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Abstract. Probability-one homotopy methods are 2 class of algorithms for solving nonlinear sys-
tems of equations that are accurate, robust, and converge from an arbitrary starting point almost
surely. These new globally convergent homotopy techniques have been successfully applied to
solve Brouwer fixed point problems, polynomial systems of equations, discretizations of nonlin-
ear two-point boundary value problems based on shooting, finite differences, collocation, and finite
elements, and finite difference, collocation, and Galerkin approximations to nonlinear partial differ-
ential equations. This paper surveys the basic theory of globally convergent probability-one homo-
topy algorithms relevant to optimization, describes some computer algorithms and mathematical
software, and applies homotopy theory to unconstrained optimization, constrained optimization,
and giobal optimization of polynomial programs. In addition, two realistic engineering applica-
tions (optimal design of composite laminated plates and fuel-optimal orbital satellite mageuvers )

are presented.

1. Introduction. Continuation in various forms has been used for a long time in mathematics
and engineering, with such names as parameter continuation, incremental loading, displacement
incrementation, imbedding, invariant imbedding, continuous Newton, and homotopy. The state-
of-the-art of continuation methods was thoroughly surveyed in [1], and more recently in [44].
Recent mathematical developments have led to a whole new class of continuation methods known
as probability-one homotopy algorithms, which have been successfully applied to solve Brouwer
fixed point problems, polynomial systems of equations, and discretizations of nonlinear two-point
boundary value problems based on shooting, finite differences, collocation, and finite elements.
These new technigues have recently begun to be applied to optimization, and have found significant
application in solving some engineering optimization problems.

Tomotopy methods are very powerful, robust, accurate, numerically stable, and almost univer-
sally applicable, but also often prohibitively expensive. They are particularly suitable for highly
nonbnear problems for which initial solution estimates are difficult to obtain. Properly imple-
mented they are indeed globally convergent, i.e., converge to a solution from an arbitrary starting
point. This (costly) global convergence feature is their forte, but also makes them inappropriate
for mildly nonlinear problems or problenfé for which a good initial estimate of the solution is easily

obtained.



The purpose of this paper is to summarize the basic theory of globally convergent homotopy
methods relevant to optimization, to describe some available computer software, to show how
homotopy algorithms may be applied to solve optimization problems, and to give some actual
engineering applications. Section 2 gives an intuitive explanation of what is different about the new
globally convergent homotopy algorithms, and Section 3 briefly recounts the basic mathematical
theory. Section 4 outlines some numerical algorithms implemented in the mathematical software
package HOMPACK. Sections 5 and 6 summarize basic homotopy results for optimization, and
make a connection between nonlinear equations, homotopies, and optimization. Examples of the
globally convergent homotopy techniques applied to optimization are given in Sections 7-11, and

global optimization for polynomial programs is addressed in Section 12.

9. Continuation versus homotopy. Continuation is a well known and established procedure
in numerical analysis. The idea is to continuously deform a simple (easy) problem into the given
{hard) problem, while solving the family ‘of deformed problems. The solutions to the deformed
problems are related, and can be tracked as the deformation proceeds. The function describing the
deformation is called a homotopy map. Homotopies are a traditional part of topology, and have
found significant application in nonlinear functional analysis and differential geometry. Similar
ideas, such as incremental loading, are also widely used in engineering.

These traditional continuation algorithms have serious deficiencies, which have been removed
by modern homotopy algorithms. The differences, however, are subtle and mathematically deep,
and the mathematical proofs of the statements in this article are beyond the scope of the pre-
sentation here. To explain the differences between the old and new homotopy techniques, a more
detailed discussion is required. Suppose the given problem is to find a root of the nonlinear equa-
tion f(z) = 0, and that s(z) = 0 is a simple version of the given problem with an easily obtainable

unique solution zg. Then a homotopy map could be, e.g.,
HOz)=Af(z)+{(1-X)s(z), 0Z A<

The family of problems is H(A,z)=0,0< A L1, and the idea would be to track the solutions of
H()\,z) = 0, starting from (A, z) = (0,zp), as A goes from 0 to 1. If everything worked out well,
this would lead to a point (A, z) = (1,%), where f(Z) = 0. The “standard” approach is to start
from a point (A;, ;) with H(X;,z;) = 0, and solve the problem H(); + AX,z) =0 for z, with AX
being a sufficiently small, fixed, positive number. The bad things that can happen are:

1) The points (A;, ;) may diverge to infinity as A — 1.

2) The problem H()\; + A),z) = 0 may be singular at its solution, causing numerical instability.

3) There may be no solution of H(A; + AA,z) = 0 near {Ais i)

The modern approach to homotopy methods is to construct a homotopy map po(A, ), involv-

ing additional parameters in the vector a, such that 1), 2}, and 3) never occur or never cause any

difficulty. The details of how this is done are given in the nexi section.
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3. Homotopy theory. The theoretical foundation of all probability one globally convergent
homotopy methods is given in the following differential geometry theorem:

DEPFINITION. Let E™ denote n-dimensional real Euclidean space, let U C E™ and V C E™ be open
sets, and let p: Ux[0,1)xV — E™ be o C? map. p is said 1o be transversal to zero if the Jacobian

matriz Dp has full rank on p~*(0).

PARAMETRIZED SARD’S THEOREM {7]. If pla, ), z) is transversal to zero, then for almost all

a € U the map

pa(X,z) = pla, A, z)
is also transversal to zero; i.e., with probability one the Jacobian matriz Dpg{A,z) has full rank on
pz1(0)

The import of this theorem is that the zero set pr1(0) consists of smooth, nonintersecting
curves in [0,1) X V. These curves are either closed loops, or have endpoints in {0} X V or {1} xV,
or go to infinity. Another important consequence is that these curves have finite arc length in any
compact subset of [0,1) x V. The recipe for constructing a globélly convergent homotopy algorithm

to solve the nonlinear system of equations
F(z) =0, ' (1)

where F : E™ — E™ is a C'* map, is as follows: For an open set U C E™ construct a C? homotopy
map p: U x [0,1) X E* — E7 such that

1) pla, A, z) is transversal to zero,

2) pa(0,2) = p(a,0,z) = 0 is trivial to salve and has a unique solution zg,

3) pall,2) = F(2),

4) p7*(0) is bounded.
Then for almost all'a € U there exists a zero curve 7 of pa, along which the Jacobian matrix
Dp, has rank n, emanating from (0,z¢) and reaching a zero Z of F at )\ = 1. This zero curve v
does mot intersect itself, is disjoint from any other zeros of p,, and has finite arc length in every
compact subset of [0,1) x E”. Furthermore, if DF(%) is nonsingular, then < has finite arc length.
See Figure 1.

The general idea of the algorithm is now apparent: just follow the zero curve 7 emanating
from (0,z0) until a zero £ of F(z) is reached (at A = 1). Of course it is nontrivial to develop a
viable numerical algorithm based on that idea, but at least conceptually, the algorithm for solving
the nonlinear system of equations F (z) = 0 is clear and simple. The homotopy map (usually, but
not always) is

pafhz) = AF(a) + (1 = Az - a), 2)

which has the same form as a standard continuation or embedding mapping. However, there

are two crucial differences. First, in standard continuation, the embedding parameter A increases
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Figure 1. Zero set for pa( X, z) satisfying properties 1) - 4).

monotonically from 0 to 1 as the trivial problem z —a = 0 is continuously deformed to the problem
F(z) = 0. The present homotopy method permits A to both increase and decrease along ~ with no
adverse effect; that is, turning points present no special difficulty. The second important difference
is the use of the extraneous parameter a, whose consequence is that there are never any “singular
points” which afflict standard continuation methods. The way in which the zero curve v of g, 1s
followed and the full rank of Dp, along 7 guarantee this.

Tn order for property 4) above to hold for the homotopy map in (2), F(z) and (z — a) must
be “asymptotically similar” (see Lemma 3 below). This is not the case for every F(z), and so

frequently other homotopy maps must be used, for example,
palhz) = AF(z)+(1- N G(z;a), (2a)

where G(z;a) is a simple version of F(z). For instance, G(z;a} might be derived by simplifying
the physical model used to derive F(z). Also the homotopy map need not be a simple convex
combination between F(z) and G(z; a); examples of homotopy maps nonlinear in X are in [52] and
[54].

The scheme just described is known as a probability-one globally convergent homotopy al-
gorithm. The phrase “probability-one” refers to the almost any choice for a, and the “global
convergence” refers to the fact that the starting point zo need not be anywhere near the solution
7. Tt should be emphasized that the form of the homotopy map pe(X, 2) in (2) is just a special
case used here for clarity of exposition. The more general theory can be found in [39, 44, 46}, and
practical engineering problems requiringa p, nonlinear in A are in [52] and [54]. Below are some

typical theorems for various classes of problems.
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The computation of Brouwer fixed points represents one of the first successes for both simplicial
11, 34} and continuous homotopy methods [7, 39]. Brouwer fixed point problems can be very nasty,
and often cause locally convergent iterative methods a great deal of difficulty.
TrEOREM [39). Let B = {z € E™ | |jz|l; =1} be the closed unit ball, and f : B — B a C? map.
Then for almost all a € int B there ezists a zero curve 7y of

pald,z) = Mz ~ f(2)) + (1 - A)(z - a),

along which the Jacobian matric Dpa(X,z) has full rank, emanating jrom (0,a) and reaching a
fized point T of f at A= 1. Furthermore, 4 has finite arc length if I — D f(%) is nonsingular.

