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Abstract. A recently developed active set algorithm for tracing parametrized optima is adapted
to multi-objective optimization. The algorithm traces a path of Kuhn-Tudker points using homotopy
curve tracking techniques, and is based on identifying and maintaining the set of active constraints.
Second order necessary optimality conditions are used to determine nonoptimal stationary points on
the path. In the bi-objective optimization case the algorithm is used to trace the curve of efficient
solutions (Pareto optima). As an example, the algorithm is applied to the simultaneous minimization
of the weight and control force of a ten-bar truss with two collocated sensors and actuators, with
some interesting results.
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1. Introduction. In recent years there has been considerable interest in simul-
taneous control-structure optimization of space structures {4]. Although the problem
can be solved by sequential optimization of a structure objective {J;) and a control
system objective (J,), better designs are obtained when both ob jectives are optimized
simultaneously (e.g., [5]). In the latter approach both objectives are combined into
a bi-objective cost function J = (J;, J.). Bi-objective optimization gives the designs
(known as efficient solutions) where one objective can be improved only at the expense
of the other one. Such a formulation of the problem produces a family of design op-
tions which can be used in the early stages of the design process to guide the evolution
of the design [2].

The optimal solutions to the problem of minimizing the bi-objective cost function
J = (Js,J.) can be found by optimizing the convex combination (1 — a}J; + aJ, of
Js and J, [2]. Homotopy curve tracking methods can be used to generate the curve
of solutions for & € [0,1] whenever the curve is smooth (e.g., [8], [12]). However,
the curve of optimum solutions is not necessarily smooth at points corresponding to
changes in the set of active constraints. Therefore it is necessary to locate such points
and restart the tracing algorithm with a new set of active constraints.

There have been recent attempts to construct algorithms for tracing a path of
optimal solutions. Rao and Papalambros [11] use simple continuation tofind the family
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of parametrized optima for large changes in a parameter. Lundberg and Poore [6] use
a sophisticated predictor-corrector homotopy curve tracking algorithm to investigate
the dependence of the solution on a parameter and to locate bifurcations and points
of extreme solution sensitivity. The objective of the present paper is to describe the
application of a recently developed homotopy algorithm [9] to tracing optima of bi-
objective optimization problems.

Section 2 develops the control-structure optimization problem, used as a rep-
resentative application of the algorithm. Section 3 briefly recounts some homotopy
theory, although the probability-one aspect of globally convergent homotopy methods
is not used in any essential way here. The heart of the active set homotopy algo-
rithm proposed here, detecting and correctly managing changes in the active set of
constraints, is described in detail in §4. Section 5 presents numerical results for a
ten-bar truss, which illustrates several subtle and complicated phenomena associated
with bi-objective optimization.

2, Control-structure optimization. The problem of simultaneous structure-
control optimization is formulated as the minimization of the structural weight W and
maximum control force Fa, subject to constraints on the damping ratios & of the
first n,, vibration modes of the structure.

The equations of motion of the structure controlled by n, collocated sensors and
actuators are written as

Mi+ Dot + Ku = F,

where M, Dy and K are the mass, structural damping and stiffness matrices respec-
tively, u is the displacement vector, F is the applied control force vector, and a dot
denotes differentiation with respect to time. A simple direct-rate feedback control law
[7] is used for the actuator force vector F given as

F=_D,a,

where D, is the control matrix which has nonzero rows and columns at positions
corresponding to components of % measured by the sensors. Assuming that there is
no structural damping (Dy = 0), the structure is described by the system

Mi+Da+Ku=0

with the general solution u = uge”’. The stability of the system is controlled by
the real parts of the eigenvalues p;. The stability margins are characterized by the

damping ratios & defined as
—0;

?
VAT

where o; and w; are the real and imaginary parts of y;.

