Geometric Performance Analysis of
Mutual Exclusion: The Model Solution

By Marc Abrams and Ashok Agrawala

TR 90-59

Geometric Performance Analysis of Mutual
Exclusion: The Model Solution®

TR 90-59
Marc Abrams
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

Ashok K. Agrawala
Department of Computer Science
University of Maryland
College Park, MD 20742

4 December 1990

Abstract

This paper presents an analytic solution to progress graphs used for
performance analysis. It derives the exact sequence of blocking and run-
ning times experienced by two processes sharing mutually exclusive, re-
usable resources. A novel application of Dijkstra’s progress graphs yields
the complex relationship between the waiting times at each synchroniza-
tion point. The problem of solving progress graphs is formulated in terms
of finding the minimum solution of each of a set of Diophantine equations.
An algorithm is presemted to find all sieady state behaviors involving
blocking that emerge from any initial condition.

Categories and Subject Descriptors: D.2.8 [Software]: Metrics — Performance
measures; D.4.8 [Operating Systems]: Performance — Modeling and predic-
tion; C.4 {Performance of Systems]: Modeling techniques

General Terms: progress graphs, parallel programs, resource sharing, software
p) p 3 3
performance analysis, synchronization

Additional Key Words and Phrases: resource sharing, Diophantine equation

*This paper is a massive revision of Ezact Performance Analysts of Two Distributed Pro-
cesses with Muliiple Symchronization Points, Dept. of Computer Science, Univ. of MD.
TR-1845.

Contents

1 Introduction

2

3

Solving Progress Graphs: Algorithm A0
First Refinement: Algorithm Al

Formulas for Cg (X), Cr,(f(X)), &(X), g(f(X))

4.1 Solution Alternatives« . - oo

4.2 Formula for Cg,(f(P))if Cg(P) -

4.3 Analytic Solution of CR(P), g(P), and g(f(P)) .
4.3.1 Formulafor CR(P)

439 TFormulas for g(P) if CR(P) and g(f(P)) if Cr(P} A

CLEP)) v oo

Second Refinement: Algorithm A2
5.1 Time and Space Requirements of Analytic Solution

Conelusion

Acknowledgements

10
10
11
12

i4

15
15

18

19

1 Introduction

The state of many continuous physical systems (e.g., an electrical circuit) may
reach a fixed value as time grows to infinity. Alternately, the system may reach
a limit cycle behavior, in which the stable system state varies periodically in
time. This paper presents a method to predict the dynamics of a class of parallel
programs that displays similar behavior.

The model used here to analyze program behavior is similar to Dijkstra’s
progress graphs, which were used to characterize deadlocks in multiprocessor
systems [5]. Progress graphs are also similar to two-dimensional diagrams used
in verification of parallel programs and communication protocols to illustrate in-
terleaving of operations. Papadimitriou, Yannakakis, Lipski, and Kung [8, 9, 11]
use progress graphs to detect deadlocks in locked data-base transaction systems,
the equivalent of two process programs containing straight line sequences of bi-
nary semaphores. Carson and Reynolds [4] prove liveness properties in systems
with an arbitrary number of processes containing straight line sequences of P
and V operations on general semaphores.

Previous formulations of progress graph models are concerned with the order
of events. The formulation in this paper represents the timings of events. Adding
timings allows analysis of performance propetties of a program.

Progress Graph Model of Program Execution: A companion paper [!]
formally defines and proves properties about a progress graph model of program
execution suitable for performance analysis. This model is sumnmarized below
using excerpts from the companion paper [1]-

The model is based on six postulates. First, a single clock external to the
parallel program exists. References to time refer to values read from this clock.
Second, at any instant of time, each process is either running or blocked. Third,
a program state (ot stale) is represented by an ordered tuple of non-negative real
numbers, each of whose elements corresponds to one process. Each component
of the program state at a particular time equals the total duration of time
that the corresponding process has spent in a running condition. Fourth, the
sequence of program states that a program passes through during a particular
execution defines a program ezeculion sequence. Fifth, a program state is dead
if and only if all processes are blocked. Sixth, an execution sequence contains a
dead state if and only if that, state is the final state of the execution sequence.

Let ¢ and § represent real numbers. The predecessor to the program state at
time ¢ (¢ > 0) in an execution sequence is the program state at time lims_of— 86
in that sequence. If the program state at time £ {t > 0) in a particular execution
sequence is not a dead state, then its successor is the program state at time
lims_,ot + &, provided that S(f) is not a dead state.

Program states may be classified as deterministic or nondeterministic. A
deterministic state is a state that, in all execution sequences containing the

state, has either no successor or the same successor. All program states that
are not deterministic are nondeterministic states.

A program state is nondeterministic if and only if the state of a process
changes between running and blocked in the transition from the state to the
guccessor in some but not all execution sequences containing the state.

Program states may also be classifled as bocked or running. A blocked state
is state in which at least one process is blocked. All program states that are
not blocked are running states.