Typically a mathematical problem (such as a partial differential equation) results in a finite
dimensional nonlinear system of equations, and what is desired are conditions on the original
problem, not on the final discretized problem. Thus the results in this section are used to derive,
working backwards, useful conditions on the original problem, whatever it might be. The following
four lemmas, which follow from the results of [7], are used for that purpose. '
LimMa 1. Let g+ EP — EP be a C? map, a € E?, and define po : [0,1) x EY — EP by

pa(Xy) = 2g(y) + (1 = Ay —a). .

Then for almost all a € E? there 1s a zero curve v of p. emanating from (0,a} along which the
Jacobian matriz Dpy(X\,y) has full rank.
LEMMA 2. If the zero curve v in Lemma 1 is bounded, il has an accumulation point (1,7), where
g(§) = 0. Furthermore, if Dg(#) is nonsingular, then v has finite arc length.
LEMMA 3. Let F : EP — EP be a C* map such that for somer >0, F(z) > 0 whenever ||z]l = 7.
Then F has a zero in {z € E? | ||z]| < r}, and for almost all a € EF, lla|] < 7, there is @ zero
curve ¥ of

pa(X z) = AF(z) + (1 = A)(z — a),
along which the Jacobian matriz Dpo(A, ) has full rank, emanating from (0, a) and reaching a zero
Z of F at A = 1. Furthermore, 7 has finite arc length if DF(Z) is nonsingular.

Lemma 3 is a special case of the following more general lemma.

LeMMa 4. Let F : EP — EP be a C? map such that for some r > 0 and ¥ > 0, F(z) and z — a do
not point in opposite directions for |jz|| = r, ||al| < 7. Then F has a zero in {z € EP | {jz]| < 7},
and for almost all a € E?, |ja|| < 7, there is a zero curve ¥ of

| palhz) = AF(@) + (1 = Xz - @),
along which the Jacobian matriz Dpa.(A,z) has full rank, emanating from (0,a) and reaching a zero .
# of F at A = 1. Furthermore, v has finite arc length if DF(Z) is nonsingular.

These theoretical algorithms have been implemented in production quality mathematical soft-
ware packages such as PITCON [33], CONKUB [20], and HOMPACK [46]. The latter, described in
the next section, is an extensive collection of FORTRAN 77 rcutines implementing three different
tracking algorithms for problems with béth dense and sparse Jacobian matrices, and containing

high level drivers for special classes of problems.
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4. Curve tracking algorithms and HOMPACK. The zero curve 4 of the homotopy map
pa(X,z) (of which (2) is 2 special case) can be tracked by mary different techniques; refer to the
excellent survey [1] and recent work [44], [45]. There are three primary algorithmic approaches
to tracking 7 that have been used in HOMPACK [46], a software package developed at Sandia
National Laboratories, General Motors Research Laboratories, Virginia Polytechnic Institute and
State University, and The University of Michigan: 1) an ODE-based algorithm, 2) a predictor-
corrector algorithm whose corrector follows the flow norma! to the Davidenko flow {a “normal
flow” algorithm); 3) a version of Rheinboldt’s linear predictor, quasi-Newton corrector algorithm

[6], [33], (an “augmented Jacobian matrix” method).

Ordinary differential equation-based algorithm. Assuming that F(z) is C? and a is such
that p, is transversal to zero, the zero curve v is C and can be parametrized by arc length s.

Thus A = A(s), £ = z(s) along 7, and
pa(A(s); (s)) = 0

identically in s. Therefore

L pu(Me)2(s)) = Dpof¥(e):(6)) ( 2y =0, 3)
.C.ii
\ds
(&%)l - ®
With the initial conditions
M) =0, =(0) = =0, )

the zero curve 7 is the trajectory of the initial value problem. {3-5). When A(3) = 1, the corre-
sponding z(3) is a zero of F(z). Thus all the sophisticated- ODZ techniques currently available can
be brought to bear on the problem of tracking ¥ [35], [39].

Typical ODE software requires (d)/ds,dz[ds) explicitly, and (3), (4) only implicitly define
the derivative (d)/ds,dz/ds). Since the dimension of the kerrel of the Jacobian matrix

Dpa(A(s),2(8))

is one (this follows from the fact that Dp, has full rank p by the Parametrized Sard’s Theorem ), the
derivative (d)/ds,dz/ds) can be calculated from any nonzero vector z € ker Dp,. Note that the
derivative (d)/ds,dz /ds) is 2 unit tangent vector to the zero curve . For computational efficiency

it is imperative that the number of derivative evaluations be kept small. Complete details for
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solving the initial value problem (3-5) and obtaining z(3) are given in [48] and [39]. A discussion
of the kernel computation follows.

The Jacobian matrix Dpg is p X (p + 1) with (theoretical) rank p. The crucial observation
is that the last p columns of Dg,, corresponding to Dgp,, may not have rank p, and even if
they do, some other p columns may be better conditioned. The objective is to avoid choosing p
“distinguished” columns, rather to treat all columns the same (not possible for sparse matrices).
There are kernel finding algorithms.based on Gaussian elimination and p distinguished columns
[15]. Choosing and switching these p columns is tricky, and based on ad hoc parameters. Also,
computational experience has shown that accurate tangent vectors (dX/ds,dz/ds) are essential,
and the accuracy of Gaussian elimination may not be good enough. A conceptually elegant, as

well as accurate, algorithm is to compute the QR factorization with column interchanges [44] of

Dpg,

Q Dp, P'Pz = ..t 1 Pz=0,
0 * %
where @ is a product of Householder reflections and P is a permutation matrix, and then obtain a
vector z € ker Dp, by back substitution. Setting (Pz)p+1 = 1is a convenient choice. This scheme

provides high accuracy, numerical stability, and a uniform treatment of all p+ 1 columns. Finally,

d) dz z
(m:) =

where the sign is chosen to maintain an acute angle with the previous tangent vector on 7 . There
is a rigorous mathematical criterion, based on a (p+ 1) X (p + 1) determinant, for choosing the
sign, but there is no reason to believe that would be more robust than the angle criterion.
Several features which are a combination of common sense and computational experience
should be incorporated into the algorithm. Since most ordinary differential equation solvers only
control the local error, the longer the arc length of the zero curve v gets, the farther away the
computed points may be from the true curve 7. Therefore when the arc length gets too long, the

last computed point (X, ) is used to calculate a new parameter vector @ such that

exactly, and the zero curve of pa(},z) is followed starting from (X,Z). A rigorous justification for

this strategy was given in [39]. If p, has the special form in (Z), then trivially
a= (AF@E)+(1-XzF)/(1-X).

For more general homotopy maps pa, this computation of @ may be complicated.
Remember that tracking v was mereTy a means to an end, namely a zero £ of F(z). Since 7y

itself is of no interest (usually), one should not waste computational effort following it too closely.
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However, since v is the only sure way to £, losing v can be disastrous. The tradeofl between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult
to achieve. Nomne of the three primary algorithms alone is superior overall, and each of the three
beats the other two (sometimes by an order of magnitude) on particular problems. Since the

algorithms’ philosophies are significantly different, a hybrid will be hard to develop.

Nermal flow algorithm. As the homotopy parameter vector ¢ varies, the corresponding homo-
topy zero curve « also varies. This family of zero curves is known as the Davidenko flow. The
normal flow algorithm is so called because the iterates converge to the zero curve v along the flow
rormal to the Davidenko flow (in an asymptotic sense).

The normal flow algorithm has four phases: prediction, correction, step size estimation, and

' computation of the solution at A = 1. For the prediction phase, assume that several points

P = (A(sy),2(s1)), P¥ = (A(s2),2(s2)) on 7 with corresponding tangent vectors (dA/ds(s1),
dz /ds(sy)), (dA/ds(s3), dz/ds(sy)) have been found, and h is an estimate of the optimal step (in
arc length) to take along 4. The prediction of the next point on 7 is

ZO = p(sy + h), (M
where p(s) is the Hermite cubic interpolating (A(s),z(s)) at s1 and s3. Precisely,
p(s1) = (A(81),2(51)),  P'(s1) = (dA/ds(s1),dz/ds(s1)),
p(s2) = (M(s2),2(s2)),  P/(s2) = (dN/ds(s2),dz/ds(s2)),
and each component of p(s) is a polynomial in s of degree less than or equal to 3.
Starting at the predicted point Z(), the corrector iteration is

t
2040 = 200 — [Dpu(20)] u(2), k=01, (®)

where [.Dpa(Z(k) )] T is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian matrix Dp,.
Small perturbations of a produce small changes in the trajectory 7 , and the family of trajéctories
« for varying a is known as the “Davidenko flow”. Geometrically, the iterates given by (8) return
to the zero curve along the flow normal to the Davidenko flow, hence the name “normal flow
algorithm”.