&=

We assume that the matrix D, is positive semidefinite so that the closed loop
system has at least the same stability as the open loop system. Following [7] the goal
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is to have a control system which minimizes the maximum control forces for a given
velocity bound [[4[| , < U. The maximum control force applied by the actuators is

F
Fma.x = ma*XU[':&ll[l—oo = ”DC”oo = m'?xz,di.?la

where the d;; are the elements of the control matrix D,.
The problem of simultaneous control-structure optimization is the hi-ob jective
optimization problem

(1) minimize (W{a), Frnax (@, D,))
such that Z [d',‘,:,-’ s Fmax:
J

fé(avDC) 2§ for i= 1,.. <3 Mypy
D. 20, (D, positive semidefinite),

aigaoé for i=1,...,n3,

where a is a vector of structural dimensions and W{a) is the structure’s weight. The
curve of all efficient solutions (designs for which neither W(a) nor Fp.x can be simulta-
neously improved) can be obtained by minimizing the combination (1 — o)W+ aFy ..
of the two objective functions for all values of & between 0 and 1. The problem can
be rewritten as

(2) minimize ¢(z, 0} = (1 — @)W + aFp.,
(3) subject to G;(z) = zp; — 2; S 0, i=1,...,m,
(4) Gj-i—n;(':v)éo'} J=14...,n,

where z is the ny-vector of design variables including a structural size vector a, the
nonzero elements of the matrix D,, and F,,,. The design variables are subject to
the minimum value constraints #; 2 zq;; the constraints (4) correspond to the other
constraints in the problem (1); and « is the parameter assuming all values between 0
and 1. The Lagrangian function and Kuhn-Tucker conditions for this problem are:

Ty ni+ng
(5) L(z,0,A) = ¢(z,0) + > As(wo; — @:) + > AG(),
i=1 j=ni+1
66 ni+nz 0G‘? ‘
(6) 3wg+,z Aj@wi A =0, i=1,...,n,
J=n141
(7) G.I"Aj:o! J=1...,m + 2,
(8) A; 20, J=1..,n +n,
9) G; 20, i=1,...,n 4+ n,.

Equations (6)~(7) form a system of nonlinear equations to be solved for the design
variables #; and the Lagrange multipliers A;j associated with active constraints of the
form (4) and with the bounds for design variables (3). The solution (=, @, A) of these
equations, in the generic case, follows a path (not necessarily monotone in a) that
consists of several smooth segments, each segment characterized by a different set of
active constraints.



3. Homotopy curve tracking. The system of nonlinear equations (6)-(7) is
solved by a homotopy curve tracking method. By the Implicit Function Theorem, if
F: EN*1 5 EN js O, the system of equations

(10) F(z,a) =0

has some solution (g, ap), and the Jacobian matrix DF(zg,ap) of the function F at
(20, o) has full rank, then there is some neighbourhood U of (24, a) such that there
is a unique curve of zeros of F(,a) in U passing through (%0, p). Assuming that
0 is a regular value of F, this full rank of the Jacobian matrix implies that the zero
set of (10) contains a smooth curve I' in (N + 1)-dimensional (7, a) space, emanating
from (29,00); T has no bifurcations and is disjoint from any other zeros of (10). The
curve I' can be parametrized by arc length s:

(11) T = a(s), a = a(s).

Taking the derivative of (10) with respect to arc length, the nonlinear system of
equations is transformed into the ordinary differential equations

(12) [£2(2(s), (), Fula(s),a(s))] g_w =0,
do
@
and
iif
ds
(13) da =1,
2/

where F; and F, denote the partial derivatives of F with respect to z and o respec-
tively. With the initial conditions at s = 0,

(14) z(0) = z, a(0) = ay,

{12)~(14) can be treated as an initial value problem. Its trajectory is the path I' of
optimal solutions Z(s) = (z(s), a(s)).

A probability-one homotopy approach would construct a homotopy map py (o, z;
a), where ¢ € [0,1) and b is a random parameter vector, such that tracking a zero
curve of p, would lead to a solution of (10) for fixed «. It would not be necessary to
assume that 0 is a regular value of either F or py—the supporting theory [14], [15]
says that 0 is a regular value of p, for almost all b, but I must be C2. Algorithms
based on such homotopy maps p, are powerful and robust, but provide solutions only
for fixed «, and cannot easily track the entire zero set of (10) (which is the goal here),
Thus, strictly speaking, the algorithm used here is not a modern (probability-one)
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homotopy method but a variant of are length continuation, on which there is a huge
Literature. See the references in [1], [6], or {13]-[16].

