Managerial Issues in Developing a
Quality Metrics Program

By John A. Lewis and Sallie M. Henry

TR 90-50

Managerial Issues in Developing a
Quality Metrics Program

by .
John A. Lewis
and

Sallie M. Henry

Cbmputer Science Department
Virginia Tech
Blacksburg, Virginia 24060

Internet: 'lewis@vtopus.cs.vt.edu

bbb s

Managerial Issues in Developing a
Quality Metrics Program

{(abstract)

Software quality metrics are used to determine error pronc code due to
excessive complexity. These results can be used to guide testing efforts and
predict future maintenance needs. However, implementing 2 quality metrics
program jnvolves many subtle issues which complicate the development and
use of a metrics methodology. Many of these issues are managerial in
nature. This paper gxamines some managerial elements of designing and
implementing 2 quality metrics program. Previous studies which
incorporate & metrics methodology into two different commercial

environments are used to demonstrate the difficulties in implementation and

approach.

7T

1. Introduction

Many approaches have been offered to control software development and
maintenance tasks and reduce the associated costs. These solutions have achieved various
levels of success, but no single approach will result in even one order of magnitude
improvement [BROF87]. Therefore, the approaches which show promise must be handled

in a manner which will maximize their contributions.

The use of software metrics has been successfully applied to the problem of software
maintenance [KAFD87]. Methodologies based on metrics can facilitate maintenance tasks,
improve the quality of the results, and predict the need for further maintenance efforts
[WAKS88] [LEWI89]. If properly designed and integrated, this methodology can reduce
the need for post-production maintenance and facilitate the maintenance tasks (both
functional enhancements and defect removal) which are inherent in the development
process. However, several issues must be addressed in order o successfully use these

techniques.

The basic methodology discussed in this paper is designed for large-scale software
production based on some iterative development process. The methodology concentrates
on source code analysis because design analysis requires a syntactically specific design
language. Many organizations would have to modify their design processes to
accommodate the methodology. A major benefit of this methodology is that it is introduced
into a new environment with extremely little disruption to the existing development

processes.

This paper defines a metrics methodology and identifies the benefits of using it.
Then, several issues are examined which can cause difficulty in the implementation of the
methodology. Two independent studies which introduced the methodology into
commercial organizations are used to form the foundation of the discussion- of these

potential problem areas.

1.1 A Quality Metrics Methodology

A quality metrics methodology uses software complexity metrics to identify high risk
areas in the code. Metrics are used to evaluate software according to specific criteria and
produce a quantitative measure on a static scale. Therefore, software complexity metrics
are used to assess the complexity of a procedure relative to other procedures evaluated in
the same manner. Each metric contains an inherent definition of what constitutes complex

code.

Complex code is error-prone and difficult to maintain. In a software metrics
approach, software complexity metrics are used to identify problem areas within the
system. This identification process may involve several types of analysis performed on
multple metrics. Once identified, specific actions are taken to:

« reduce the complexity of the code through further
abstraction or reimplementation, and [or

» thoroughly test the high risk areas to uncover as many

existing errors as possible.

Therefore, code which will be enhanced and debugged in future iterations of the
development process is forced to adhere to certain complexity tolerances. This process will
keep the system maintainable as it is developed. Furthermore, the system is less error-
prone, resulting in fewer, less difficult maintenance tasks before and after the release of the

product.

Metrics can be divided into three classes: (1) code metrics, which concentrate on the
amount of internal information exists for a procedure, (2) structure metrics, which deal
with a procedure as it exists within the framework of the entire system, and (3) hybrid
metrics, which use aspects of both code and structure metrics.

Metric analysis is performed on syntactically correct source code. This analysis can
be executed at any (or all) levels of system composition corresponding to testing efforts.
Therefore, metric analysis can be performed on individual procedures, integrated units, or

full systems. Because of each metric's unique view of complexity, the importance of a

given metric may vary depending on the level of analysis.