A corrector step AZ is the unique minimum norm solution of the equation
[—Dpa] AZ = —p,. (9)

Fortunately AZ can be calculated at the same time as the kernel of [Dpa], and with just a
little more work. Normally for dense proﬁiems the kernel of {Dpa] is found by computing a QR
factorization of [Dpﬂ], and then using back substitution. By applying this QR factorization to
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—p, and using back substitution again, a particular solution v to (9) can be found. Let u # 0 be
any vector in the kernel of [Dpa]. Then the minimum norm solution of (9) is

t
AZ=v— P—uu : (10)

uty

Since the kernel of [Dpa] is needed anyway for the tangent vectors, solving (9) only requires

another (O(n?) operations beyond those for the kernel. The number of iterations required for
convergence of (8) should be kept small (say < 4) since QR. factorizations of [Dps] are expensive.
The alternative of using [Dps (Z(O))] for several iterations, which results in linear convergence, is
rarely cost effective.

When the iteration (8) converges, the final iterate Z(k+1) is accepted as the next point on

~, and the tangent vector to the integral curve through Z (k) is used for the tangent—this saves a
Jacobian matrix evaluation and factorization at Z(k+1) | The step size estimation described next
attempts to balance progress along v with the effort expended on the iteration (8).

Define a contraction factor

-2
" zo =z -
a residual factor | (2t ))”
_ lea(2"
= T 1)
a distance factor (Z* = limg—co ZN
_ Jiz® -z
D= 20 = z+’ (13)

and idea] values I, B, D for these three. Let h be the current step size (the distance from Z* to
the previous point found on 7 ), and R the “optimal” step size for the next step. The goal is to

achieve .
L R D &Y
IR0 m (14)
for some ¢. This leads to the choice
A = (min{L/L,R/R,D/D})*, (15)

a worst case choice. To prevent chattering and unreasonable values, constants Amin (minimum
allowed step size), Amax (maximum allowed step size}, Bmin {contraction factor), and Bmax {ex-

pansion factor) are chosen, and h is taken as

RS

B = mill {maX{hmin,Bminh, FL}sBmaxha hmax} . (16)
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There are eight parameters in this process: L, R, D, hminy Amaxs Bmins Bmax, ¢¢ HOMPACK
permits the user to specify nondefaunlt values for any of these. The choice of k from (16) can be
refined further. If (8) converged in one iteration, then h should certainly not be smaller than A,

hence set
b := max{h,h} (17)

if (8) only required one iteration.

To prevent divergence from the iteration (8), if (8) has not converged after K iterations, % is
halved and a new prediction is computed. Every time h is halved the old value holq is saved. Thus
if (8) has failed to converge in X iterations sometime during this step, the new h should not be

greater than the value Ao known to produce faiiure. Hence in this case
h := min{howa, h }. (18)

Finally, if (8) required the maximum K iterations, the step size should not increase, so in this

case set
h := min{h, k}. (19)

The logic in (17-19) is rarely invoked, but it does have a stabilizing effect on the algorithm.

The final phase, computation of the solution at A = 1, begins when a point P® on 7 is
generated such that le > 1. The solution lies somewhere on 7 between the previous point P
and P(?). The endgame now consists of iterating until convergance the sequence of steps: inverse
interpolation with the Hermite cubic (7) for § such that p(3); = 1; two iterations of (8) starting
with Z(® = p(8); replacing either P} or P¥ by Z( such that the solution on 7 is always
bracketed by P} and P(3}, A precise statement of the endgame and the convergence criterion is

given in [46).

Aungmented Jacobian matrix algorithm: The augmented Jacobian matrix algorithm has four
major phases: prediction, correction, step size estimation, and computation of the solution at
A = 1. The algorithm here is based on Rheinboldt [33], but with some significant differences:
(1) a Hermite cubic rather than a linear predictor is used; (2) a tangent vector rather than a
standard basis vector is used to augment the Jacobian matrix of the homotopy map; (3) updated
QR factorizations and quasi-Newton updates are used rather than Newton’s method; (4) different
step size control, necessitated by the use of quasi-Newton iterations, is used; (5) a different scheme
for locating the target point at A = 1 is used which allows the Jacobian matrix of F' to be singular
at the solution Z provided rank Dp,(1,%) = n.

The prediction phase is exactly the same as in the normal flow algorithm, Having the points
PO = (A(s1),2(81)), P® = (A(s2),z(s2)) on 7 with corresponding tangent vectors

o

dX

E(Sz)
dz ‘
E(sl)

T(l) = T(z) = ; (20)

k]

iz
3;(32 )
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the prediction 7(0) of the next point on 7 18 given by (7).
Tn order to use this predictor, a means of calculating the tangent vector T(2) at a point P2

is required. This is done by solving the system

0
Dp (P __ |
{ T =10 (21)
1

for z, where Dpo isthen x (n+1}3 acobian of pa- Normalizing 2 gives

T2 = l_liﬂ (22)

The last row of (21) insures that the tangent T(2) makes an acute angle with the previous tan-
gent T (1), It is the augmentation of the Jacobian matrix with this additional row which motivates
the name “augmented J acobian matrix algorithm.” The solution to (21) is found by computing a
QR factoriza,;ion of the matrix, and then using back substitution [6).

Gtarting with the predicted point Z (0), the correction is performed by a quasi-Newton iteration

defined by
AR pe (219)
k _ k e — ;
7 H)"Z()—{T(W} ( ’ ) k=01, (23)

where A is an approximation to the Jacobian matrix Dpa (Z(®). The last ToW of the matrix in
(23} insures that the iterates lie in @ hyperplane perpendicular to the tangent vector 72}, (23) is

the quasi-Newton iteration for solving the augmented nonlinear system

2(¥)
(ren s so)) = 2y

A corrector step AZ(*) ig the unique solution to the equaiion

o= ()

The matrix on the left side of this equation 1s produced by successive Broyden rank one updates
[6] of the matrix in (21)- Precisely, letting 2070 = P2, A-D = Dp, (P¥), and

AlE}
) =
u® = [ 2o

the update formulas are

_ ALY {1 Dpa p2) ¢ E
MY = {T(Z)tl :.X PT((I)t ) +enti \T(Z) - T(l)) , (26)

11
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and
Rpo— M(k)Az(k)) AZR)E

AZRYEAZB) ’

- (k+1)Y — p, (ZF)
Apa.—_(’oa(z )O p ( )).

k=-1,0,... (27)

M = M) 4

where

These updates can be done in QR factored form, requiring a total of O(n?) operations for each
iteration in the correction process [6]. When the iteration (23) converges within some tolerance,
the final iterate 7(*) is accepted as the next point on the zero curve?.

The step size estimation algorithm is an adaptation of a procedure developed by Rheinboldt
[33].' At each point P with tangent T(%) along 7, the curvature is estimated by the formula

] = -A%-; tsin (c/2)] - (28)

where

(k) — (k-1

(k) —
v Ask ’

Q, = arccos (T(k)‘T(k'n) s Asp = “P(k) - P(k‘l)n .

Intuitively, ay represents the angle between the last two tangent vectors, and the curvature is
approximated by the Fuclidean norm of the difference between these two tangents divided by Asg.
This curvature data can be extrapolated to produce a prediction for the curvature for the next

6 = g2 (- 1D .

Since £, can be negative, use
£, = max(Emin, &) for some small Emin > 0, (30)

as the predicted curvature for the next step.
The goal in estimating the optimal step size is to keep the error in the prediction |20 - ZM)|

relatively constant, so that the number of iterations required by the corrector will be stable. This

- 26k
B s = _
vV &k ’ : (31)

where &, Tepresents the ideal starting error desired for the prediction step. 8« is chosen as a function

is achieved by choosing the step size as

of the tolerance for tracking the curve and is also restricted to be no larger than half of Asy.

As with the normal flow algorithm, additional refinements on the optimal step size are made in
order to prevent chattering and unreasoﬁzble values. In particular, % is chosen to satisfy equations
(16) and (18). This 7. is then used as the step size for the next step.
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The final phase of the algorithm, computation of the solution at A = 1, is entered when a
point P(?) is generated such that Pl(z) > 1. P?) is the first such point, so the solution must lie
on v somewhere between P(2) and the previous point P, The algorithm for finding this solution
is a two step process which is repeated until the solution is found. First, starting from a point
P#), g prediction 7(k=2) for the solution is generated such that ng_z) = 1. Second, a single
quasi-Newton iteration is performed to produce a new point P+1) close to 7, but not necessarily

on the hyperplane A = 1. _
Normally, the prediction 7{k=2) i computed by a secant method using the last two points

PR and pl-1);

: _ ptk)
297 = PM 4 (P(k-l) a P(k)) (P((j—l)ﬂ;?k)) ' (32)
1 | _

However, this formula can potentially produce a disastrous prediction (e.g., if IPf -1 Pl(k)i <
11 - Pl(k)[ ), s0 an additional scheme is added to ensure that this does not happen. In order
to implement this scheme, a point p(orP} must be saved. This point is chosen as the last point
computed from a quasi-Newton step which is on the opposite side of the hyperplane A = 1 from
P8, Thas, the points P(°P?} and (¥ bracket the solution. The prediction Z(*=2) may be bad

whenever the inequality
” Z(k=2) _ P(k)H > np(k) _-P(opp)w (33)

is true. In this case, Z(*~2) is recomputed from the equation

(o-#)

Pl(o-ap) _ P;Ek)) ’

glk=2) _ p(k} 4 (P(opp) _ P(k)) ( (34)
This chord method, while much safer than the secant method {32), is used only in the special case
(33) because it has a much slower rate of convergence than the secant method.