Interpteting the ordered tuple representing a program state as the Cartesian
coordinates of a graph point implicitly defines a one-to-one and onto mapping
from program states to Cartesian graph points. In general, some graph points
may represent states that do not arise in any execution sequence. FEach graph
axis corresponds to one process. A program execution trajectory is a directed,
continuous path in a progress graph corresponding to the set of states in an
execution sequence; furthermore the path is rooted at the point representing
the initial state of the execution sequence.

Now consider progress graphs representing programs consisting of two pro-
cesses. A ray is a directed line segment of possibly infinite length. A ray is
rooted at its initial point. An execution trajectory is a continuous path in a
progress graph consisting of either a possibly empty sequence of rays followed
by a point or a sequence of one or more rays. Furthermore, all points in a
continuous path in an execution trajectory defined by two end poinis represent
running states if and only if the path is a ray with slope one rooted at the
end point closest to the origin. All points in a continuous path in an execution
trajectory defined by two end points represent blocked states in which the same
process is blocked if and only if the path is a ray parallel to the axis representing
the running process and rooted at whichever end point is closest to the origin,

Let j denote a nonnegative integer. The class of programs analyzed here
meets the following conditions. First, a program consists of two processes. Sec-
ond, a separate processor executes each process. Third, the code that each
process executes consists of a nonterminating loop. Fourth, for each semaphore
o in all execution sequences, the initial semaphore value is one and the j-th
V(o) (respectively, P(c)) operation executed by & process is preceded by exe-
cution of exactly j P(c) operations (respectively, if j >0, j—1 V operations)
by that process. Fifth, if a process is blocked in some state in an execution
sequence and was running in the predecessor state, then the process was exe-
cuting a P operation in the predecessor state and is not executing a P operation
in the current state. Sixth, if a process is running in some state in an execu-
tion sequence and was blocked in the predecessor state, then the other process
was executing a V operation in the predecessor state and is not executing a V
operation in the current state. Seventh, no P or V operation is contained in
a conditionally executed piece of code. Finally, each code segment within each
process that either starts at the initial statement of the loop body and continues
to and includes the first semaphore operation, or follows each semaphore oper-

ation and continues to and includes the next semaphore operation requires an
independently derived, constant, finite, and nonzero amount of execution time,
exclusive of time spent blocked. Note that no assumptions are made about the
architecture (e.g., multiprocessor, network of workstations) on which executes
the program beyond the fact that semaphore semantics can be implemented.

Let 7 € {0,1}. The cycle time of a process 7, denoted ¢, is the time required
to execute the outermost loop of a process once, excluding blocking time.

Let uppercase letters with optional superscripts denote graph points (e.g.,
PY). Let the subscripts 0 and 1 denote the components of a point (e.g., P® =
(P§, P})). Two points P° and P! are comgruent (denoted as P® = PYif
and only if ¥r, P mod ¢, = P! mod ¢,. Let [P, P') denote a line segment with
closed end point P and open end point P, For each semaphore &, (po(7), pL(e))
(respectively, (vo(e), v1(7))) denotes the final state of the subsequence of states
corresponding to the first execution of a P(c) (respectively, V(o))

Let 7 = 1 — r denote processes. For each semaphore & and for each process
r, there exists a constreint line generator, which is an ordered pair (W, X) such
that X, = W, = pr(0), X5 = v7(0), and Wi = pr(c). Point W (respectively, X)
is called the initial (zespectively, final) point of the constraint line generator.
Each element of {[W + (focq,81¢1), X + (igco,t101)) | ¥r, i» € {0,1, .1} is a
constraint line. The end point of a constraint line congruent to W (respectively,
X) is called the initial (respectively, final) point of the constraint line.

Clonstraint lines have the following significance. A point represents a dead
state if and only if it is the point of intersection of two constraint lines. A
point represents a blocked state if and only if it lies on a constraint line. A
point represents a nondeterministic state if and only if it is the initial point of a
constraint line. The last two statements imply that all nondeterministic states
are blocked stales.

The execution trajectory rooted at a point P is recursively defined below,

o If P lies on some constraint line [P, P, then there either (1) will or (2)
will not, exist a point PP on the line [P/, P") representing a dead state
such that P < PP, In case (1), the execution trajectory is a ray with
initial point P and final point PP, In case (2), the execution trajectory
is a ray with initial point P and final point P", followed by an execution
trajectory rooted at P".

e If P does not lie on a constraint line, then a slope one ray rooted at P
either (1) will or (2) will not intersect a constraint line. In case (1), the
trajectory is an infinite length, slope one ray rooted at P. In case (2}, the
trajectory is a slope one ray with initial point P and final point P’, where
P! is the only point on the ray that lies on a constraint line, followed by
an execution trajectory rooted at P’.

A deterministic and blocked state may be further classified as dying or live.
A dying state is either a deferministic and dead state or a deterministic and

blocked state in which, in all execution sequences containing the state, one
process is blocked and remains blocked in all subsequent states and the final
state is dead. A live state is any deterministic and blocked state that is not
dying.