A software package HOMPACK [14], [16], which implements several homotopy
curve tracking algorithms, is used to track the zero curve I'. The HOMPACK algo-
rithms take steps along the zero curve using prediction and correction to find the next
point. Just to give the flavor of such algorithms, one of the algorithms implemented in
HOMPACK, called the “normal flow” algorithm, is sketched here. In the prediction
phase a Hermite cubic p(s) is constructed which interpolates the zero curve I' at two
known points, Z(s;) and Z(s;). The predicted next point is

(15) ZO = p(sy + h),

where p(s) is the Hermite cubic, and A is an estimate of the optimal step (in arc
length) to take along T,
The corrector iteration is

Z*H) = 20 — [DR(Z®)* p(z®),  k=0,1,...

where [DF(Z®*)]" is the Moore-Penrose pseudoinverse of the N x (N + 1) Jacobian
matrix DF. In practice this pseudoinverse is not calculated explicitly; see [14] for the
details of the Hermite cubic Interpolant construction and the corrector iteration.

The optimal step size A is chosen to prevent the corrector iteration from being
too costly,. HOMPACK lets the user specify nondefault values used in determining the
step size, for example, the maximum and minimum allowed step size. Lundberg and
Poore [6] have probably the best algorithm to date for determining A. The param-
eter o in equations (12)-(14) is a dependent variable, which distinguishes homotopy
methods from standard continuation, imbedding, or incremental methods. The ho-
motopy approach is also different from initial valne or differentiation methods, since
the controlling variable is arc length s, rather than «.

4. Solution along a segment and transition to the next segment. Since
the active constraints in a segment are fixed, they can be treated as equality con-
straints. Furthermore, along each segment some design variables are fixed at their
lower bound. The vector of these inactive (passive) variables is denoted ¥, and need
not be considered as design variables for that segment. The vector of active design
variables #; (¢ € Z,) is denoted as z,. Along each segment the Kuhn-Tucker con-
ditions are solved for the active design variables #; (t € Z,) and for the Lagrange
multipliers A, associated with the active constraints of the form (4) (A, 7 € Z,). For
each segment there are two types of equations:

(16) V1iGie) =0, i€,
%, oG ; :
(17) V2:a—:-+2)\36—;= 5 1€1,,
i e, i

The active design variables and the Lagrange multipliers associated with active con-
straints (4) are the variables in these equations. The homotopy algorithm needs the
Jacobian matrix of these functions with respect t0 «, x,, and A,.
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As suggested by the discussion in §3, it is explicitly assumed here that 0 is a
regular value of the system defined by (16) and (17), i.e., the Jacobian matrix has
full rank along a segment. Let y = (@, @qy Ag). At the start of a segment the set of
active design variables and active constraints for this segment has to be found, so that
the vector y is defined, A set of equations is then generated, with the type of each
variable determining the form of the equation appended to the system of equations.
For a Lagrange multiplier associated with an active constraint of the form (4), the
equation has the form (16), and for an active design variable, the equation has the form
(17). The system of equations for the segment is solved using the previously described
homotopy curve tracking technique. Next the Lagrange multipliers for inactive design
variables are calculated according to (6), In these equations the Lagrange multipliers
associated with active constraints of the form (4) have been computed by the homotopy
method, and the Lagrange multipliers associated with inactive constraints (4) are
known to be zero. At each point of a segment the Lagrange multipliers associated
with the lower bound of the inactive design variables or the active constraints of the
form (4) in the segment should be nonnegalive, the value of each G, 5 = ny,..., 7, +ny
should be less than or equal to zero, and all design variables should be larger than or
equal to their lower bound. If any of the above conditions is not satisfied the segment
is terminated and a new one is started. The transition point to a new segment is called
here a switching point. Depending on the type of termination, the switching point is
the point (which is calculated using a guarded secant method, since the curve tracker
will have overshot) where

1) one of the positive Lagrange multipliers becomes equal to zero, or
2) a previously negative G ; of the form (4) becomes equal to Zero, or
3) an active design variable #;(i € Za) becomes inactive (equal to ;).