An exception to these linear prediction schemes occurs with the first step of the final phase.
Since the tangents T(*) and T(*) at P(!) and P are available, this information is used to generate
a Hermite cubic polynomial p(s) for calculating the first prediction point Z©) | This is done by
finding the root § of the equation mn(s) =1 Z® is then given by

7 = p(3). , (35)

After the predictor 7(k=2} has been determined, a quasi-Newton step is taken to get the point
PU+1) | This step is defined by

P(k+1) - Z(k-—?) + Az(k-—Q)’ (36)

where AZ(~2) is the solution to (25). Again, the matrix in (25) is produced by the rank one
updates (26) and (27).
The alternating process of computingE prediction and taking a quasi-Newton step is repeated

until the solution is found.
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5. Basic optimization homotopies. Consider first the unconstrained optimization problem

min f(z). : (37)

TeeoRrEM [41]. Let f: E* — E bea O3 convez map with @ minimum at &, ||Zli; < M. Then for

' almost all a, ||all, < M, there ezists a zero curve 7y of the homotopy map

pa(z) = AVf(z) + (1 - Az ~ a),

along which the Jacobian matriz Dpg(X,z) has full rank, emanating from (0,a) and reaching a
point (1,%), where T solves (87).
A function is called uniformly convex if it is convex and its Hessian’s smallest eigenvalue is

bounded away from zero. Consider next the constrained optimization problem
min f (z). (38)

This is more general than it might appear because the general convex quadratic program reduces

to a problem of the form (38). _
THEEOREM [41]. Let f: E™ — E be ¢ C® uniformly conver map. Then there exzists § > 0 such that

for almost all a > 0 with llall, < & there exists a zero curve of the homotopy map

pa(A,z) = A K(z) + (1 - (e~ a),

where s R
=[]+ (S2) 42

along which the Jacobian matriz Dpa(X,z) has full rank, connecting (0,a) to a point (1,T), where

7 solves the constrained optimization problem {(38).

Given F : E® — E™, the nonlinear complementarity problem is to find a vector z € E™ such
that ,
z>0, F(z)20, z'F(z)=0. (39)

At a solution Z, T and F(Z) are “complementary” in the sense that if ; > 0, then F;(Z) =0, and
if F;(z) > 0, then Z; = 0. This problem is difficult because there are linear constraints z > 0,
nonlinear constraints F(z) > 0, and a combinatorial aspect from the complementarity condition
z'F(z) = 0. It is interesting that homotopy methods can be adapted to deal with nonlinear
constraints and combinatorial conditions.

Define G : E® — E™ by

G,‘(Z):—|Fg(z)—25|3+(Fi(z))3+2?, t=1,...,7,
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and let
pa(X2) = AG(2) + (1 = A)(z — a).

THEOREM [40], Let F: E* — E™ be a C? map, and let the Jacobian matriz DG(z) be nonsingular
ai every zero of G(z). Suppose there ezists r > 0 such that 2 > 0 and z; = ||zl = 7 imply
Fi.(z) > 0. Then for almost all @ > 0 there exists a zero curve v of pa(A,2), along which the
Jacobian matriz Dpa(), 2) has full rank, having finite arc length and connecting (0,a) to (1,2),
where Z solves (39).

THEOREM [40). Let F: E* — E™ be a C? map, and let the Jacobian matriz DG(z) be nonsingular
at every zero of G(z). Suppose there ezists v > 0 such that z > 0 and 2]l = 7 imply 25 Fy(2) > 0
for some indez k. Then there egists & > 0 such that for almost alla > 0 with ||al|,, < 6 there
ezists a zero curve ¥ of pa(, z), along which the Jucobian matriz Dpo(A,2) has full renk, having

finite arc length and connecting (0,a) to (1,7), where 2 solves (89).

Homotopy algorithms for convex unconstrained optimization are only of theoretical interest,
and are generally not computationally competitive with other approaches, but it is reassuring that
the globally convergent homotopy techniques can theoretically be directly applied. For constrained
optimization thé homotopy approach offers some advantages, and, especially for the nonlinear com-
plementarity problem, is competitive with other algorithms. See [47) for an application of homotopy
technigues to the linear complementarity problem. Constrained optimization is addressed in the

next few sections.

8. Expanded Lagrangian Homotopy. The expanded Lagrangian homotopy method of Poore
[31, 32] is applicable to the general nonlinear programming problem

min #(z)
subject to g¢(z) <0,
h(z) =0,

where & € E™, 8 is real valued, g is an m-dimensional vector, and k is a p-dimensional vector.
~ Assume that 6, g, and h are C*. In this general situation the complete formulation and solution
algorithm for the expanded Lagrangian homotopy are rather complicated. The essence of the
" method is presented here, referring the reader to [31] and [32] for a discussion of the theorefical
and practical subtleties. The technique has been applied fo linear programming [31] and the linear
complementarity problem [47], but is currently primarily of theoretical interest.

The expanded Lagrangian approach inay be described as an optimization /continuation ap-

proach and has in its simplest form two main steps.
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Step 1. {Optimization phase).

At r = 1o > 0 solve the unconstrained minimization problem
min P(z,7)

where o
1
P(a,r) = 0(e) + h(o)h(e) =1 L n(-9i(2).
Step 2A. (Switch to expanded system).
A (local) solution of min P must satisfy

h(z)tV

0=V,P=Vé(z)+ h(z)'Vh(z) _ YZ‘; ;%'Evg,.(m).

—

Tntroduce the following variables:

h(z
p= ),
T
r
i ) t= 1,000,
H= al=)

which ultimately represent the Lagrange multipliers. This helps to remove the inevitable ill-
conditioning associated with penalty methods for small r and we thus obtain our equivalent but

expanded system:
Vé(z) + A VA(e) + 4'Vg(z) =0,

hz)-rB =0,
pigilz) +r =0, i=1,...,M

{Remark. As a result of the optimization phase and the initial starting point with 7o > 0, the
solution #(® of min P(z,ro) satisfies g(z\®) < 0. As a consequence, ¢(® > 0 from the definition

of jt. u remains positive until 7 = 0 where we formally have
Vé(z) + B Vh(z) + 1 Vg(z) = 0,
h(z) = 0,
9(z) <0,
¢ z0,

-
i
H

e

R

p’igi(z) = 07

" which implies that we have solved the probiem.)
In practice we do not solve the opfimization problem mizn P to high accuracy since a highly

accurate solution may have only 2 digit or two in common with the final answer. However, it is
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imperative that VP be reasonably small in magnitude, say less than rq/10. The expanded system

is converted to a homotopy map by letting r = 7o(1 — A) and modifying the first equation to obtain:

Vé(z) + F1Vh(z) + p'Vg(z) - é—vp(m(ﬂ),ro) =0,
h(z) -8 =0, (40)
pigi(z) +r =0, i=1,...,m.

Whrite this system of n + p + m equations in the n + p+ m + 1 variables Az, 3, 1oas
T(Az,8,u4)=0.

Step 2B. (Track the zero curve of T from r = r¢ to 7 = 0.)
Starting with arbitrary ro > 0 and feasible interior point z(® (g(z(®) < 0), the rest of the
initial point (0,2(®,8®), 4(®) is given by

ﬂ(ﬂ} _ h(z(o))
o
___"™ - '
my o = “gi(w(o)), 1—1,...,m.

This approach requires careful attention to implementation details. For example, the linear algebra
and globalization techniques with dynamic scaling are critically important in the optimization
phase. For degenerate problems the path can still be long. One possible resolution is the use of
shifts and weights as developed in the method of multipliers [5], but holding r = ro fixed. (This
approach is currently under investigation in the context of linear programming [31].) Note that the
optimization phase (Step 1) can be omitted altogether, starting Step 2B with an arbitrary interior
feasible point 2(® (g(2{®) < 0), so that (40) is & true global homotopy. As a practical matter,

however, it is advantageous to get a good starting point by doing Step 1 with a small rg.

7. Application of expanded Lagrangian homotopy to the linear complementarity prob-
lem. As an illustration, the expanded Lagrangian homotopy method will be applied to the linear

complementarity problem:

w—Mz=q,

w>0, z20, wz=0,

where M is a given real n X n matrix and ¢ € E™ is given; the unknowns are w € E™ and z € E™

Step 1. (Optimization phase).

