specification of the requirements for an AEGIS maintenance methodology. The focus of this report
is on the third task, performed in the period 1 July 1990 — 20 May 1991,

The research utilizes the Objectives/Principles/Attributes (OPA) framework developed for software quality assessment for time-critical,
embedded systems. The overriding maintenance objective is to “realize desired changes in an efficient and effective manner.” Four principles
are identified that support achievement of this objective. Principles identified in the OPA framework are also applicable. As a consequence,
eleven (11) requirements are derived for an AEGIS maintenance methodology.

The AEGIS maintenance process model is used to determine the potential points where any of the fequirements can be met, Recommendations
are made with respect 1o Testructuring the process, noting the most appropriate place for meeting requirements, and acquisition or development
of software utilities to Support maintenance. Recommended as an approach for meeting long-term needs is the AEGIS System Evolution
Environment, supporting both systems and software maintenance activities.

[Appendices Not Included]]
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
B unCLassiFiEDUNLIMITED [SaMe a5 ReT. L7 oTic useRrs : ' 1
22a. NAME OF RESPONSIBLE INDIVIDUAL . {220 TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
DD Form 1473, JUN 86 Previous editions are obsolete, SECURITY CLASSIFICATION OF THIS FAGE

Unelaca: £5ad