A running state may be further classified as free or restricted. A free state
is a state in which all processes are running and every subsequent state in any
execution sequence containing the state is a running state. A restricted state is
any running state that is not free.

A point P on a constraint line represents a dying state if P is not the initial
constraint line point and there exists a point PI at which the line intersects
another constraint line such that P < PI. A point P on a constraint line
represents a live state if there does not exist a point P’ at which the line
intersects another constraint line such that P < P!, A point off a constraint
line represents a free state ifa diagonal ray rooted at the point does not intersect
a constraint line; otherwise the point represents a restricted state.

The concurrent portion of an execution sequence is obtained by deleting
the longest initial subsequence of the execution sequence consisting of blocked
states. The concurrent portion of any execution sequence is represented in a
progress graph by an execution trajectory whose initial point lies on either line
[(0, 0Y, (co, 0)) oz [(0,0),(0, c1)), provided that the initial state of the concurrent
portion is deterministic.

Consider any execution trajectories that contain only deterministic states. A
steady state execution trajectoryis any subtrajectory of an execution trajectory
that contains exactly two congruent and distinct points, namely the initial and
final points. The transient ezecution trajectory is the portion of an execution
trajectory consisting of all points that do not lic on a steady state execution
trajectory.

Two line trajectories are equivalent if and only if there exists a one-to-one
correspondence between their points such that corresponding points are congru-
ent.

Consider any progress graph representing a finite number of semaphores and
any execution sequence containing only deterministic states. The corresponding
execution trajectory can be partitioned into a possibly empty transient execu-
tion trajectory followed by an infinite number of equivalent steady state execu-
tion trajectories if and only if the sequence contains no dead state.

Example. The Dining Philosophers problem [6] meets the conditions stated
above. In this problem, each philosopher requires twe chopsticks 1o eat. We
consider here two philosophers sharing two chopsticks. If one philosopher at-
tempts to acquire the chopsticks while the second is eating, the first must wail.
The code for each process is shown in Figure 1.

The time required for each code segment, ercluding blocking, appears tn Ta-
ble 1. Summing the elements of the last two columns of the last two rows in
Table I yields the cycle time of each process in the absence of blocking: cqo =5

/% Identifier a is a semaphore with initial value one®/
L: Think;

P(a); /* acquire chopsticks */
Eat;

v(a); /% release chopsticks */
goto L;

Figure 1: Code for Dining Philosophers program.

and c1 = 3.

Because each semaphore corresponds fo two constraint line generators, ve-
quires the following constraint line generators are required: ((1,1),(4,1)) and
((1,1),(1,2)).

Tllustrated in Figure 2 is an initial portion of the execution trajectory with
initial point (0,0). Because (0,0) does not lie on a constraint line, the initial
ray of the ezecution trajectory must be diagonal, and the final point of this ray
must lie on a constraint line; thus the ray is 1(6,0),(1,1)). Point (1,1) lies
on two consiraint lines. The stale represenied by point (1,1) has two possible
successors. No matter which successor occurs in @ particular execuiion SequUEnCE,
the second ray in the ezecution trajectory has initial point (1,1) and has as is
~ final point the final point of a constraint line. Therefore the second ereculion
trajectory ray is either or [(1,1),(4,1)) [(1,1),(1,2). The remaining reys of
each erecution trajectory are constructed similarly.

Nondeterministic states are represented by all points congruent to (1,1) in
Figure 2; all other points that lie on constraint lines represent live states. No
dying stales are represented in the figure. All points lying off constraint lines in
the figure represent restricted states; this fact is not obvious from the figure, but
can be proven using Theorem 2 from section 4.

The concurrent portion of all possible ereculion Sequences are represented
in the progress graph of Figure 8, which represents through shading all execu-
tion trajeclories whose indtial point lies on line [(0,0),(5,0)) or (0,0), (0,3). In
general, a shaded region in @ progress graph may have infinite extent. From Fig-
ure 3, all inttial condilions result in o steady state ezecution trajectory equivalent
1o the execution trajectory rooted at {9, 7) with stale transition vectors (3,3) fol-
lowed by (2,0).

2 Solving Progress Graphs: Algorithm A0

The companion paper [1] establishes that each execution trajectory in a progress
graph representing a finite number of semaphores reaches either a nondetermin-
istic state, a dead state, a non-blocking steady state, or & blocking steady state.

S e

Code segment Process
¢l 1
Think; P{a); 1)1
Eat; V(a); 3|1
goto L; Think; P(a); | 2 | 2

Table 1: Time required for each code segment of the example, excluding block-
ing.

—_
(]

o

e NWEQOH Y

<

1 f_o

3._
e A G
R O TR
PROCESS 0

Figure 2: Synchronization constraints for the Dining Philosophers in the Carte-
sian graph. Open (filled) circles represent open {closed) end points. Thick lines
represent two possible execution trajectories.

et
b2
i

[{w]

(o>

PROCESS 0

Figure 3: Representation of the concurrent portion of all execution sequences
for the progress graph of Figure 2.