At r = vy > 0 solve the unconstrained minimization problem

=~

min P(w, z,7)
w,z
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where

j==1

n n
Plw,z,r) = -2%:[|w —Mz—ql}+ -217(10,::)2 - rzin 2z — ern w;.
i=1

Step 2A. (Switch to expanded system).

A (local) solution of min P must satisfy

_ _ I V(w-Mz-¢q) 2\ {w,2) 1 11 1 ¢
O—V(W?Z)P—- ("‘-Mt) , + W —_'r T wl,..-,wn’21,...,zn -

Introduce the following variables:

w—Mz—
ﬁ: qa
T
g= {02
T
i
»u't=-w—is 7’:1: » Ty
T

which ultimately represent the Lagrange multipliers. This helps to remove the inevitable ill-

conditioning associated with penalty methods for small r and we thus obtain our equivalent but

(e (=)o

w—Mz—q-—18=0,

expanded system:

{w,z) — r8 = (,
,LL,"H);-?‘:O, i:l,v.,,n,
mz—r=0, i=1,...,n.

(Remark. As a result of the optimization phase and the initial starting point with 7o > 0, the
solution (w(®,2(?) of min P(w, z,7p) satisfies 29 > 0 and v{® > 0. As a consequence, u(®) > 0

and n(® > 0 from the definitions of x4 and 7. They remain positive until r = 0 where we formally

(e)oe (2)e-(5)=o

have

w—Mz—-—q¢=0,

{w,2z) =0,

piw; =0, r=1,...,n,
S mz =0, i=1,...,m,

w,z,E},,u,n; qQ,
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which implies that we have solved the problem.)
The expanded system is converted to a homotopy map by letting r = 7o(1 — ) and modifying

the first equation to obtain:

I Z\g_(BY_ L 0 {0 Ly =
(—Mt)ﬁ+(w)9 (7?) 1POVP('w ,2 1) =0,
w—-Mz—g-—rB=0,

{w,z) — 8 = 0,
piw; — 1 =, i=1,...,n,
‘I],‘Zi—’l"=0, i=l,...,n.

Whrite this system of 57 + 1 equations in the 5n + 2 variables A, w, 2, §, 6, u, 7 as
T(Aw,z,8,8,p1,m) = 0.

Step 2B. (Track the zero curve of T from r = ry to r = 0.)
Starting with arbitrary 7o > 0, »(® > 0 and 29 > 0, the rest of the initial point
(0, w®, 0, B0 65, u(0), (0} is given by

o _ w® = M0 —g

(
g - ,
(w(©), (00
p = ———,
o
0 . o i=1,...,m
i wgo)
) To .
ﬂg}ﬁ—'(g)", z=l,...,’n.
%

Computational experience with this approach to the LCP is reported in [47].

8. Application to optimal structural design. Composite materials are ideal for structural
applications where high strength-to-weight and stiffness-to-weight ratios are required. Design op-
timization of composite structures has gained importance in recent years as the engineering'a,p-
plications of fiber-reinforced materials have increased and weight savings has become an essential
design objective, especially for aircraft and spacecraft structures. The laminates considered here
are symmetric about the middle surface with 2n layers (see Figure 2), so that the bending response
is not coupled to the membrane action. The optimization problem is to maximize the buckling
load of a 2n-layered composite plate (Figure 3) for a given total plate thickness. The thickness of
each layer is assumed to be constant over the plate, and for a given stacking sequence of the ply

orientations, each thickness is taken as a design variable.
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Figure 3. Geometry of composite plate under uniform uniaxial in-plane load.

This is an instance of a general engineering design problem, namely to maximize the lowest
buckling load of a structure for a given amount of resources. The structure is discretized by finite
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elements. Expressing the lowest buckling load with Rayleigh’s quotient, the problem is written as

. ulKu
maxmin
v u uTKgu

such that ¢‘v—60 =10 (41)
and viminsvigfvimaz‘ fOIi:I,,.,,ﬂ{[,

where v is a vector of design variables with components i, u is the displacement vector, K and
Kz (depending on v) are the stiffness matrix and the geometric stiffness matrix, respectively, ¢
is a positive cost vector, and @ is the amount of available resources. The M design variables are
subject to upper and lower -bounds, v; ez and v; min, respectively.

A typical optimization method, applied to solve this problem, starts from a given design and
continuously searches for better designs until it finds an optimum design. The trial designs along
the path are of no value. The proposed method instead proceeds along a path of optimal designs
for increasing amounts of resource 8. The resource § is varied between the minimum @,y required
to satisfy the lower bound constraints and a maximum Omex When all variables are at their upper
bounds.

The path consists of several smooth segments, each segment being characterized by a set
I4 of variables which are at their upper or lower bounds. Along each segment, some inequality

constraints can be treated as equality constraints,
Vi = Vimin O Vi = ¥Ujmar for JE L4, (42)

s0 that these variables can be eliminated from the optimization problem, while the other variables
do not have to be constrained. The optimization problem along 2 segment can, therefore, be

written as
T

i forigrl
e uT Kgu or i ¢ Iy (43)

such that c¢Tv—4 = 0.

The solution of the problem consists of three related problems: solving the optimization
problem along a segment, locating the end of the segment where the set I4 changes, and finding
the set I4 for the next segment. - '

It is common practice to normalize the displacement vector u such that the denominator of
Rayleigh’s quotient is unity and to treat this as an equality constraint. Then, using Lagrange

multipliers 77 and u, the avgmented function P* is formed:
P*=yTKyu—q [uT Keu - 1] —pfeTv- 4] . (44)

The following stationary conditions are obtained by taking the first derivative of P* with

respect to v;, u, 7, and p, and setting it equal to zero:
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i) Optimality conditions

—_—u - —u—puci=0 forig la. 45
U Bv,-u N 8’0,-“ JE; ori ¢ Ia (45)
i) Stability conditions

Ku-nKgu=0. (46)

ili) Normalization constraint
1-uTKgu=0. (47)

iv) Total resource constraint
g—-cTv=0. (48)

- Equations (45)-(48) form a system of nonlinear equations to be solved for v;, u, 7, and p. A
homotopy method is used to find the solutions of these equations as a function of 8.

In certain ranges of structural resources, the optimal solution is known to be bimodal, i.e.,
the lowest buckling load is a repeated eigenvalue. The formulation for bimodal solutions is given
in the appendix of [36]. The existence of bimodal solutions also introduces additional transitions
(bimodal to unimodal and vice versa) along the path of optimum solutions.

The homotopy method as described here earlier is intended to solve a single nonlinear system
of equations, and converge from an arbitrary starting point with probability one. In this context
§ € [0,1), and the zero curve 7 is bounded and leads to the (single) desired solution at § = 1. The
a vector, viewed as an artificial perturbation of the problem, plays a crucial role. In the version
of the method employed here, 6 € (6o,81), each point along ~ has physical significance, and a is
fixed at zero (no perturbation). Because a is not random, the claimed properties for v hold oniy
in subintervals (6o, 6;) of [0,00). Detecting and dealing with these subinterval transition points is

the essence of the modification of the homotopy method used in this section.

Switching from one segment to the next. There are four types of events which end a segment
and start a new one:
Type 1: a bound constraint becoming active (i.e., being satisfied as an equality);
Type 2: a bound constraint becoming inactive;
Type 3: transition from a unimodal solution to a bimodal solution;
Type 4: transition from a bimodal solution to a unimodal solu‘ion.

To switch from one segment to the next, we first need to locate the transition point. At a
transition point there are a number of solution paths which satisfy the stationary equations, and
we need to choose the optimum path. '

Transition points are located by checking the bound constraints and the optimality conditions.

e

The bound constraints ,
Vimin < Vi £ Vimer fori=1,...,M (49)
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are checked to detect a transition point of type 1.

Optimality of the solution is checked by the Kuhn-Tucker conditions and the second-order
conditions discussed below. The solution satisfies the Kuhn-Tucker conditions when all Lagrange
multipliers are nonnegative. So a transition of type 2 is detected by checking the positivity of the
Lagrange multipliers associated with the bound constraints. These multipliers are obtained by
adding the bound constraints to the formulation (43) and replacing the augmented function P* by

P =yTEy- i [uTI('Gu - 1] —u [cT'n - 9] - Z A [05 min — vi] — Z A2 [V = Vimag) - (50}
. iEIA ‘iEIA
Taking the first derivative of P* with respect to v; gives

uTa—K_u-—‘quTaﬁGU"ﬂCi'l’)\li“‘)\?f=0 fOI‘iEIA» (51)

Since Ay; is 0 for v; # v;pmin and Ag; is 0 for v; # v maz for the above equations, Ag; and Ay; -

are given by

K K
A = —uT.C:.)_u + ‘I]'U,Ta Gu +pe; for v = Vimin
av; ov; (52)
Agi = uTaKu uTBKGu e; Tfor v; = ¥y
9 = 6?);, n 31),‘ HC{ 1 = Vimag-

A type 2 transition is detected by a Lagrange multiplier becoming nonpositive. Similar equations
for the bimodal case are given in the appendix of [36].