At the beginning of each segment the system of linear equations (6) is solved
for Adf,.., A, m = m; + ny, to check which design variables and constraints are
active and to find the initial values of the Lagrange multipliers for the new segment,
First the Lagrange multipliers for inactive constraints are set to zero so that Lagrange
muitipliers only for potentially active constraints {those equal to zero) are considered.

Since some of the constraints (4) may be inactive (their values at the switching
point are less than zero), or the derivatives of the constraints (4) with respect to the
design variables can assume values for which some columns or rows in the coefficient
matrix of the system (6) are linearly dependent, the rank of this matrix can be less
than n,. The rank of the coefficient matrix for the system (6) determines the number
of the constraints (4) which are assumed to be active in the next segment,

The QR factorization with column pivoting is used to find the rank r of the coef-
ficient matrix. (Needing to numerically calculate the rank is a fundamental weakness,
closely related to the need to get the active set right in any active set algorithm,) Next
the system (6) is solved for all subsets of r columns which are linearly independent
assuming that the Lagrange multipliers for the constraints (4) corresponding to the
remaining columns are zero. To get the solution for each subset at least r design
vatiables are assumed to be active (the corresponding Lagrange multipliers are set to
zero). For each subset of 7 columns (corresponding to r constraints) all combinations
of r out of ny design variables are assumed to be active. The system is solved in turn
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for each combination to find all sets of active design variables and active constraints
(4) such that the Lagrange multipliers are nonnegative,

Sometimes there are several solutions satisfying the condition that all the La-
grange multipliers be nonnegative. Then for each solution the signs of the derivatives
of the design variables with respect to the arc length s are calculated. A set of active
constraints (4) and active design variables is accepted when the values of these signs
indicate that no active constraint will be immediately violated for increasing values of
&,

To calculate the values of the derivatives of the design variables with respect to a,
the Kuhn-Tucker conditions (6)—(7) are differentiated with respect to a. This gives:

dog BN, O(VS) 0N
(18) At D) e+ N o + e T (Gahe =0,
Oz oG
7 0% g _
(19) N o + o 0,

where 2, is a vector of design variables, Ag is a vector of the Lagrange multipliers
for active Gy, G, is a vector of active constraints Gy, j € Z,, N has components

. 2
ngj = g—i"—, (F€Z,,i€1,), Ais the Hessian of the objective function c, a;; = aaiacxj ,
20,
and Z is a matrix with elements z,; = 5(1%)\3;. After equations (18) and (19) are
: 10
J€T,

solved, derivatives of each G; corresponding to an active constraint (4) with respect
to « are calculated according to

9G; _ <= 0G; 00; |
20) [P SR

For each candidate solution satisfying the Kuhn-Tucker conditions, the signs of the
derivatives with respect to arc length s are then calculated by multiplication by
sgn(da/ds) (determined by the direction in which a segment Is to be tracked). The
signs of the derivatives with respect to arc length s are calculated for design variables,
Lagrange multipliers and G ;'8 corresponding to active constraints. A solution is ac-
cepted if the derivatives with respect to s of active design variables that are at their
lower bound are nonnegative, the derivatives with respect to s of zero Lagrange mul-
tipliers that correspond to active constraints (4) are nonnegative and the derivatives
of G;’s that are equal to zero are nonpositive,

The path of optimal points can be discontinuous (9], [10]. It is possible that
beyond some value of o there are no neighbouring optima. At this point « is fixed
and the problem must be solved by a standard optimization algorithm to find a new
optimum. Tracking a path of optimal solutions can then be resumed at this new point,
It is also possible that beyond a certain value of & no optimum exists, for example,
if the problem becomes unbounded. Furthermore, singular points such as bifurcation
and fold points may occur [6]. Singular points correspond to a rank deficiency of
the Jacobian matrix of the functions given in (16) and (17), which has explicitly been
assumed not to occur. A more detailed description of this segment switching algorithm
Is given in Rakowska et al, [9].
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FIGURE 1, Ten-bar truss with actuators,

Second order optimality conditions [3] are checked to verity that the stationary
points found by solving the Kuhn-Tucker conditions are indeed minima. Second order
necessary conditions are