Furthermore, a “solution” to a progress graph:

1. reports whether any initial condition can lead to a nondeterministic state,
a dead state, or a non-blocking steady state, and

9. reports one member of each equivalence class of blocking steady state
execution trajectories that may be reached by any initial condition.

The companion paper presents algorithm A0 (Figure 4) and proves that it
correctly solves problem 2 above. Algorithm A0 assumes that the number of
semaphores is finite; let this number be N /2. Hence there are N equivalence
classes of constraint lines in a progress graph. Let v denote the set of N con-
straint line generators. A0 requires function f, defined below.

Definition. Function f(P) maps any point P representing e live or restricted
state 1o the final point of the initial ray of the evecution irajectory rooted at P.

Furthermore, f”(P)‘i—ffP and f7(P), for positive n, denotes the n-fold composi-
tion of f applied to P.

3 First Refinement: Algorithm Al
Algorithm A0 leaves unanswered three questions:

1. When are VX, (W, X) € 7, fO(X), FI(X),..., F2N(X) defined?

declare S: set of points; { Set of points X that either lie on a steady state
execution trajectory previously output or are known
not to lic on a steady state execution trajectory }

S =10
for each X in ¢ do
if

Az, z €S, z=X A
FOXY, FHX), .., FPN(X) are defined A
Im,me {1,2,..., N}, f""(X)= X
then begin
output point X and state transition vector sequence
FUX) = LX), F2) = FHX), ., 28(X) = 27X,
where n is the smallest natural satisfying f**(X) = X;
S:=Su{f*#x)}i=0,1,...,n-1}
end
else §:= SU{X}

Figure 4: Algorithm A0, which outputs one member of each equivalence class
of blocking steady state execution trajectories.

2. How can VX, (W, X) €7, FUX), FHX),. .., PY(X) be computed?

3. Algorithm A0 executes the “for each” loop N times, evaluating f at worst
O(N) times on each iteration, thereby requiring O(N?) evaluations of f.
Does a more efficient algorithmn exist?

The first and third questions are addressed in algorithm Al, which is the
first of two refinements of AQ. Answering the second question appears io be
non-trivial, and is the subject of section 4 and the second refinement, algorithm
A2

A1 reformulates the problem of finding solutions to VX, (X)) = X, for
i = {0,1,...,N — 1} as a problem of finding cycles in a graph of N nodes,
which reduces the worst case number of evaluations of f to O(V). (This will
be proven as a property of the second refinement, A2, in section 5.)

Let Cr(P) (respectively, Cr(P)) denote a predicate whose value is true if
and only if P represents a live (respectively, restricted) state. Algorithm Al
reformulates question 1 above in terms of predicates Cr(P) and Cr(P). A
method to efficiently decide when the predicates hold is given in section 4.

Let the N constraint line generators be denoted (W°,X°), (W', X1), ...,
(WN-1, XN-1). Let k and £’ denote integers in interval [0, N). It is convenient
to define a function ¢ as follows: g(P) = f(P)— FP; g(P) is a vector representing
the transition from the state represented by P to the state represented by f{P).
Algorithm A1l appears in Figure 5.

Step A1.1: Construct a directed graph with N nodes labeled 0,1,...,N —1 as
follows. For each k € [0, N), if C'R(}l{'k) A CL{f(X*)) then draw an arc
from node k to node k' satisfying X* = f2(X*).

Step A1.2: If the graph contains no cycles, output “No blocking steady state ex-
ecution trajectories exist.” Otherwise, for each cycle ki, ko, ..., kas in the
graph (where k; = kar), output point X k1 and state transition vector se-

quence g(X*), g(F(X*)), g(X**), g(F(X*2), ..., g(X==1), g(F(X¥>=)).
Figure 5: Algorithm Al, a refinement of algorithm A0.

Example. Recall that the progress graph of Figure 2 contains {wo constraint
line generators. Let (W0, X%) = ((1,1),(4,1)) end (W*, X*) = {(1,1),(1,2)).
Step Al1.1 of algorithm Al yields a graph of two nodes, with an arc directed
from both nodes zero and one directed towards node zero. Step A1.2 outputs
point X© = (4,1) and state transition vector sequence (3,3),(2,0), which can be
written as rays (4,1), (7,4) and (7,4),(9, 4).

4 Formulas for Cr(X), CL(f(X)), g(X), g(f(X))

Let X represent the final point of a constraint line. Algorithm A1l contains four
unknown guantities: Cr(X), Cr(f(X)) if Cr(X), g(X) if Cr(X), and g(f(X))
if Cr(X) A CL(f(X))- These are illustrated in Figure 6.

Geometrically, these represent in terms of a progress graph:

Cp(X) : Does a slope one ray rooted at X intersect a constraint line? {When
the program enters the state represented by X, does it ever block again?)