The bimodal formulation replaces by 7 and 7, which are the Lagrange multipliers for the
normalization constraints on the two buckling modes. When one of them becomes negative, the

corresponding mode should be removed for the optimum design, so that we have a transition of

- type 4 from bimodal to unimodal design,

For a transition of type 3, we need to check if there is another buckling mode associated with a
lower buckling load. This can be accomplished by checking the second-order optimality conditions
for the buckling mode variables u given by

rT [V2P*]» >0 for every r such that V,hTr =0 (53)
where o2 pr
[Verl= [8u,3uJ
s (8]
h=uvlKeu—1.

Alternatively we can solve the buckling problem (46) for the current design and check whether
~ the buckling load obtained from the stationary conditions is truly the lowest one. The transition
of type 3 is detected by checking if )

pP¥Em (54)
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where p is the buckling load obtained from the stationary conditions while py is the first buckling
load obtained by solving the stability conditions (46) for the given structure.

Once a transition point is located, we need to choose a path which satisfies the optimality
conditions. Choosing an optimum path constitutes finding a set of active bound constraints for
type 1 and 2 transitions and the correct buckling modes for type 3 and 4 transitions. These are
obtained by using the Lagrange multipliers of the previous path and the sensitivity calculation on
the buckling load. The procedure is explained separately for each type of transition.

A type 1 transition occurs when one of design variables, v;, hits the upper or lower bound.
Then v; is set at ¥;maz OF ¥imin and treated as a constant value. The number of design variables
is reduced by one.

At a type 2 transition, one of the Lagrange multipliers for the bound constraints, A;; and Ay,
is found to be negative. The bound constraint corresponding to the negative Aj; or Ay, is set to be
inactive and the number of design variables is increased by one.

At a transition from a unimodal solution to a bimodal colution (a type 3 transition), the
formulation requires two buckling modes, u; and wug, for the solution of the upcoming'bimodal
path. These modes can be obtained by solving the stability conditions (46) of the previous unimodal
formulation, since the stability conditions give two buckling modes at the bimodal transition point.

At a transition from a bimodal to a unimodal solution {a type 4 tramsition), two buckling
modes are given from the bimodal solution. One of the Lagrange multipliers for the normalization
constraints, 7, is known to be negativé from the previous transition check, so the buckling mode
corresponding to the positive n is chosen.

Some of the above transitions can occur simultaneously. Special treatment is required in
certain cases where the Lagrange multipliers are not available. In general, the optimum design
requires at least one design variable »; for 2 unimodal case and two design variables for a bimodal
case. At a type 1 transition, the number of design variables is reduced by one, and at 2 type 3
transition the bimodal formulation requires one more design variable in case the previous unimodal
path has only one design variable. So some type 1 or type 3 transitions occur simultaneously with a
type 2 transition which allows an additional design variable. In that case, the Lagrange multipliers
A1 and Ag;, which are used at a type 2 transition to determine a new design variable, are not
available. We then rely on the sensitivity information of p witk respect to v. For a unimodal case,
the location of the new design variable v; is determined where dp/d# is maximized. For a bimodal
case, we need to find a combination of ¢ and j which maximizes the value of the bimodal buckling
load for a small increment of the total available resource. Considering the bound constraints in

the formulation, the new design variables are determined by

dp _ Opidvi | Opy dv;

N W Bo &8 T oo, 0 (55)

such that
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Opdvi | Oprdv; _ Opy dvi | Opy dv;
dvi df  Ov; d6 ~ Ov; d§ ' Bv; d
d’f),’
de
d’v,—
dé
i)
dé
du;

and Tibi <0 for vj = vjmar

where p; and p; are the buckling loads corresponding to the buckling modes u; and ug, respectively.

20 for v; = v;min
<0 forv; = Vi mazx

20 dor v; = vjmin

After we obtain the design variables v and the buckling modes u, we need the Lagrange
multipliers p and 7 at the transition point to complete tie set of starting values for the next
solution path. These are obtained by solving the stationary conditions for the given v and v. For
example, in the unimodal case, 7 is obtained from the stability conditions (46) and u is obtained

by solving one of the optimality conditions (45).

Summary. A typical optimization method starts from a given design and continuously searches
for better designs until it finds an optimum design. The trial designs along the path are of no
value. Here a strategy for tracing a path of optimum solutions parameterized by an amount of
available resources was discussed. Equations for the optimum path were obtained using Lagrange
multipliers, and were solved by a homotopy method.
The solution path has several branches due to changes in the active constraint set and transi-
~ tion from unimodal to bimodal solutions. The Lagrange multipliers and the second-order optimality
conditions were used to detect branching points and to switch to the optimum solution path,
: In {36] this procedure was applied to the design of a foundation which supporfs a column for

maximum buckling load, where the total available foundation was used as a homotopy parameter.

~_ Starting from a minimum foundation which satisfies the lower bound (in this case zero), a set of

. optimum foundation designs was obtained for the full range of total foundation stiffness. Numerical
- results for the design of composite plates described here, where the total plate thickness is the

resource parameter being varied, are in [37].

8. Kreisselmeier-Steinhauser envelope function. The previous sections presented ways that

" “were both theoretically “correct” and computationally “practical” to deal with inequality con-

" straints. However, there are numerous practical difficulties in those approaches, and the implemen-
tation and tuning details become absolutely crucial. For example, with the expanded Lagrangian
formulation, line searches may generate negative arguments for the In functions, and the homotopy

_zero curve may diverge if the Step 1 solution is not good enough. For the active set approach,
the detection and .switching criteria for trafisition points may become extremely cumbersome and

inefficient. This section suggests an alternate way of dealing with inequality constraints.
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Consider inequality constraints of the form
gi{z) <0, 1=1,...,m, (56)

where each g; : E® — E is C?%. For a constant p > 0, the Kreisselmeier-Steinhauser [14] envelope
function for {(56) is
1 m
K(z)= ;in {Z exp (pgi(m))] . (57)
=1
K (z)is a cumulative measure of the satisfaction or violation of the constraints (56). Let gmqao(2z) =

max{g1(z},...,9m{z)}, and observe that

=1

1 m .
K(z) = gmas(z) + ;111 [ZeXP (p(gf(w) - gma.ﬁc(m)))} ; (58)
from which it directly follows that
Imazl{®) < K(z) < gmaz(z) + %ln m. (59)

Thus the envelope K (z) follows the maximum constraint, more closely for large p. In particular,
(56) could be replaced by
K(z) <0 (60)

with an error of no more than (Inm)/p.
The choice of p involves a tradeoff between modelling the maximum constraint (large p pre-
ferred) and avoiding large gradients (small p preferred). If the practical criterion for an active

constraint is |g;| < ¢, then a choice for p which has worked well in practice is

In

Observe that K{z)is C? and defined everywhere, a decided advantage over barrier functions.
Furthermore, (60) is a single nonlinear constraint, which makes any active set strategy very simple.

(60) has been successfully used in large scale structural optimization [4] and optimal control [14].

10. Probability-one homotopy for Kuhn-Tucker optimality conditions. The approaches
of earlier sections are still not always entirely adequate. The cumulative constraint function (57) is
decidedly unnatural, extremely nonlinear and ill conditioned for large p, and does not take advan-

tage of a known solution to a related problem. Consider again the general nonlinear programming

problem:
min 6(z)
subject to  g(z) <0, ' (62)
h(z) =0,
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under the same assumptions mentioned before. The Kuhn-Tucker necessary optimality conditions

for (62) are
Vé(z) + f'Vh(z) + p'Vg(z) = 0,

h(z) =0,
g(z) <0, (63)
p 20,
() = 0,
where § € E? and p € E™. Following Mangasarian [19] and Watson [40], the complementarity
conditions p > 0, g(z)} < 0, p'g{z) = 0 are replaced by the equivalent nonlinear system of equations
| Wi(z,u) = 0, (64a)
where
Wil ) = ~|ui + () + 4 = (0:@)°s i=1..om. (641)
Thus the optimality conditions (63) take the form

[Vé(2) + B*Vh(z) + p*Vg(a)f
Flz,B,p)= hiz) = (. (65)
W(z,u)
With z = (2,0, 1), the proposed homotopy map is
palA2) = AF(z) + (1= )z - a), (66)

where @ € E™TP+™_ Simple conditions on 6, g, and h guaranteeing that the above homotopy map
ps(},2) will work are unknown, although this' map has worked very well on some difficult fuel
optimal orbital rendezvous problems [38].