_ The metric analysis methodology compliments the iterative process of large-scale
software development. Several issues which complicate the integration of the methodology
into a new environment are discussed in Sections 2-7. These issues were discovered
through two maintenance studies which will be used as examples throughout the remainder
of this paper. These studies are described in the following section.

1.2 Two Commercial Examples

Two studies which integrate a metrics approach into commercial organizations are
presented in [WAKS88] and [LEWJ89]. Production systems under development in both
environments were analyzed to verify the methodology and refine analysis techniques.
These studies will be used as examples in our discussions on the benefits and difficulties of

this approach.

In both studies, the organizations into which the methodology was introduced are
state-of-the-art, large-scale software producers. Unfortunately, both environments deal
with highly proprietary information which restricts the discussions of the systems used to
develop the methodology and even prohibits revealing the names of the corporations.
Handling' proprietary information is an important issue and is discussed in Section 5.

The first study examined 193 procedures containing approximately 15,000 lines of C
code including comments and blank lines. The system analyzed is version 2.0 of an actual
product. A code library is used to monitor changes made to the code. This modification
data is used in an analysis technique to predict the need for future maintenance efforts.

The second maintenance study performed analysis on over 6000 procedures of source
code written in a language similar to Ada. The software is used to control the functions of
a stand-alone machine. The system contains operating system code, real-time applications,
graphics, and peripheral control routines. Several analysis techniques were developed in

this study.

1.3 Managerial Issues

The benefits of using a metrics methodology are substantial. However, care must be
taken to correctly integrate the methodology into a new environment. The following are
issues which can cause problems if not handled properly:

« Initial evaluation of the language, environment, and development paradigm,
- Integration of a metrics program into an existing development structure,

+ Collecting and using historical project data,

+ Handling proprietary information,

« Interpretation of metric values, and

+ Proper managerial attitude toward a metrics program.

These issues are discussed in detail in the following sections.

2. Initial Evaluation

If a random set of metrics is chosen to analyze source code of a language, without
regard to the particulars of the language or the environment, metric analysis is not likely
succeed from either a global or detailed perspective. From a global point of view, the
methodology will not make the best use of the existing environment and development life-
cycle. From a detailed perspective, the metrics used may not be optimal for assessing the

particular complexity problems of the language analyzed.

Three distinct aspects of a new organization must be critically evaluated before

developing a metrics methodology:

» The programming language,
+ The development environment, and
+ The software development paradigm.

Each of these issues may affect the metrics used in the methodology and the particulars of

the integration scheme.

The programming language is naturally an important aspect to consider when
deciding what metrics to use. Most complexity metrics in the literature are defined
generically and can be used for many languages. However, there are two reasons why
new metrics might be defined or published metrics modified for a particular language.
First, if the language in question is not universally used (an in-house or new language),
new constructs or techniques may warrant special or careful treatment. Second, if there
have been specific problems in the past (with a standard or non-standard language), the
metrics chosen or defined might concentrate on the specific aspects of the problem. For
example, in the in-house language used in [LEWJI89], there exists a particular construct
which is unnecessarily complex and can be avoided in most cases. A simple count of this
construct was added to the metric set for that language to catch unnecessary use of the

construct.

The development environment is often more tailored to a particular organization than
the language used. Therefore, metrics might be used which compliment the various
combination of hardware and software. Also, integration of software tools such as
compilers, debuggers, browsers, etc. may suggest where metric analysis might be
unobtrusively accomplished and perhaps completely integrated into the development plan.

The software development paradigm, or life cycle, defines the stages through which
the evolving software product steps as it is developed. This process must be examined to
determine the appropriate corrective actions which will be taken once error-prone code is
identified. The development process also must be examnined to determine the appropriate
points at which to perform the metric analysis. The best analysis points probably
correspond to the various testing levels which exist in the process, but these points must be
tailored to the specific software life cycle used. The problems associated with integration

are discussed further in the next section.