Cr(f(X)) : If Cr(X), is the final point of the second ray in an execution tra-
jectory rooted at X the final point of a constraint line? (If Cr(X), when
the program enters the blocked state represented by f(X), does a blocked
process eventually unblock?)

g(X) : If Cr(X), what is the length of the perpendicular projection on either
axis of a slope one ray rooted at X whose final point is P/, such that P’
is the only point on the ray that lies on a constraint line? (If Cr(X),
how long does the program run in parallel before blocking at the next
semaphore?)

g(F(X)) : ¥ Cr(X) A CL(f(X)), what is the distance from f(X) to the final
point of the conmstraint line containing f(X)? (If Cr(X) A CL{f(X)),
how long does the program block when it enters the state represented by

F(X)7)

10

We solve the more general problem of how to compute Cr(P), CL(f(P)) if
Cr(P), g(P) if Cr(P), and g(f(P)) if Cr(P) A CL(f(P)) for any point P in a
progress graph. This is because restricting P to be the final point of a consiraint
line does not appear to simplify the problem.

4.1 Solution Alternatives

Three methods of solution are an analytic method, computational geometry, -
and integer programming. An analytic method is used in this paper.! A purely
computational geometric method is left as an open problem. Finding g(P) is
equivalent to the following integer programming problem: minimize the length
of a slope one diagonal ray rooted at P subject to the constraint that the final
ray point lies on some constraint line generated by an element of .

We rule out the use of integer programming based on two drawbacks. First,
integer programming examines a potentially infinite search space, and only ter-
minates if Cr(P) holds. Second, integer programming wastes time searching
infeasible points, because each constraint line generated by an element of v may
or may hot contain a feasible solution.

4.2 TFormula for Cr(f(P)) if Cr(P)

Definition. For any two poinis P and P/, P < P’ ifand only if Py < P A P1 <
Pl APy+P < Pi+Pl.

Computation of Cr(F), true if and ouly if point P represents a live state,
follows directly from the definition of live state. Recall from section 1 that a live
state is any deterministic and blocked state that is not dying. Also recall that a
state is deterministic if it is not the initial point of a constraint line, which is a
point of intersection of two constraint lines, and a state is blocked if it lies on a
constraint line. By Lemma 9 of the companion paper [1], a deterministic point
lying on a constraint line represents a dying state if and only if there exists
no point P’ at which the constraint line intersects another constraint line such
that P < P’. Therefore to decide whether a point P represents a dying state
requires computing, for one instance of each constraint line, the set of all other
constraint lines which it intersects.

Definition.
For any constraint line generator (W, X)) € v, t(W, X) denoles the set of all
points P such that line segment [W, X) intersects another constraint line af P.

Known computational geometric algorithms for reporting intersections of
line segments may be used to compute (W, X); see for example Bentley and
Ottmann [3].

! The method is not purely analytic becanse the formula for Cr(f(X)) is based on a list of
constraint line intersections, obtained from a computational geometric algorithm.

11

The following theorem provides a means to compute Cr(P), given (W, X)
for all (W, X) €.

Theorem 1 Cr(P) is true if and only if P lies on a constraint line generated
by some (W,X) € v and max{P/|P' € W, X)} < (Py mod ¢q, P, mod ¢1).
Proof: Follows from Lemma 9 in the companion paper [11. a

4.3 Analytic Solution of Cgr(P), g(P), and g(f(P))

The solution method presented here requires the following assumption.
Assumption. Constanis co and ¢, represent rational quantities.

An equivalent assumption, which is the one used in this section, follows.
Assumption. Constants co and ¢ represent relatively prime inlegers.

To demonstrate the equivalence, let L{co, c1) denote the least common de-
nominator of ¢o and ¢;. Let G{co,c1) denote the greatest common divisor of
eoL(eg, €1) and ¢1 L{co, ¢1). Multiplying rational co and ¢ by L{co, €1)/G(co, c1)
yields relatively prime quantities, to which the solution method below is applied
to caleulate Cr(P) and g(P). The resulting (real) value of g(F) multipled by
G(eq, c1)/ L{cos 1) corresponds to the solution for the original, rational ¢o and
C1.

The analytic solution for Cr(P), ¢(P), and g(f(P)) is based on a simplified
version of a progress graph which has constraint lines generated by only one line
segment (W, X) in generator set 7.

Definition. Cr(P,W, X) and g(P,W,X) are defined as Cr(P) and g(P), re-
spectively, in a progress graph with v = {[W, X)}.

Therefore:
Cr(P)

\/ Cr(PWX) and (1)
{W.X)en}
¢(P) = min{g(P,W,X)|[W,X) €y ACP,W X)}if Cr(P). (2)

The minimization in equation (2) arises because P + (g(P), g(P)) is the point
closest to the origin at which a slope one ray rooted at P intersects a constraint
line, if an intersection occurs. The subsequent. discussion derives formulas for
Cr(P, W, X) and g{P, W, X), to which equations (1) and (2) can be applied to
obtain Cr(P) and g{P).

