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Abstract. A recently developed active set algorithm for tracing parametrized optima is adapted to multi-
objective optimization. The algorithm traces a path of Kuhn-Tudker points using homotopy curve tracking tech-
niques, and is based on identifying and maintaining the set of active constraints. Second order necessary optimality
conditions are used to determine nonoptimal stationary points on the path. In the bi-ob Jjective optimization case the
algorithm is used to trace the curve of efficient solutions (Pareto optima). As an example, the algorithm is applied
to the simultaneous minimization of the weight and control force of a ten-bar truss with two collocated sensors and
actuators, with some interesting results,

1. Introduction. In recent years there has been considerable interest in simultaneous control-
structure optimization of space structures [4]. Although the problem can be solved by sequential
optimization of a structure objective (J,) and a control system objective (J/,), better designs are
obtained when both objectives are optimized simultaneously (e.g., [5]). In the latter approach both
objectives are combined into a bi-objective cost function 7 = (J5,J.). Bi-objective optimization
gives the designs (known as efficient solutions) where one objective can be improved only at the
expense of the other one. Such a formulation of the problem produces a family of design options
which can be used in the early stages of the design prdcess to guide the evolution of the design [2].

The optimal solutions to the problem of minimizing the bi-ob jective cost function 7 = (J, J,)
can be found by optimizing the convex combination (1 —a)J, + aJ. of J; and J, [2]. Homotopy
curve tracking methods can be used to generate the curve of solutions for « € [0, 1] whenever the
curve is smooth (e.g., [8], [12]). However, the curve of optimum solutions is not necessarily smooth
at points corresponding to changes in the set of active constraints. Therefore it is necessary to
locate such points and restart the tracing algorithm with a new set of actjve constraints.

There have been recent attempts to construct algorithms for tracing a path of optimal solu-
tions. Rao and Papalambros [11] use simple continuation to find the family of parametrized optima
for large changes in a parameter. Lundberg and Poore [6] use a sophisticated predictor-corrector
homotopy curve tracking algorithm to investigate the dependence of the solution on a parameter
and to locate bifurcations and points of extreme solution sensitivity. The objective of the present
paper is to describe the application of a recently developed homotopy algorithm [9] to tracing
optima of bi-objective optimization problems.
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2. Control-structure optimization. The problem of simultaneous structure-control op-
timization is formulated as the minimization of the structural weight W and maximum control
force Fnax subject to constraints on the damping ratios ¢; of the first n,, vibration modes of the
structure.

The equations of motion of the structure controlled by n. collocated sensors and actuators are

written as
Mi+ Dy + Ky = F,

where M, Dy and K are the mass, structural damping and stiffness matrices respectively, u is the
displacement vector, F is the applied control force vector, and a dot denotes differentiation with
respect to time. A simple direct-rate feedback control law [7] is used for the actuator force vector

F given as
F=—-D.q,

where D, is the control matrix which has nonzero rows and columns at positions corresponding to
components of ¢ measured by the sensors. Assuming that there is no structural damping (D = 0),
the structure is described by the system

Mi+ D+ Ku=0

with the general solution u = uge*t, The stability of the system is controlled by the real parts of
the eigenvalues p1;. The stability margins are characterized by the damping ratios ¢; defined as

Gi = —
i = e,
2 2
V0§ + Wi

where ¢; and w; are the real and imaginary parts of ;.

We assume that the matrix D, is positive semidefinite so that the closed loop system has at
least the same stability as the open loop system. Following [7] the goal is to have a control system
which minimizes the maximum control forces for a given velocity bound il < U. The maximum
control force applied by the actuators is

F
Foa = max Wl — D1 = 1 ),
J

Tall,,

where the d;; are the elements of the control matrix D..
The problem of simultaneous control-structure optimization is the bi-objective optimization
problem

(1) minimize (W(a}, Finax(a, D,))
such that Z Idij' = Fmax-;
7
C{(G,Dc) 2 Cﬂi for 7= 1, ey oy