3. Integration

A metrics methodology can be integrated into an existing development scheme with-

little disruption. Not only is this a major advantage of the methodology, it is, in most
situations, a necessity. Therefore this section explores the problems which can be faced by
trying to introduce the methodology in a conspicuous manner.

Most organizations have an established, structured development strategy with well-
defined stages through which the evolving software product progresses. For large-scale
production, this process usually uses iterative, repeating stages as new functionality is
introduced and corrective actions are taken. This established process will resist change

unless faced with monumental problems.

While the benefits of using the methodology are substantial, the direct results are
often intangible. A reduction in error rates and maintenance efforts are high-level benefits
resulting from daily efforts. If the daily efforts seem difficult or distracting, the "big
picture" can be ignored in favor of deadlines and budgets, which in the long run is

counterproductive.

Considering a new methodology is often contingent on the amount of interruption it
will introduce into the daily lives of the developers. Therefore, from the standpoint of
practical use, the methodology must be unobtrusive. Using a variety of techniques, the
metric analysis can correspond to testing efforts and therefore not require unusual
preparation. The analysis process itself can be automated and therefore primarily
effortless. The only substantial impact is the execution of corrective actions when error-
prone code is identified. As discussed in Section 1, these actions can be as involved as
complete reimplementation or as small as concentrating testing efforts on that section,

depending on the nature of the problem.
4, Historical Data

Many metric analysis techniques are developed using historical project data. For
example, one analysis technique is the use of prediction equations. Using multiple linear
regression, equations can be generated that predict, from the metric values, the number of
errors, lines of code with defects, etc., which can be found within a section of code. The
development of these equations is a straightforward statistical process, but requires
historical error data for a substantial amount of code, along with the metric values for that
code. The following is an example of a predictor equation used in [WAKS88]:

NLC = 1.27935618 + 0.05500043 L - 0.001333387 V + 0.000054797E -
0.11960695 V(G) - 0.000000142938 INFO-E

This equation predicts the number of lines of code that must be changed to correct
defects. The metric values used as independent variables are Halstead's length (L), volume
(V), effort (E) [HALM77], McCabe's cyclomatic complexity (V(G)) [MCCT76], and
Henry and Kafura's hybrid information flow metric weighted by effort (INFO-E)
[HENS81]. Many such equations can be generated, with different combinations of metrics
and coefficients. Various statistics can be used to determine which equations best predict
the dependent variable (R2, PRESS, MSE, C(P)).

While the metric collection can be performed long after the source code is developed,
the error data collection must occur as the defects are discovered. Recording this
information is relatively cheap and the potential benefits are quite large. Even if not used in
a metric analysis process, the error data can shed light on the development process as 4
whole, indicating the types, locations, and proliferation of errors.

The above equation predicts the number of lines of code that must be modified for
error defect removal. Equations can just as easily be generated to predict the number of
actual errors, time impact of errors, or any other quantitative measure that makes sense, as
long as the historical data is present from which to develop the equations.

The quality of the data is equally important. For example, the second maintenance
experiment from Section 1.2 also demonstrated the ability to predict errors and explored the
techniques to generate the equations, but the actual equations which were developed are
practically useless. The error data available was collected such that the defects could only
be traced back to a large subsystem of the source code. Therefore, the equations predicted
the number of errors in an entire subsystem of code, which was of little assistance in new
system development. Since then, the organization is collecting error data at lower levels

and generating more useful equations.

Historical data collection is essential to develop and refine many metric analysis
techniques. The more detailed and accurate the data is, the more robust the analysis
techniques can be. Early attention to this process is extremely important.

5. Proprietary Information

Many organizations deal with information which is considered proprietary due to
financial or security considerations. This fact often deters these organizations from
pursuing independent research. Investigating software development possibilities in
commercial environments can lead to significant breakthroughs which may elude purely
academic experimentation. Furthermore, avoiding these research efforts is often

unnecessary and counterproductive.