Notation conventions: The remainder of this section assumes without loss
of generality that each generator (W, X) € v generates horizontal constraint
lines. (The case of vertical lines follows by interchanging subscripts 0 and 1
in the subsequent text.) The symbol Z (respectively, R) denotes the set of
nonnegative integers (respectively, nonnegative reals).

12

4.3.1 Formula for Cr(P)

By Lemma 9 of the companion paper {1], point P represents a restricted state if
and only if P lies off a constraint line and a slope one ray rooted at P intersects
a constraint line generated by an element of set 7. Each point on the slope one
diagonal ray rooted at P js p +(1,9), for y € R. Therefore Cr(P, W, X) holds
if and only if

Jy, i, 1360 € 2,45 Z,y€ R;
P+yy) € W+ (foco,irer), X + (foca, d1e1)).

Boty+s=Xg+ipeq and (3)

Prty = X 4i1eq, ' (4)
where

s € (0, X, —). (5)

Letting &' = §+X1 —Xo— P+ Py and I(P, W, X) denote the set of integers
in the interval (X1 —Xp — P+ Py, X — PP Wal, variable ¥ may he
eliminated from system (3) to (5):

f1¢; —dgeg + s’ = 0, (6)
where s’ must ke in the interval

s' € I(P,W,X). (7)

common divisor of ¢; and co divides s, by Jones’ Theorem 3.3 [7]. Therefore
a solution exists if and only if interval I{(P,W,X) contains an integer value.
Applying equation (1) establishes the following theorem.

Theorem 2 Cr(P) is true if and only f3IW, X) € v such that [X1 - X5 -
P+ Rl < [_Xl—P1+P0—WGJ-

13

Process 1
g(f(X))
(X
g(X)
W X
Process 0
9(X)

Figure 6: Illustration of four unknowns in Algorithm Al: Cr(X), Cr(f(X)} if
Cr(X), g(X) if Or(X), and g(f(X)) if Cr(X) and CL{f(X)).

Proc‘?ss 1
X142+t ~— O r— 5
281 T ! Y le y)
Xi1+et o
i1 Y
Wy = X1+ v X — &
A P P 0
Wy Xo Py o Xg+cg 2e0 rocess

Figure 7: One possible relationship of P, y, and s in a progress graph with
constraint lines generated by a single generator, (W, X). In general, there are
either zero or an infinite number of points of intersection of a slope one diagonal
ray with instances of a single constraint Jine generator, corresponding to zero or

an infinite number of values of y, respectively. In the figure, ip = 43 = 1 yields
g(PW, X)=y.

14

4.3.2 Formulas for g(P) if Cr(P) and g(f(P)) if Cr (P) A Cy,(f(P))

By definition, g(P, W, X) is the minimum nonnegative integer value of y satis-
fying either (3) or (4). Therefore, from (4),

g(P,W,X) = min{ilcl+X1 ""Pll"':l EZ NI+ X1 —FPy> 0} (8)

The right hand side of equation (8) requires the minimum element of a set
containing an infinite number of elements. The right hand side will be reex-
pressed as a set containing a finife number of elements to permit an algorithm
to compuie the minimum by exhaustive search. The rewritting is done by ex-
pressing unknown {; in terms of unknown s and an integer parameter « by
applying the solution technique for three variable Diophantine equations in [7],
pp. 67-68. There are an infinite number of solutions, which parameter o ex-
presses. The solution to (8) is

i = us +coa, (9

where u is an integer satisfying cju = 1 (mod ¢p). Combining equations (8)
and (9) yields
g(P,W,X) = min{(us’ + coades + X1 — P | (10)
a€ZAs eI(P,W,X) A (us' +coa)ey + X1 — P >0},
The right hand side of equation (10) still requires the minimum value of
an infinite set of elements. However, « can be rewritten in terms of s, If
Cr(P, W, X), then equation (10) has asolution. Solving (us’+ecga)e;+X;— Py >

0 for the value of & that yields, for a given value of &', the minimum, nonnegative
value of (us’ + cpa)e; + X1 — Py, we obtain

@ = — [Ml (11)

€1
Combining equations (2), (10), and (11) establishes the following theorem.

Theorem 3 Given relatively prime co and ¢1, and given P such that Cp{P) A
CL(f(P)): '
g(P) = min{(c;us’ + X; — P;) mod epey | (12)
(W, X) ey ACr(P,W,X)As' € I{P,W,X)}

where u satisfies ciu = 1 (mod ep). Furthermore, g(f(P)) = s* — (X, —
Xo — Py + Fy), where s* is the value of s' that yields the minimum g(P) in
equation (12).

The fact that Theorem 3 requires the minimum of a set containing a finite
number of elements permits computation of g(P) and ¢(f(P)) by exhaustively
examining all set elements. The second refinement of algorithm AQ, presented
in the following section, exploits this fact.