D, 20, (D, positive semidefinite),

a;2ay for i=1,...,n,,

where a is a vector of structural dimensions and W(a) is the structure’s weight. The curve of all
efficient solutions (designs for which neither W(a) nor F,,, can be simultaneously improved) can
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be obtained by minimizing the combination (1 — &)W + a ., of the two objective functions for
all values of & between 0 and 1. The problem can be rewritten as

(2) minimize c(z, o) = (1 — @)W + aFpax
(3) subject to Gi(z) = zo; — 2; 0, i=1,...,m,
(4) Gj-l—nl(w) £ 0, ] = l, ey g,

where z is the ny-vector of design variables including a structural size vector a, the nonzero elements
of the matrix D,, and F,,,. The design variables are subject to the minimum value constraints
#; 2 Zo;; the constraints (4) correspond to the other constraints in the problem (1); and « is
the parameter assuming all values between 0 and 1. The Lagrangian function and Kuhn-Tucker
conditions for this problem are:

n ni+nz
(5) L{z,0,A) = ¢(z,0) + ZAi(wos - &)+ Z AiG(2),
Je n1+ng aGJ .
(6) 'é“a"l‘z )‘jami - A =0, 1=1,...,m,
Fj=nit1
(7) Gj/\j:(}, j:l,...,n1+n2,
) | N20 =L,
(9) ngo, jzl,...,nl-[—ng.

Equations (6)(7) form a system of nonlinear equations to be solved for the design variables
z; and the Lagrange multipliers A; associated with active constraints of the form (4) and with the
bounds for design variables (3). The solution (%, @, A) of these equations, in the generic case, follows
a path (not necessarily monotone in «) that consists of several smooth segments, each segment
characterized by a different set of active constraints.

3. Homotopy curve tracking. The system of nonlinear equations (6)(7) is solved by a
homotopy curve tracking method. By the Implicit Function Theorem, if F : EN+1 — EN is ct,
the system of equations

(10) Flz,a)=10

has some solution (%, a0), and the Jacobian matrix DF(zq, ) of the function F' at (zg, ) has
full rank, then there is some neighbourhood U of (%0, &) such that there is a unique curve of zeros
of F{z,a) in U passing through (29, ap). Assuming that 0 is a regular value of F, this full rank
of the Jacoblan matrix implies that the zero set of (10) contains a smooth curve T' in (N +1)-
dimensional (z, ) space, emanating from {20, 9); T has no bifurcations and is disjoint from any
other zeros of (10). The curve I' can be parametrized by arc length s:

(11) z = z(s), a = ofs).



Taking the derivative of (10) with respect to arc length, the nonlinear system of equations is
transformed into the ordinary differential equations

(12) [Eee)ate)), Falaoha)] (d2Y <o,
@
ds
and
dz
(13) j_i =1,
ds 7 2

where F, and F, denote the partial derivatives of F with respect to ¢ and « respectively, With
the initial conditions at s = 0,

(].4) SL’(O) = &g, (1’(0) = g,

(12)~(14) can be treated as an initial value problem, Its trajectory is the path T of optimal solutions
2(s) = (a(s), a(s)).

A software package HOMPACK [14], [16], which implements several homotopy curve tracking
algorithms, is used to track the zero curve I'. The HOMPACK algorithms take steps along the gero
curve using prediction and correction to find the next point. In the prediction phase a Hermite
cubic p(s) is constructed which interpolates the zero curve T at two known points, Z(s; ) and Z(s;).
The predicted next point is

(15) 2O = p(sy + h),

where p(s} is the Hermite cubic, and & is an estimate of the optimal step (in arc length) to take
along T,
The corrector iteration is

Z(+1) — p(k) _ [DF(ZONTP(z®),  k=0,1,...

where [DF(Z(*) )]+ is the Moore-Penrose pseudoinverse of the N x (N + 1) Jacobian matrix DF.
In practice this pseudoinverse is not calculated explicitly; see [14] for the details of the Hermite
cubic interpolant construction and the corrector iteration.