Both organizations in the maintenance studies from Sectdon 1.2 deal with highly
proprietary information. However, the studies extensively analyzed production systems
without the need to disclose any sensitive data. This is accomplished by a careful
examination of the information needed to perform the metric analysis.

As discussed earlier, metric data is collected by an automated parse of syntactically
correct source code. Code metrics are obtained immediately from this initial phase.
Structure data is also gathered in this phase from which the structure metrics are calculated.
However, the information necessary to generate the structure metrics is independent of the
semantic content. Therefore the data can be represented in a form which removes all
specific references to what the code accomplishes and leaves only enough detail to generate
the structure metrics. Furthermore, this intermediate form can be automatically fed to
subsequent phases and then deleted, reducing human intervention.

The first maintenance study used an intermediate form for the structure d_ata called
relation language, which is described in detail in [HENS88]. Figure 1 shows a procedure
of Pascal source code and its relation language translation. Note that only the fundamental
logical structure remains of the source code. There is virtually no possibility of gaining any
useful information about the original code, yet enough detail is retained to compute the

structure metrics.

While ((scan - 14) < tolerance) do CObl\fI:gi;dentl & 100 & ident2;
begin o COND ident3 & 100;
If (code ='A") then begin
Calc_Result (scan, tolerance); identd (identl, ident2);
tolerance := tolerance / 10; end: ’ ’
end; { while } ident2 := ident2 & 100;
end;

Figure 1: A Pascal code segment and its relation language translation.

The relation language translation replaces all conditional and looping constructs (if,
while, repeat, etc.) with the keyword COND. All operators are replaced with the generic
operator ampersand (&) and assignments use the colon-equal symbol (:=). To further
disguise the source, all identifiers are translated into consistent but meaningless strings, and

all constants are replaced by the single constant 100.

The second maintenance study used a similar intermediate representation. The details
of the translation vary somewhat due to the nature of the data represented. The parsing tool
from this study used a complex encoding scheme to disguise identifiers. The translation
process uses a software key which can be changed to rearrange the encoding scheme.

The generation of the metric collection ool requires knowledge of the source code
grammar, but can be tested using non-proprietary code. Once developed and tested, the
tool can parse any syntactically correct source code to produce code metrics and structure
data. The structure data is then parsed to produce structure and hybrid metrics. Since all
proprietary information is removed in the first phase, structure metric generation and metric
interpretation can be performed off-site and by uncleared personnel, if desired.

6. Metric Interpretation

Metrics quantify software complexity. This provides an established scale on which to
compare code segments and gives software developers a means to rank and address error-

prone software as it is developed.

However, it is dangerous to accept a metric value with blind faith. Each metric
inherently has a definition of complexity which it attempts to quantify. Often these
definitions are quite different. To say a routine is error-prone simply because a certain
metric has a high value, without understanding what the metric atternpts to measure (at least
in general terms), is using the methodology incorrectly.

There are valid reasons why a single metric may exceed established tolerance limits,
yet still not be considered a problem. Therefore most analysis techniques use multiple
metrics to determine where maintenance efforts need to be concentrated.

Consider, for example, a report routine which performed a large amount of
straightforward output. Threshold analysis might raise a flag from the lines of code metric,
but others might be negligible. Therefore, the technique is designed such that some
consensus between the metrics must be established before concern is raised.

Furthermore, threshold analysis assumes some low value of a metric is "safe".
Certainly, no one should assume, simply because a code section has low metric values, that
it has no errors whatsoever. The point is that errors which do exist will be relatively easy
to find and correct because the complexity level of the source is low.

Both maintenance studies in Section 1.2 determined that the code metrics are highly
correlated and the structure metrics are highly correlated, but do not correlate with each
other. This is because they attempt to measure different aspects of complexity. This may
also lead software developers to believe that they only need one code metric and one
structure metric (or simply one hybrid metric) to answer their complexity questions.

However, this is a dangerous assumption.