15

5 Second Refinement: Algorithm A2

This section refines algorithm Al by incorporating the formulas for Cr(P),
Cr(P), and g(P) given in Theorems 1 to 3. The result is algorithm A2. The
data and function declarations of A2 are shown in Figure 8, and the executable
code is shown in Figure 9. Algorithimn A2 is written in a Pascal-like notation,
which simplifies analysis of the time and space required during execution.

The input to algorithm A2 is the constraint line generator set, ¥, and cycle
times, g and ¢;. Set 7 is stored as an IV x 2 array of initial points (W) and
an N x 2 array of final points (X). For example, the initial point W1 of
constraint line generator (W¥-1, XN-1) is stored in (W[N-1,0],W]N-1,1]). The
cycle times are stored in array C.

The edges of the graph algorithm A1 generates are stored in N x 1 array E;
if E[0}=3 then an arc exists from node 0 to node 3. The state transition vectors
output by algorithm A1 are stored in N x 1 arrays (30 and G1.

5.1 Time and Space Requirements of Analytic Solution

The time required by algorithm A2 is dominated by the time required to eval-
uate the minimization in Theorem 3, as the following theorem establishes.
Let In(P,W,X) denote the number of integers in interval I(P, W, X). Let
D = max{Iny(X*, W¥ X*) |k, ¥ €{0,1,...,N — 1}}.

Theorem 4 Algorithm A2 requires at worst time O(N2D), excluding the time
to compute the lLc.d. and g.c.d. of two rational numbers (in function LG), and
the time to solve the congruence for u.

Proof: Consider the time required by each step of algorithm A2,

Step A2.0: The for loop iterates N times; therefore step A2.0 requires O(N)
time.

Step A2.1: Set «(W*, X*) may be computed using an algorithm that reports
the points of intersection of line segments. In particular, the constraint
line instances in the rectangle whose opposite vertices are the origin and
point (eg, ¢1) may be used.? Shamos and Hoey[10] have shown that a lower
bound on the time required to report intersections is O(NlogN +k), where
k 1s the number of intersecting pairs. Thus step A2.1 requires time O(N?%)
at worst.

Step A2.2: The inner loop of step A2.2 is iterated at most O(N2D) times. At
worst the if test in the inner loop is true in each iteration; this implies the
inner loop requires constant time in each of O(N?D) iterations.

23uch an algorithm is modified so that, rather than reporting all intersections, it stores in
ML{K] the intersection point furthest from the origin found so far for the instance of constraint
line K that the algorithm considers.

16

var
N,K,K’: integer;
T,LG,U,S": real;
C: array [0..1] of rational; {C[0)=co; C[l]=¢;;}
W,X: array [0..N-1,0..1] of real; {{W[K],X[K])=(W*, X*)}
E: array [0.N-1] of integer; {E[K]=co, if f2(X*) exists,
else E[K]=k’, where X* = FAXE)}
G0: array [0..N-1] of real; {GO[K]=g(X) if Cr(X%)}
G1: array [0..N-1] of real; {G1[K]=g(f(X5)) if CRIXE) A CLF(XEWN}
ML array [0..N-1,0..1] of real; {MI[K]=max{P|P € ((X¥, W¥)}}
M: array [0..N-1] of real; {M[K] = s’ minimizing ¢(P) in Theorem 3}
P: array [0..1] of real; {a point}

{Interval (XX’ WX, XK) is represented as [IL(K K?), IH(K,K"))
using the following two functions. }

function IL(K,K :integer):real
begin return X[K’,1]-X[K’,0]-X[K,1]+X[K,0] end

function IH(K,K"integer):real
begin return X[K’,1]-X[K,14+X[K,0]-W[K’,0]end

function LG(Y0,Y1:rational):integer
var L: integer;
begin

L :=lecd. of YO and Y1,

return g.c.d. of L*Y0 and L+Y1
end

Figure 8: Algorithm A2: data and function declarations

17

begin
{Step A2.0; initialization}
input C[0], C[1], N;
LG:=LG(C[0],C[1}); C[0]:=C[0kLG; C[1]:=C[1+LG;
solve C[1]+U =1 (mod C[0]) for U;
for K:=0 to N-1 do begin
E{K]:=G0[K]:=o00;
input W[K,0], WIK, 1], X[K,0], X[K, 1)
WIK,0):=W[K,0]«xLG; X[K,0]:=X[K,0]«LG;
WK, J:=W[K,1]+«LG; X[K 1]:=X[K,1]+LG
end

{Step A2.1 (Steps A2.1 and A2.2 together correspond to step A1.1.)}
for K:=0 to N-1 do MI[K]:= max{P{P € «(W[K], X[K])};

{Step A2.2}
for K:=0 to N-1 do begin
for K:=0 to N-1 do
if [TL(K,K")] < |TH(K, K')| then begin {Cr(X¥) holds; compute GO[K]}
for §":=[IL{K,K")] to | IH(K,K’) | do begin
T:=(Cf1] * U S + X[K’, 1] ~ X[K, 1]} mod C[0] + C1]);
if T<GO[K] then begin E[K]:=K’; GO[K]:=T; M[K]:=S’ end
end
if MI[K] < (X¥ + GO[K]) then {CL(X*) holds; compute G1[K]}
G1[K]:=M[K]L(K,K)
end
end