The parameter « in equations (12)~( 14) is a dependent variable, which distinguishes homotopy
methods from standard continuation, imbedding, or incremental methods, The homotopy approach
is also different from initial value or differentiation methods, since the controlling variable is arc
length s, rather than ¢.



4. Solution along a segment and transition to the next segment. Since the active
constraints in a segment are fixed, they can be treated as equality constraints, Furthermore, along
each segment some design variables are fixed at their lower bound. The vector of these inactive
(passive) variables is denoted z, and need not be considered as design variables for that segment.
The vector of active design variables z; (¢ € Z,) is denoted as z,. Along each segment the Kuhn-
Tucker conditions are solved for the active design variables z; (i € Z,) and for the Lagrange
multipliers A, associated with the active constraints of the form (4) (A, 7 € Z,). For each segment
there are two types of equations:

(16) V1:Gi(z) =0, j €I,
dc aG;

(17) V2io—+ 3 N0, ied,.
Ox; i O,

The active design variables and the Lagrange multipliers associated with active constraints (4)
are the variables in these equations. The homotopy algorithm needs the Jacobian matrix of these
functions with respect to @, z,, and A,.

As suggested by the discussion in §3, it is explicitly assumed here that 0 is a regular value of the
system defined by (16) and (17), i.e., the Jacobian matrix has full rank along a segment. Lety = (o,
Tay Ag). At the start of a segment the set of active design variables and active constraints for this
segment has to be found, so that the vector y is defined. A set of equations is then generated, with
the type of each variable determining the form of the equation appended to the system of equations.
For a Lagrange multiplier associated with an active constraint of the form (4), the equation has
the form (16), and for an active design variable, the equation has the form (17). The system
of equations for the segment is solved using the previously described Lhomotopy curve tracking
technique. Next the Lagrange multipliers for inactive design variables are calculated according to
(6). In these equations the Lagrange multipliers associated with active comstraints of the form
(4) have been computed by the homotopy method, and the Lagrange multipliers associated with
inactive constraints (4) are known to be zero. At each point of a segment the Lagrange multipliers
associated with the lower bound of the inactive design variables or the active constraints of the
form (4) in the segment should be nonnegative, the value of each G, 5 = n1,...,n1 + ns should
be less than or equal to zero, and all design variables should be larger than or equal to their lower
bound. I any of the above conditions is not satisfied the segment is terminated and a new one is
started. The transition point to a new segment is called here a switching point. Depending on the
type of termination, the switching point is the point (which is calculated using a guarded secant
method, since the curve tracker will have overshot) where

1) one of the positive Lagrange multipliers becomes equal to zero, or
2) a previously negative G; of the form (4) becomes equal to Zero, Or
3) an active design variable (1 € 1,) becomes inactive (equal to Toi).

At the beginning of each segment the system of linear equations (6} is solved for Ay,..., A,
m = m + ny, to check which design variables and constraints are active and to find the initial
values of the Lagrange multipliers for the new segment. First the Lagrange multipliers for inactive
constraints are set to zero so that Lagrange multipliers only for potentially active constraints (those
equal to zero) are considered.

Since some of the constraints (4) may be inactive (their values at the switching point are less
than zero), or the derivatives of the constraints (4) with respect to the design variables can assume
values for which some columns or rows in the coefficient matrix of the system (6) are linearly
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dependent, the rank of this matrix can be less than 7y, The rank of the coefficient matrix for the
system (6) determines the number of the constraints (4) which are assumed to be active in the
next segment.