Yes, the metrics correlate in the long run. However, determining what action should
be taken in a particular case must ultimately be a human process. In each particular case,
two metrics which correlate in the long run may be dramaticaily different. Furthermore,
different metric types may be more informative at different levels of analysis, depending on

the amount of code analyzed.

A metrics methodology must make use of as many different metrics as is feasible in
order to increase the chances of identifying error-prone code. The underlying concepts

10

behind the metric values must be understood by the analyzers so that appropriate action can
be taken in any particular case.

7. Managerial Attitude

An important aspect of the methodology is the manner in which it is presented to
programmers. The purpose of the methodology is to consistently develop a maintainable
system by identifying code which deserves further attention due to its complexity. The
attitude of both managers and programmers must reflect this purpose.

Management must avoid the tendency to use the metric analysis to determine the
quality of an individual rather than the quality of the source code. In some situations it may
be appropriate to have code which violates complexity tolerances. Code complexity is a
result of the required functionality as well as the techniques used to write the code.
Therefore, to assess the quality of a person by the metric analysis of his code is both

unwarranted and dangerous.

If managers use metric analysis as a basis for evaluating individuals, programmers
will fear the tool and reject the proper applications. Consequently, the entire purpose of the
methodology will be undermined. However, if presented correctly, programmers will
view the tool and methodology for what it is, a quality control process directed at the

product.

One method to assure that programmers do not fear the analysis tool is to give them
first access to it. Then before an individual's code leaves his desk, he can evaluate it
himself using the metric analysis techniques and determine if any action should be taken.
Problem areas which are identified early are also less expensive to correct than those

discovered later.

8. Summary

A metrics methodology can substantially decrease maintenance efforts during
production and after release. Furthermore, the methodology is designed such that the new
$ystem gains strength as it evolves as opposed to systematically weakening due to error
patches. However, attention must be paid to several issues which can cause problems if

It

not handled properly. Environment differences, integration techniques, use of data, and
managerial attitude must be considered carefully in order to maximize the benefits of the
methodology.

It may appear that the difficulties inherent in the methodology outweigh the benefits,
but this is not the case. While the benefits are succinet and straightforward, they are also
crucial to a successful software development effort. Likewise, the difficulties are presented
so that they can be adequately addressed in a timely fashion, not to discourage the use of

the methodology.

A metrics methodology is both useful and practical. Further studies which implement
the methodology described here may discover additional benefits and will certainly uncover
additional issues which must be addressed.

12

References

[BROF87]
[HALM?77]

[HENS81]
[HENSgS)
[KAPI?87]
[LEWI89]

[MCCT76]

[WAKSS88]

Brooks, F.P., "No Silver Bullet: Essence and accidents of Software
Engineering,” Computer, April 1987, pp. 10-19.

Halstead, M.H., Elements of Software Science, New York, Elsevier North-
Holland, 1977.

Henry, $.M., Kafura, D., "Software Structure Metrics Based on Information

Flow," IEEE Transactions on Software Engineering, Vol. SE-7, No. 5,
September 1981, Pp. 510-518. :

Henry, S.M., "A Technique for Hiding Proprietary Details While Providing
Sufficient Information for Researchers,” Journal of Systems and Software,
Vol. 8, 1988, pp. 3-11.

Kafura, D., Reddy, R.R., "The Use of Software Complexity Metrics in
Software Maintenance," [FEE Transactions on Software Engineering, Vol.

SE-13, No. 3, March 1987, pp. 335-343.

Lewis, I.A., Henry, S.M., "A Methodology for Integrating Maintainability
Using Software Metrics," IEEE Conference on Software Maintenance,

October 1989, pp. 32-39.

McCabe, T.J., "A Complexity Measure," IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, December 1976, pp. 308-320.

Wake, S., Henry, S., "A Model Based on Software Quality Factors which

Predicts Maintainability," IEEE Conference on Software Maintenance,

October 1988, pp. 382-387.

13