{Step A2.3; corresponds to step A1.2}
for each cycle ky, ks,...,ky in graph in array E (where k; = ku) do begin
output point (X[k, 0]/LG, X[ky, 1]/LG);
for K:=1 to M-1 do output GO[K]/LG, G1[K]/LG
end
end

Figure 9: Algorithm A2: executable code

18

Step A2.3: The graph represented by array S has at most one outgoing arc from
each node. Hence the graph has at most N edges, and all cycles can be
detected in time O(N). O

Theorem 5 Algorithm A2 requires O(N) storage, excluding the storage o re-
quired compute ¢.

Proof: Follows from the array dimensions in declaration portion of algorithm
A2 (Figure 8). a

6 Conclusion

A novel analysis method to derive the exact sequence and duration of block-
ing and running experienced by programs consisting of two non-terminating
processes sharing mutually exclusive, reusable resources has been presented.
Proved elsewhere is that any execution sequence of a program under consider-
ation that does not contain a nondeterministic or dead state reaches a cyclic
steady state behavior [1]. The paper develops through successive refinements
algorithm A2, which reports one member of each equivalence class of blocking
steady state execution trajectories reachable by any initial condition. A2 finds
the minimum solution to each of a set of Diophantine equations. The algorithm
is based on a mapping of the program to a progress graph.

Recall from section 5 that A2 requires space O(N) and time O(N2D), where
N is twice the number of resources shared and D is related to the precision
with which measurements of program timings are desired. Consider the time
requirement. In practice, the N? term is not prohibitive, because two process
algorithms usually have a fairly small number of synchronization constraints.
The D term, however, may force us to make approximations. As discussed in
section 4, we map any rational cycle time ¢ or ¢; to relatively prime integers by
multiplying both cycle times by LG, where LG is the least common denominator
of ¢y and ¢y divided by the greatest common divisor of a multiple of ¢y and ¢;.
Thus, D will grow with the product LG - ¢p or LG - ¢y, which is the ratio
of the cycle time to the resolution of the measurement clock. For example,
if we measure an algorithm to microsecond resolution, LG is at most 105. If
co = ¢; = 100 seconds, then D = 300-10°. However, we may be willing to trade
accuracy for computation time by approximating measurements by milliseconds,
so that D = 300 - 105,

Several open problems remain:

e solution of the model for an arbitrary number of processes {(Empirical
evidence confirms the existence of steady state modes for at least 64 pro-
cesses [2].);

e refinement of algorithm A1 using a computational geometric algorithm as
an alternative to the analytic algorithm A2;

19

e analysis of the model for irrational cycle times ¢g and ¢; (Chaotic behavior
may exist for these values.); and

* analysis of reachability, deadlock, and nondeterministic states.

7 Acknowledgements

‘The authors wish to thank S. Tripathi for discussions during the course of this
work, and L. Svobodova and the referee for suggestions on an earlier form of
the manuscript.

References

1] M. Abrams, Geometric Performance Analysis of Mutual Exclusion: The
Model. Dept. of Computer Science, Virginia Tech, TR-90-58, Dec. 1990.

[2] M. Abrams and A. K. Agrawala. Performance study of distributed resource
sharing algorithms. Distributed Processing Technical Committee Newsletter
7, IEEE Technical Committee on Distributed Processing, 3, (Nowv. 1983),
18-26.

[3] 3. L. Bentley and T. A. Ottman. Algorithms for reporting and counting
geometric intersections. JEEE Trans. on Computers C-28., 9, (Sept. 1978),
643-647.

[4] S. D. Carson and P. F, Reynolds, Jr. The geometry of semaphore programs.
ACM Trans., on Programming Languages and Systems 9. 1, Jan. 1987, 25-
53.

[5] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM
Comp. Surv. 3, June 1971, 70-71.

[6] E. W. Dijkstra. Cooperating sequential processes. Tech. Rep. EWD-123,
Technological University, Eindhoven, The Netherlands, 1965.

[71 B. W. Jones. The theory of numbers. Rinehart: New York, 1955.

[8] W. Lipski and C. H. Papadimitriou. A fast algorithm for testing for safety
and detecting deadlocks in locked transaction systems. J. Alg. 2, 3, Sept,.
1981, 211-228.

[9] C. H. Papadimitriou, Concurrency control by locking. STAM J. Comput.
12, 2, May 1983, 215-296.

[10] M. 1. Shamos and D. J. Hoey, Geometric intersection problems. In Proc.
17th Annual Conference on Foundalions of Computer Science, Qct. 1976,
pp. 208-215.

20

[11] M. Yannakakis, C. H. Papadimitriou, and H, T, Kung. Locking policies:

salety and freedom from deadlock. In FProc. of the 20th ACM Symposium
on the Foundations of Computer Science, 1979, pp. 283-287.