The QR factorization with column pivoting is used to find the rank  of the coefficient matrix.
(Needing to numerically calculate the rankis a fundamental weakness, closely related to the need to
get the active set right in any active set algorithm.) Next the system (6) is solved for all subsets of r
columns which are linearly independent assuming that the Lagrange multipliers for the constraints
(4) corresponding to the remaining columns are zero. To get the solution for each subset at least 7
design variables are assumed to be active (the corresponding Lagrange multipliers are set to Z€ero),
For each subset of r columns (corresponding to r constraints) all combinations of r out of ny design
variables are assumed to be active. The system is solved in turn for each combination to find all
sets of active design variables and active constraints (4) such that the Lagrange multipliers are
nonnegative,

Sometimes there are several solutions satisfying the condition that all the Lagrange multipliers
be nonnegative, Then for each solution the signs of the derivatives of the design variables with
respect to the arc length s are calculated. To obtain these derivatives it is necessary to compute
the derivatives of the design variables with respect to [3] and multiply them by sgn(da/ds)
(determined by the direction in which a segment is to be tracked). A set of active constraints
(4) and active design variables is accepted when the values of these signs indicate that no active
constraint will be immediately violated for increasing values of s. The signs of the derivatives
with respect to arc length s are calculated for design variables, Lagrange multipliers and Gy’s
corresponding to active constraints. A solution is accepted if the derivatives with respect to s of
active design variables that are at their lower bound are nonnegative, the derivatives with respect
to s of zero Lagrange multipliers that correspond to active constraints (4) are nonnegative and the
derivatives of G;'s that are equal to zero are nonpositive,

The path of optimal points can be discontinuous (9], [10]. It is possible that beyond some
value of & there are no neighbouring optima. At this point « is fixed and the problem must be
solved by a standard optimization algorithm to find a new optimum. Tracking a path of optimal
solutions can then be resumed at this new point. It is also possible that beyond a certain value of a
no optimum exists, for example, if the problem becomes unbounded. Furthermore, singular points
such as bifurcation and fold points may occur [6]. Singular points correspond to a rank deficiency
of the Jacobian matrix of the functions given in ( 16) and (17), which has explicitly been assumed
not to occur. Note, however, that since the path parameter is s and not «, a singular F, is not a
problem. It indicates a turning point where dafds changes sign. This case has been encountered in
the examples discussed in the next section. A more detailed description of this segment switching
algorithm is given in Rakowska et al, [9].

Second order optimality conditions [3] are checked to verify that the stationary points found
by solving the Kuhn-Tucker conditions are indeed minima. Second order necessary conditions are

(18) d'[VZ, L]d2 0 for every d such that (VG,)id = 0 Vi€ I,

0*L -
where [Vi L]lm = Fr {,m € Z,. When the second order necessary conditions are not
a T m

satisfied it may still be useful to follow the path of stationary points until the solutions again
become optimal. An alternative way of dealing with nonoptimality along T' is to find a point on
another path in the zero set using a standard optimization algorithm.
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: L — 1, -
FiGURE 1. Ten-bar truss with actuators.

5. Ten-bar truss example. Numerical results are presented here for the ten-bar truss struc-
ture shown in Figure 1. Numbers in circles indicate joints and plain numbers label truss elements.
The truss is controlled by two pairs of direct-rate feedback collocated sensors and actuators shown
by boxes in the figure. The sensors measure velocities, and the actuators apply forces at the posi-
tions and directions indicated in Figure 1. The positions of the actuators have been obtained by
an optimization that determined the most effective locations for controlling the first four modes.
The sensor and actuator pairs are associated with the first (horizontal velocity at joint 1) and sixth
(vertical velocity at joint 3) components of the velocity vector 4. The weight of the truss consists
of the structural and nomstructural components, The structural weight of the truss is given by
2}21 pail;, where g; and I; are the cross-sectional area and length, respectively, of the i-th truss
member and p is the weight density. The nonstructural weight is in the form of 4 concentrated
masses located at nodes 1, 2, 3 and 4. The first four modes are required to have at least three
percent damping ({o; = 0.03), L = 354in, and the minimum gage area for all truss members is
ap; = 0.1085in’. The optimization problem (1) then becomes

10
minimize ¢(e,a) = (1 — a)k Z pail; + aFpay,
i=1
subject to G; = ag; —a; £ 0, i=1,...,10,
G = —dn £0,
Gy = —dge £ 0,
GIS = —+'max é 05