Frequently in practice the functions 8, g, and A involve a parameter vector ¢, and a solution
to (62) is known for some ¢ = ¢(°). Suppose that the problem under consideration has parameter

vector ¢ = ¢1), Then
c=(1-X)c® 4 A A (67)

parametrizes ¢ by A and 6 = 8(z;¢) = 8(z;¢(A)), g = 9(z;¢(})), h = h{z;¢())). The optimality
conditions in (65) become functions of A as well, F(A,z,6,p) = 0, and

pa(X,2) = AF(A, 2) + (1 = \)(z — ) (68)

is a highly implicit nonlinear function of X. If F|(0,2(®)} = @, a good choice for a in practice has
been found to be a = 2(%. A natural choice for a homotopy would be simply

F()z) =0, ' (69)

since the solution 2(® to F(0,2) = 0 (th;' problem corresponding to ¢ = ¢{®) is known. However,
for various technical reasons, (68) is much better than (69) [38].
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11. Fuel-optimal orbital rendezvous problem. The problem is to find a minimum fuel
rendezvous trajectory between two bodies, the non-maneuvering target and the interceptor, The
interceptor trajectory consists of Keplerian coasting arcs separated by impulsive thrusting, char-
acterized by a change in velocity (magnitude and direction). A final impulse is applied at the
end of the interceptor trajectory to provide a velocity match with the target. Hence the number
of impulses equals the number of coasting arcs. The maneuver must be completed within some
specified time and the trajectory must avoid passing too near the earth, i.e., the arcs must not
violate a minimum radius constraint. The fuel-optimal problemn translates to minimizing the total
change in the velocity (characteristic velocity).

The notation used is:

7 — change in true anomaly,

#{n) - - radius vector,

#(n) - unit vectﬁr in the radial direction,

% — reciprocal of the magnitude of the radius vector,
¥(n) - velocity vector, |

h(n) - magnitude of the angular momentum vector,

h(n)  — unit vector in the direction of angular momentum.

The variables are the coasting angles on each arc including a possible initial coast, the com-
ponents of the velocity change vector, and the coasting angle of the target. The forward equations

of motion for any subarc are:

u(n) = -h%- + (u(O) - ;—2) cos 77 + ¢’ (0) sin n,
#(n) = #(0) cos 5 + #'(0)sin 7,
with time of flight
o1
T(n) = f ———d#.
| M= | wew
The constraints are:

final position match ........c..oiiviiiiiiiiiea., Tr —Te{n) = 0,
final velocity match .........cooiiiiiiiiia, Ty — Fi(mp) = 0,
time of fiight constraint ..................cooii Tr-Ti=0,

nonnegativity of the coasting ares of the interceptor m>0C i=1,...,nim,
nonnegativity of the coasting arc of the target ..... 1 > 0,

time limit for rendezvous.......ovvvriinriinnannn. Tmax =T 20,



minimum radius constraint for each coasting arc...

except the initial coast arc of the interceptor.. U — Ujmax = 0, F=1,...,nim—1,
nonnegativity of the radius constraint ............. Uimin = 0, F=1,...,nim — 1.
The subscript f refers to the conditions on the interceptor trajectory after the final impulse and

the subscript ¢ refers to conditions on the target. nim is the number of impulses. The value of

%jmax i1l these constraints is given by the rather awkward and difficult to compute expression

1 { perigee radius, if perigee passage occurs on subarc,

Upax Min(Tinitials T finat ), Otherwise.

The optimization problem, subject to all the above constraints, is
min V/(s),
where
S = {ntg (n!Au"Ahaé)jg J = 1’__,’nim}’
and

nim

V= Z \/ug_[_l(O)[h'jH ~ 2hjhipy cos d; + B3] + [Ahjul 4 (0) + Au;-hj]z.
=1

For u, u', and h, the subscript j denotes the conditions at the beginning of the jth subarc, and on
the variables Au', Ak, and ¢ the subscript j denotes the jth impulse which occurs at the end of
the jth subarc. 7

Using the formulation of equations (65) and (68), numercus such rendezvous problems have
been solved, both in-plane and out-of-plane, and with 2, 3, 4, or 5 impulses. See [38] for more
details.

12. Global optimization of polynomial programs. Let E" denote n-dimensional real Eu-
clidean space, C" denote n-dimensional complex Euclidean space, E™*" the set of real m x n
matrices, and C™*" the set of complex m X n matrices. Lower case Greek letters will be real or
complex scalars or scalar-valued functions, and Roman letters will generally denote vectors and
vector-valued functions. z; denotes the ith component of the vector T, aﬁd for a matrix A4, 4;;
denotes the i, entry, A.; denotes the jth column, and A;. denotes the ith row. The Jacobian
matrix of a function f(z) is written V f(z).

Consider the general nonlinear programming problem

min §(z)
subject to g(z) <0, (70)
hiz)=0,
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where § : " — E, g : E® — EP, and h: E™ — EY are polynomial functions. Precisely, each

-component of #, g, and h has the form
n; T d
> e [ a5,
k=1 i=1

where the ;) are real and the d;j; are nonnegative integers. Such a problem will be called a

polynomial programming problem.

By adding slack variables, the inequality constraints
gx(z} <0
can be converted to equality constraints

gi(z) + 42 = 0.
Henceforth, assume that all the constraints are equality constraints, so that (70) becomes

min 8(z)
(71)
subject to  h(z) = 0.
The Lagrange Muliiplier Theorem says that if 7 is a locally optimal solution for {71) and rank
Vh(Z) = ¢, then 37 € E such that

VO(Z) + FVh(Z) = 0,

h(z) = 0. (72)

Since § and A are polynomial functions, so are V# and VA. Thus (72) is a polynomial system
of n + ¢ equations in the n + g unknowns z and r. So the polynomial programming problem (70)
reduces to the polynomial system of equations (72).

Polynomial continuation provides a giobally convergent homotopy algorithm guaranteed to
- find all the solutions of (72), and thus the global optimum of (70). In [36], [37], [40], [47], [49],
[53], [54] homotopy methods are used to solve optimization problems, but only for local (not global}
optimization. In {12] and [13] traditional polynomial continuation is used to solve the global
polynomial programming problem. In this paper, the more efficient m-homogeneous theory is
applied. The rest of this section updates traditional polynomial continuation theory to the m-
homogeneous context, develops a sta.ndardt;m-homogeneous formulation of (72), and illustrates the

theory with several examples.
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m-homogeneous polynomial continuation. Polynomial continuation is a numerical method
for computing all the geometrically isolated solutions to polynomial systems. Let f{z) = 0 denote
a system of N polynomial equations in N unknowns. The degree of the i** equation is d; =

N
maxy Zj:l d,‘jk and

N
td=]]d;
i=1

is the total degree of the system. Traditional polynomial continuation computes the full list of
geometrically isolated solutions to f(2) = 0 by numerically tracking ¢d paths in the space O™ x [0,1.
See, for example, [24] and [46].

Although this method works quite well when #d is relatively small, the computational cost
for larger systems can be prohibitive. A recent advance in polynomial continuation, the m-
homogeneous approach of Morgan and Sommese [25}-[27], reduces the number of paths that must
be tracked in many cases. By partitioning the variables to create an m-homogeneous structure, we
can solve the system tracking only the Bezout number of paths. Frequently, we can arrange for
the Bezout number to be smaller than the total degree. The mechanics of numerically tracking
the paths is essentially the same as for the traditional method. Here, we describe how to create
an m-homogeneous structure and find the Bezout number, In the Appendix, the method and its
theory are more fﬁ]ly developed.

We create an m-hdmogeneous structure for f(z) by partitioning the variables 21,20,..., 2N
into m nonempty sets. It will simpler for the exposition if we re-index with double subscripts.
Thus

m
{21,028} = U {21,550 20y,3},
i=1

where 3°7° ) k; = N. Now choose homogeneous variables 2 ; for j = 1 to m and define

Z5 = {20,5, 21,51 s 2y 5}

for j = 1 to m. Then evoke the substitution zij < zijfz; for i = 1to k; and § = 1 to m,
generating a system f' = 0 of NV equations in N + m unknowns (after clearing the denominators
of powers of the zg ;). This f/ is called m~homogeneous because the variables are partitioned into
™ coﬂeétions, Z3yeeey L, 80 that f' s homogeneous as 2 system in the variables of a,ny one of the
collections, We take d;1 to denote the 5t degree of the Itk pelynomial; that is, with all variables
held fixed except those in Z;, fi has homogeneous degree dji. Polynomial f] is said to have
type = (dit, ..o dm ).
The Bezout number d of an m-homogeneous polynomial system is given by

d=Coel |D,T¢| (73)

=1
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where
m

Y djids, (74)

n
i=1 j=1

D=

i.e., d is the coefficient of the H;":l gﬁf" term of D. Frequently, an m-homogenization of f for m > 1

has a (much) smaller Bezout number than the m = 1 case, where d equals the total degree of f.

Example 1. Consider the following system:

22923z +1 =10,

2123+ 2224 + 2124 = 0,
(75)
421232’4 - 22’22324 +1= U,

21 +22=0.

By grouping the variables of (75) into different sets, we create different m-homogeneous structures
and Bezout numbers. Normally, we would want to solve such a system with the m-homogeneous
structure that gives the smallest Bezout number. For each grouping of variables, we will form the
combinatorial product D defined jn (74) above, and then pick out the distinguished coefficient that
gives the Bezout number d, Thus:

Example 1.1. Group variables as: {z1,22} U {23,2). Thern, D = (201 + 2¢2)( 1 + oo}y +
2¢2)(¢1 + 062 ) and d = Coef [D, #3¢2], Thus, d = 10.