21 @' [V2 LId2 0 for every d such that V@ d=0 Yjel,
La J g

2
where [V2 L] = ﬂ——, I,m € Z,. Recall that N is a matrix whose columus are
FaTlm T B Oy,

the gradients of active constraints i (7 €Zy). Then a QR factorization of N ,
N=QR=[0:: @ |&,
IZo]  |Zal-|T,

gives a basis (columns of Q,) for ker Nt = (im NY', ie., a basis for all vectors
d L1 VG;Vj € Z,. Therefore the second order necessary condition (21) is equivalent to
Q: [Vﬁa L] 2 being positive semidefinite. When the second order necessary conditions
are not satisfied it may still be useful to follow the path of stationary points until the
solutions again become optimal. An alternative way of dealing with nonoptimality
along I' is to find a point on another path in the zero set using a standard optimization
algorithm.

9. Ten-bar truss example. Numerical resuits are presented here for the ten-bar
truss structure shown in Figure 1. Numbers in circles indicate joints and plain numbers
label truss elements. The truss is controlled by two pairs of direct-rate feedback
collocated sensors and actuators shown by boxes in the figure. The sensors measire
velocities, and the actuators apply forces at the positions and directions indicated
in Figure 1. The positions of the actuators have been obtained by an optimization
that determined the most effective locations for controlling the first four modes. The
sensor and actuator pairs are associated with the first (horizontal velocity at joint 1)
and sixth (vertical velocity at joint 3) components of the velocity vector 1. The weight
of the truss (excluding constant masses of 10 kg at the nodes) is given by 2321 pa;l;,
where a; and /; are the cross-sectional area, and length, respectively, of the i-th truss
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member and p is the weight density. The first four modes are required to have at least
three percent damping (&; = 0.03), L = 354in, and the minimum ares, gage for all
truss members is ag; = 0.1085in2. The optimization problem (2)~(4) then becomes

10
minimize c{a,a) = (1 - a)k Zpaélz- + afay,

i=1
subject to ngam-—az-go, i=1,...,10,
Gi1 = —dyy £0,
Giz = —dgs £ 0,
Gia = —Fpax £ 0,
Gia = ldi| + [dyg] ~ Frnax £ 0,
Gis = |dis] + |des] ~ Fruax £ 0,
Gitrs = =003+ &i(aydun, dusdes) S 0,  j=1,... 4,
Ghyo = dig — dij deg < G,

where a is a vector of truss element cross-sectional areas, { is a truss element length
vector, diy , dig, dgs are the nonzero entries of the control matrix D,, Fioay is the control
force applied by actuators, and % is a scaling constant taken here to be 0.0261. The
design variables in thig formulation include @, di1, dig, deg and Finax. Since F,, is
not a smooth function of the other design variables, adding it as a design variable
removes discontinuities in the derivative of the objective function. Furthermore, the
absolute value function [di;] is not differentiable at zero and so is replaced by a quartic

- _iii dij 2_ d"'-?')4 <
Ide.?f— ) [3(dt) Z for ldz3|=dt:

where d; is taken to be 5% of a typical value for dij.

The switching points on the path of stationary points are shown in Table 1. For
@ = 0 the weight is the only objective, hence the cost function is minimized when a]l
the areas are at minimum gage. The values for dy, , dig, dgg and Fnax Wwere obtained by
minimizing the control objective with a standard sequential quadratic programming
algorithm (VMCON). The same solution holds for small values of o, For « 2 0.1092 the
derivative of the objective function with respect to ¢; becomes negative and therefore
the objective function can be reduced by using ¢; as an active design variable. The
homotopy method is used to follow the path of stationary points starting with this
value of .

are terminated when a design variable or a constraint becomes active, or when an
active design variable becomes Inactive. Plots of the objective function and its two
components W and F,. are given in Figures 2, 3, and 4, respectively,
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TABLE 1
Paih of solutions for ten-bar truss example.