Gha = |dua| + |dig] — Frnax £ 0,
Gis = |dig| + |dss| — Fmax S 0,

Giy1s = —=0.03 + (;(a, dr1, dis, deg) £ 0, i=1,...,4,
Gz = dig — diides £ 0,

where @ is a vector of truss element cross-sectional areas, dyy, dyg, dgg are the nonzero entries of the
control matrix D, Fax is the control force applied by actuators, and k is a scaling constant taken
here to be 0.0261. The design variables in this formulation include the crossectional area vector
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TABLE 1
Path of solutions for low nonstructural weight.

Seg- o Frnax w C Event
ment

0. |0.00000|2.02826 | 48.46283 | 1.26477 Fnax, d11, dig, dgg and
G5, Gie, Gag are active

1. 1 0.11747| 2.02826 | 48.46283 | 1.35448 | a; becomes active

2 0.18311 | 1.75177 | 50.28659 | 1.39282 | Constraint on (2 becomes active
3 0.37383 1 1.75176 | 50.28673 | 1.47662 | ¢; becomes active

4. |0.406406 | 1.69351 | 51.70699 | 1.48846 | Constraint on (1 becomes active
9. 10.59911 | 1.69351 | 51.70702 | 1.55557 | ay becomes active
6

7

8

9

0.778521 1.67529 | 53.34251 | 1.61257 | ag becomes active
0.89848 | 1.66523 | 55.31673 | 1.64274 | a7 becomes inactive
0.92169 | 1.66484 | 55.46817 | 1.64783 | a3 becomes active
1.00480 | 1.65938 | 59.60609 | 1.65988 | & becomes greater than 1

a, the gains dyy, dig, deg and Fl,.,. The last constraint is the positive semidefinite requirement.
Since Fnax is not a smooth function of the other design variables, adding it as a design variable
removes discontinuities in the derivative of the objective function. Furthermore, the absolute value
function |d;;| is not differentiable at zero and so is replaced by a quartic polynomial near zero:

e di; 2_ dij)4 <
ldljl — —2" [3 (d_t) (E: fOI' IdZ_?] = dt)

where d; is taken to be 5% of a typical value for dij.

The results have been obtained for three values of the ratio of the nonstructural weight to
structural weight: low (5.51 Ib at each of nodes 1,...,4 ), medium (22.04 1b at each of nodes
1,...,4), and high (88.16 1b at each of nodes 1,.. .y4). These weights correspond to the ratios
0.4548, 1.8191 and 7.2765 of the nonstructural weight to the weight of the structure when all
members are at minimum gage.

The switching points on the path of stationary points for the low weight ratio are shown in
Table 1. For a = 0 the weight is the only objective, hence the cost function is minimized when all
the areas are at minimum gage. The values for di1, dis, dgg and F,,, were obiained by minimizing
the control objective with a standard sequential quadratic programming algorithm (VMCON). The
same solution holds for small values of . For a 2 0.11747 the derivative of the objective function
with respect to ¢; becomes negative and therefore the objective function can be reduced by using
0; as an active design variable. The homotopy method is used to follow the path of stationary
points starting with this value of o.

The path shown in Table 1 consists of 9 segments, with the second column in the table giving o
at the beginning of the segment. The last column in the table describes the event that signaled the
switching point at the beginning of the segment. Segments are terminated when a design variable
or a constraint becomes active, or when an active design variable hecomes inactive. Plots of Flhax
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FiGURE 2. Fl..x as a function of W for low nonstructural weight.

62.5¢
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FIGURE 3. Structural weight W (pounds) for low nonstructural weight.

as a function of W, the structural weight W as a function of o, and the control force Flrax as a
function of a, are given in Figures 2, 3, and 4, respectively.

Plots of the weight and the maximum control force indicate that the best designs can be
obtained for values of o near 0.4. For these values of & the maximum control force F,,, is reduced
by 92% of its maximum decrease (corresponding to « changing from 0 to 1), whereas the weight is
increased only by 29% of its maximum change. It is interesting to note that along some segments
(0, 2, 4) the design is essentially frozen with only the Lagrange multipliers changing.

The path for the medium weight ratio is described in Table 2. Plots of Fmax as a function of
W and the two components of the objective function W and Fimax are given in Figures 5, 6, and 7,
respectively. In this case the best designs can be obtained for values of a near 0.8 (Finax reduced
by 83% of its maximum change and the weight increased only by 20% of its maximum change).

Along Segments 2 and 4 the design variables again stay essentially at the same value. This
time these constant segments account for most of the range of o variation. At the end of Segment
5 no new segment for increasing o can be found. However it is possible to continue the path by
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1.54

FIGURE 4. Fy.x (pounds) for low nonstructural weight,

TABLE 2

Path of solutions for
medium weight ratio of the nonstructural to the structural weight.

Seg- o Frax W ¢ Event
ment
0. 1 0.00000|3.02251| 48.46283 | 1.26477 | Fyax, di1, dis, dgs and
G1s, Gig, Gao are active
1. 10.10921 | 3.02251| 48.46283 | 1.45844 [ a; becomes active
2. 10.16123 | 2.74944 | 50.15051 | 1.54109 | Constraint on {2 becomes active
3. 10.28693 1 2.74943 | 50.15056 | 1.72217 | a; becomes active
4. 10.31255] 2.65683 | 51.66604 | 1.75732 | Constraint on (1 becomes active
5. | 0.83345 | 2.65683 | 51.66609 | 2.43892 | a4 becomes active
6. 0.86770 | 2.65520 | 52.02666 | 2.48356 | ag becomes active
7. | 0.73754 | 2.60414 | 58.87609 | 2.32371 | a7 becomes inactive
8. [0.87005|2.59906 | 59.62525 | 2.46354 | Constraint on (2 becomes inactive
9. 10.93036 | 2.54966 | 76.44878 | 2.51105 | a5 becomes active
10. | 0.94390 | 2.53224 | 86.29556 | 2.51653 | a3 becomes active
11. | 0.94940 | 2.52316 | 92.48853 | 2.51763 | @; becomes inactive
12. 1100183 | 2.51446 | 105.45971 | 2.51403 | & becomes greater than 1

decreasing « to obtain Segment 6. The second order necessary conditions are not satisfied along
this segment, so points of Segment 6 are only stationary points for the problem. The path of
optimal solutions is resumed in Segment 7. The plot of the ob jective function in Segments 5, 6,
and 7 is magnified in Figure 8. The figure indicates that in the range of 0.738 < a < 0.870 there
are at least two local minima. Up to about o = 0.78, Segment 4 represents the better minimum,

and then Segment 7 does.

10



Fmax

60 70 80 90 160

100t

80t

60,

-

SRR, :

40.. .

0.2 0.4 0.6 o8 1 ©
FIGURE 6. Weight W (pounds) for the medium nonstructural weight (gray line denotes
nonoptimal stationary points, black line denotes optimal points).

At points of discontinuity of the path of optimal solutions a standard optimization program
(e.g., VMCON) can be used to find a point where the solutions again become optimal. It can be
also worthwhile to follow the path of nonoptimal stationary points until a new optimal point is
encountered, if the nonoptimal segment is short or if it is difficult to find a point on another optimal
branch using standard optimization. In this work the path of stationary points was followed even
if they did not satisfy the necessary optimality conditions.

At the beginning of Segment 8 the path of the stationary points can again be tracked only
by decreasing the parameter ¢ along a nonoptimal segment. After o decreases from 0.8700583 to
0.8700568 the path of stationary points turns smoothly (£ becomes singular) and continues for
increasing values of a, becoming optimal again. The two components of the objective function,
the structural weight W and the control force Finax, at the beginning of Segment 8§ are shown in
Figures 9 and 10, respectively. The scale in Figures 9-10 indicates that the solution undergoes
extreme changes in that region with the logarithmic derjvative of the weight with respect to o
(percent change in W divided by percent change in «) being of the order of 300. This requires
tracing the curve with high accuracy.
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FIGURE 7. F,.x (pounds) for medium nonstructural weight (gray line denotes stationary
nonoptimal points, black line denotes optimal points).

o
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FIGURE 8. Objective function ¢ (medium nonstructural weight) along Segments 4-7;
black lines (4: dashed, 5: dotted, 7: solid) denote optimal solutions, gray line (6) denotes
nonoptimal stationary points.