Seg- @ Flnax W c Event
ment

0 0:000003.02251 | 48.46283 [ 1.45844 | Frov, iy dog dos amd
Gis, Gis, Gag are active

0.10921 | 3.02251 4846283 | 1.45844 @; becomes active

0.16123 | 2.74944 1 50.15051 1.54109 | Constraint on & becomes active
0.28693 | 2.74943 | 50.15056 1.72217 | a7 becomes active

0.31255 | 2.65683 | 51.66604 1.75732 | Constraint on & becomes active
0.83345 | 2.65683 | 51.66609 2.43892 | a4 becomes active

0.86770 [ 2.65520 | 52.02666 2.18356 | as becomes active

0.73754 { 2.60414 58.87609 | 2.32371 @7 becomes inactive

0.87005 | 2.59906 | 59.62525 2.46354 | Constraint on & becomes inactive
0.93036 | 2.54966 76.44878 | 2.51105 a5 becomes active

10. [0.94390 | 2.53224 86.29356 | 2.51653 az becomes active

11. 10.94940 | 2.52316 92.48853 | 2.51763 ay becomes inactive

12, [1.00183 | 2.51446 105.45971 { 2.51403 | & becomes greater than 1

Rle[N o o] m]w| el -

)

FIGURE 2. Objective function ¢ along Segments 0-11 (gray line denotes
nonoptimal stationary points, black line denotes optimal points),

Plots of the weight and the maximum control force indicate that the best designs
can be obtained for values of o pear 0.8. For these values of o the maximum control
force Finax is reduced by 83% of its maximum decrease (corresponding to o changing
from 0 to 1), whereas the weight is increased only by 20% of its maximum change,

Along Segments 2 and 4 the design variables stay essentially at the same value,
whereas the Lagrange multipliers for active constraints change considerably. At the
end of Segment 5 no new segment for increasing o can be found. However it ig
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FIGURE 3. Weight W (pounds) along Segments 0-11 (gray line denotes
nonoptimal stationary points, black line denotes optimal points).

2 0.6 0.8 T«
2.
2.
2.
4 o

FIGURE 4. F,, (pounds) along wegments 011 (gray line denotes stationary
nonoptimal points, black line denotes optimal points).

optimization program (e.g., VM CON ) can be used to find a point where the solutions
again become optimal. It can be also worthwhile to follow the path of nonoptimal
stationary points until a new optimal point is encountered, if the nonoptimal segment
is short or if it is difficult to find a point on another optimal branch using standard
optimization. In this work {he path of stationary points was followed even if they did
1ot satisfy the necessary optimality conditions.

At the beginning of Segment 8 the path of the stationary points can again be
tracked only by decréasing the parameter « along a nonoptima] segment. After o
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FIGURE 5. Objective function ¢ along Segments 4-7; black lines (4: dashed,
5: dotted, 7: solid ) denote optimal solutions, gray line (6) denotes nonoptimal
stationary points,

decreases from 0.8700583 to 0.8700568 the path of stationary points turns smoothly
and continues for increasing values of @, becoming optimal again. The two components
of the objective Tunction, the structural weight W and the contro] force F, .., at the
beginning of Segment 8 are shown in Figures 6 and 7, respectively. The scale in
Figures 6-7 indicates that the solution undergoes extreme changes in that region with
the logarithmic derivative of the weight with respect fo o (percent change in I divided
by percent change in a) being of the order of 300. This requires tracing the curve

with high accuracy.

ues of a. Points corresponding to decreasing values of o are again nonoptimal points
satislying the first order necesgary conditions,

6. Concluding remarks, An active get algorithm for tracing parametrized op-
tima was shown to be effective in tracing the efficient curve ip bi-objective optimiza-
tion. Interesting results were obtained for the combined control-structure optimization
of a ten-bar truss. In particular it was found that the efficient curve s discontinu-
ous and has both low and extremely high variations, Furthermore, for this example,
nonoptimal segments of the curve of stationary solutions bridged the discontinuities
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FIGURE 6. Weight W at the beginning of Segment 8 (black line denotes
optimal solutions, gray line denotes stationary nonoptimal points),

Fmax
2.59914 7

2.599¢ o
P

}c"
2.5989} \\\\
F ; o
0.87005 870058
2.5988¢ e

2.5887¢

FIGURE 7, F,., at the beginning of Segment 8 (black line denotes optimal
solutions, gray line denotes stationary nonoptimal points).

of the efficient curve and thus served as an casy way to continue the tracing process
at such discontinuities,
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