A similar behavior of the objective function is observed at the beginning of Segment 9. The
path of stationary points exists only for decreasing values of a. The path turns smoothly after
« decreases by about 0.00013 and continues for increasing values of @. Points corresponding
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FIGURE 9. Weight W (medium nonstructural weight) at the beginning of Segment 8
(black line denotes optimal solutions, gray line denotes stationary nonoptimal points).

Fmax
2.5991¢ 7

2.5991 ‘,.w*’

cf,,./*’
2.59897¢ \
u + (94
0.87005 870058
2.5988¢

2.5987

FIGURE 10. Fiay (medium nonstructural weight) at the beginning of Segment 8 (black
line denotes optimal solutions, gray line denotes stationary nonoptimal points).

to decreasing values of o are again nonoptimal points satisfying only the first order necessary
conditions,

The path for the high weight ratio is given in Table 3. Plots of the ob Jjective function, F,,.
as a function of W, the control force F,,, and the structural weight W are shown in Figures 11,
12, 13, and 14, respectively.

The path consists of three disconnected parts. Part 1 (Segments 0-16) starts at a = 0. After o
reaches 0.989 at the end of Segment 5, the path continues for decreasing values of o. The optimality
conditions are satisfied along the path except for Segment 3 and segments beyond 5. The program
was terminated in Segment 16, due to numerical difficulties in calculating damping ratios.

Segment 3 corresponds to decreasing values of a. The plot of the objective function in Segments
2, 3 and 4 (Figure 15) indicates that the end of Segment 2 and the beginning of Segment 4 are
only local minima for the problem.
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TABLE 3
Path of solutions for high weight ratio
of the nonstructural to the structural weight.

Seg- o Frax w c Event
ment

0. |0.00000 | 5.50241 | 48.46283 | 1.26477 | Finax, d11, dig, dgs and
G]s, Gle Gg[) are active

1. }10.07049 | 5.50241 | 48.46283 | 1.56355 | a; becomes active

2, 10.11359 | 4.97967 | 50.43286 | 1.73231 | Constraint on {» becomes active
3. |0.29756 | 4.97967 | 50.43290 | 2.40629 | a; becomes active

4. 10.20892 | 4.87604 | 51.54865 | 2.08296 | Constraint on (; becomes active
5. | 0.74981}4.87604| 51.54868(3.99269 | ag becomes active

6. {0.98954 | 4.87275| 52.62111|4.83614 | @19 becomes active

7. | 0.37866 | 4.76709 | 57.49997 | 2.73736 | as becomes active

8. | 0.26466 | 4.69717 | 58.77131|2.37100 | Constraint on (; becomes inactive
9. 10.21374 | 4.88150] 56.56069 | 2.20399 | a; becomes inactive

10. | 0.17565 | 4.68689 | 58.35016 | 2.07866 | Constraint on (s becomes inactive
11. 10.16091 | 4.69896 | 58.26165 | 2.03194 | ay becomes active

12. 10.14978 1 5.12788 | 55.43446 | 1.99810 | a4 becomes inactive

13. 1 0.16106 | 5.39386| 53.70674 | 2.04461 | ar becomes active

14. | 0.17442 | 5.32668 | 54.21070 | 2.09710 | s becomes inactive

15. 1 0.16120 | 5.40809| 53.58279 | 2.04474 | a7 becomes inactive

16. [ 0.12435] 5.54933 | 52.69812| 1.89676 | a; hecomes inactive

0.07236 | 5.32467; 53.42554 | 1.67872 | Program terminated

k7. | 1.00000 | 4.54845 | 211.67533 | 4.54845 | Fraz, d11, dis, dss, as,
a4, G5, ag and Gis
Gig, Giry Gro, Gy are active

18. 1 0.99378 | 4.54915 | 211.64787 | 4.55520 | Constraint on (3 becomes inactive

19. | 0.96882 | 4.56387 | 181.89706 | 4.56959 | a3 becomes inactive

20. 10.95304 | 4.56442 | 181,38046 | 4.57235 | ay becomes active

21. [ 0.94695 | 4.60024 | 155.98564 | 4.57216 | a5 becomes inactive

22. | 0.88676 | 4.73885 | 94.31460 | 4.48096 | Constraint on {3 becomes active

23. [ 0.79871 | 4.74453 | 93.18657 | 4.27905 | @y becomes active

1.00280 | 4.88803 | 64.47497 | 4.89721 | a greater than 1, program terminated

Because Part 1 of the curve never reached o = 1, we used homotopy with nonstructural weight
as the homotopy parameter starting from the point @ = 1 in the medium nostructural weight case.
Part 2 (Segments 17-23) starts therefore at & = 1. After o becomes 0.79871 at the end of Segment
22 the path continues for increasing values of @ and reaches the point a = 1 with larger value of
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TABLE 3 (continued)
Path of solutions for high weight ratio
of the nonstructural to the structural weight.

Seg- o Froax W c Event
ment

24, | 1.00000{ 3.81418 | 90.56545 | 3.81418 Fres, d11, dig, des, ds,
4, g, Ag, Q10 and
Gis, Gis, Gz, Gra, Gap are active

25. 1 0.94858 3.82382 | 88.30493 | 3.74570 | Constraint on {3 becomes inactive
26. 10.95335| 3.84368 | 81.18759 | 3.76323 a3 becomes inactive
27. 10.92253 | 3.85193 | 79.43595 | 3.71414 | Constraint on {; becomes inactive
0.19586 | 4.25997 | 59.44635 | 2.08191 Program terminated

0.2 0.4 0.6 0.8 1

FIGURE 11. Objective function ¢ for high nonstructural weight,

the cost function.

The starting point for Segment 24 was found by a standard optimization program MINOS,
The cost function along this part of the path is significantly lower than the corresponding values
for the two other parts of the path. After o decreases below 0.25 the cost function becomes larger
than in part 1 of the path which means that from that point on the path represents only the
local minima. The program was terminated at o below 0.2 due to numerical difficulties (problem
becomes singular when the eigenvalues pi are real). Segment 27 also appears to contain the best
compromise design. At o = (.39476, the weight is at 65.04234 which is 39.38% of its total increase
while Fr,; is already at 3.93567 which is 92.80% of its total decrease,

6. Concluding remarks. An active set algorithm for tracing parametrized optima was
shown to be effective in tracing the efficient eurve in bi-objective optimization. The results were

15
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FIGURE 13. Fnax (pounds) for high nonstructural weight (gray line denotes stationary
nonoptimal points, black line denotes optimal points).

obtained for the combined contrel-structure optimization of a ten-bar truss for three values of the
ratio of the nonstructural to the structural weight. On the basis of the efficient curve it was possible
to select the value of o which would lead to the best designs. It was found that the efficient curve
can be discontinuous and has regions of frozen designs and regions of extremely high variations in
the design. Furthermore, in several cases nonoptimal segments of stationary solutions bridged the
discontinuities of the efficient curve and thus served as an easy way to continue the tracing process
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FIGURE 14, Weight W (pounds) for high nonstructural weight (gray line denotes nonop-
timal stationary points, black line denotes optimal points).

at such discontinuities.
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FiGurE 15. Objective function in Segments 2-4 (2: dashed; 3: gray; 4: solid) for high
nonstructural weight,
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FIGURE 16, Weight W (pounds),
from Fig.14 (gray line denotes no

points).
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