Example 1.2. Group variables as: {z1,20} U {23} U{z4}. Then, D = (201 + o + b3 ) (b1 + by +
33)*(¢1 + 0¢z + 0¢s), and d = Coef [D, ¢3¢ ds] = 8.

Example 1.3. Group variables as: {n1}U{z} U{z,2). Then, D = (¢ + &2 + 263 (¢ +
P2 + @3 )(¢1 + & + 0¢3), and d = Coef [D, $1¢263) = 16.

We see that 1.2 gives the smallest Bezout number. Thus, while the 1-homogeneous (traditional)
polynomial continuation yields a 24 path homotopy (i.e., the number of the total degree), we can
{easily} find a 3-homogeneous 8 path homotopy. Such a savings in computer work (ie., by a factor

of 1/3) can be significant in some applications.

To summarize: given a system of N polynomial equations in N unknowns, there exist tradi-
tional constructions from polynomial continuation that yield the total-degree number of paths to
track in order to compute the complete list of geometrically isolated solutions. The purpose of the
m—homogeneous approach is to reduce the number of paths needed to solve the problem, thereby
realizing a savings in computational work, The m-homogeneous method is begun by partitioning
the variables into sets. Then (73) yields the Bezout number, the associated number of paths to
be tracked. A different partitioning of the variables yields a different Bezout number, and there
is no systematic way to find the partitioninig that yields the smallest Bezout number, aside from

exhaustive search.
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An m-homogeneous homotopy formulation of the polynomial program. This section
gives a partitioning of the variables of the polynomial programming problem and presents a simple
formula for the associated Bezout number. It should be noted that for any particular probiem,
additional savings can often be obtained by customized the m-homogeneous partitioning to the
problem. Specific examples are given in the next section.

Partition the variables into two sets St and S;, where

_31 = {z3,22,...,2,} and §; = {1,790, .., )

corresponding to a 2-homogeneous structure.

Consider the :** Lagrangian equation

g
(Vol)i = V6:+ > riVhy,

i=1

where L(z,7) = 8(z) + rh(z) is the Lagrangian function for (71) and

Oh;
Vh.'hg —_— 52:_;-
Define, for ¢ = 1 to =,
5v9 _ —1, if VG, = 0,
P 7 ] deg(V6;), otherwise,

and
§Vh {—l, - ithj',:EOforjzlto g,
i max{deg(Vh;;) | j=1to q}, otherwise.
By re-ordering the indices of the z; if necessary, there is a nonnegative integer g < ¢ so that
§7h = —1fori=1to go, and 67" £ ~1 for i = go + 1 to g. Take g =0 if no 67" = —1. Note
that, by the definition of 9o, T14 T3, ..., T,, are the variables that do not appear in h and 24,41,
.+« Ty, are the ones that do.

Define

6; = max{6Y% 6Y") fori=1ton,

and
- 6 = deg(h;) fori=1toq.

Assume (without loss of gemerality) that §; # —1, 6% £ 0, and, if 6% =0, then VR £ 1, for any
i

We can now generate the Bezout number. The type of the {** Lagrangian equation is (§;,1)
ifi> gp and (6;,0) if 7 < go. The type of the ¢** constraint equation is (6%,0). Then D from
equation (74) is defined from these types as 7

g g0 n
D=]lat¢ [Totr ] (bidn =),
i=1 i=1 i=go+1
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where the second factor is omitted if gy = 0, and ¢; and ¢2 correspond to S and S5, respectively,

Then the Bezout number is given by
d = Coef [D,¢7¢1].

Note that we will consider only the case ¢ < n. If ¢ > n, then either the constraint set
cannot be satisfied or it can be reduced by omitting redundant equations. If ¢ = n, then either the
constraint set can be solved as an independent system or it can be reduced by omitting redundant
equations. The usual rank VA(Z) = ¢ condition rules out these redundant cases.

We see that

g g0
d =[] 8} T]6: Coef [D',gr=9=543]
=) i=1

where
n

D' = H (8id1 + 62),

iz=gp+l

and, by some simple combinatorial observations, we conclude that

d= f[agz ﬁai 3 8iybig -y, .. (76)

i=1 =1 qo+1551<i2<---<i,._90_45n

By comparison, the total degree is

g n
td = [] 8} [[ max {67¢,67" + 1}.
i=1 i=1
For example, if ¢ = n — 1 (e.g., the number of constraints is one less than the number of
variables) and go = 0, then we get
g n
=& 3 s
=1 =1
Another case of interest occurs when the ob jective function and constraints are all quadratics.
For simplicity, assume each variable occurs in at least one constraint raised to the second power.

(The resulting Bezout number will be an upper bound for the other quadratic cases.) Then gy = 0
and §Y* = 1 for all 7. It follows that

d =21 Z 1

161 < Kipe g <



Compare the generally much larger total degree in this case:
td = 297",

Examples. This section presents two specific examples. The first is a realistic “small” problem

that arises in geometric modeling. The second is a prototype structural design problem.

Geometric modeling problem. Let P; and P, be two polynomial surfaces in E3. The problem
is to compute the distance between P; and P,, defined to be the length of the smallest line segment

connecting them. Assuming that
Pi={z€ E® | hi(z) = 0}
where h; is a di* degree polynomial, the problem becomes

i 6(z,) = [l= ~ g
subject to  hi{z) =0,
hg(y) - 0.

The necessary conditions (72) in this case are

View L(2,4,7) = 2[z1 — g1, 22 — v2,23 — v3, (21 — y1), —(z2 = 12), — (25 — 93]
+ 71 [Vhi, Vhi 2, Vhi 3,0,0,0]
+72[0,0,0,Vhy 4, Vho 5, Vhs 6],
hi(z) = 0,
ha(y) = 0.

Heren=16,¢g=2,and 6§ =1fori=1to 6. Then

-1 if Vhy; =0
Vh _ ) Li =0, .
= {deg(Vhl,i), otherwise, fori=1to 3,
-1 if Vhy ;=0
vk = ’ ; 2, H] .
6; " = { deg(Vhg;), otherwise, for i = 4 to 6,
b = max{l,gf’h for i = 1 to 6,

and

68 = d; fori=1,2.

1
For the special case gy = 0, equation (76) gives

d=6068 S 666i6

1<i1<ia<izg<iqa<6
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If go = 0 and h; and hy are quadratics, then 6; = 1 for al] i, and by (77)

6
d=14 = 60,
(2
while the total degree is 2% = 25¢.
However, one can do better with a customized m-homogeneous breakdown; namely, partition
the variables as
{551,972,?3,1!1,!/2,?3} U {7‘1} u {TE}-

Then, for gy = 0, (74) and (73) become
3 6
D = 616186561 [J (61 + 62) [[ (6161 + o)
=1 t=4

and
d = Coef [D,¢516q52¢>3] .

If in addition the h; are quadratics, then

D = 2¢:24,(d; + $2)%(e1 + $3)°

and

d = Coef [D, ¢5¢,¢5] = 36.

Thus, the customized m-homogeneous structure reduces the Bezout number for the case gy = ()
and h; quadratic from 60 to 3s.

If, in fact, go £ 0, then further reductions are possible. ‘Consider the case that P is a cylinder
and P, is a sphere, as follows:

hi(z) =2+ 22 -1,

ha(y) =9} + (w2 = 3) + 42 — 1.

The variable z; does not appear in the constraint set. Therefore g = 1, and

D = 2¢12¢1 61(; + é2)* (¢ + @3)°
and
| d = Coef [D,¢8¢y45] = 24.

Going back to the standard 2-homogeneous Bezout number, equation (76) vields

=

6-1
= 92 =
d—21(6_1“2)-40.
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Thus, the customized m-homogeneous approach is better, but in both cases it is better to exploit
go = 1.

Structural design problem. Let us consider the following prototype structural design problem
from [53]:
min C1Zy + - + Copog

subject to wgi__l + m%i -b; <0, t=1to k,
2k

E i ;%5 = {), i=1to s,
j=1

where ¢;, b; > 0, @i,; are constants and & and s are positive integers with s < 2k,
Introducing slack variables and our standard notation gives
n=3k gqg=k+s, g = 0,
0(z) = e131 + -+ + C2kTak,

hi(z) = ﬂ?gi—1 + $§; + xgk_,_,- - b, i=1tok,
2k
hivi() = 3 aize;,  i=1tos,
i=1

and thus

]
(VeL)ziog = C2imt + 2riz0; 1 + E Tl 2501

=1

3
(VeLlle: = egi+ 2rizy; + E Tht 101 2

=]
(VeLllokti = 2rizgpy;
fori=1 to k.
“Then
6% =00r ~1, i=1ton,
%=1, is1ton,

bi=1, i=1ton,
=2 i=1tok,
=1, i=k+4ltokss.

Thus by (76)

a=2F7 N s,
1ISHi<<ino,<n

3k
— ok
=2 (Qk—.s)

e 3’%)
—2(k+s ’
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Table 1. Total degree, standard Bezout number, and customized Bezout number for the prototype

structural design problem,

k __s _total degree  standard Bezout customized Bezout
4 1 65536 12672 6912
4 2 65536 14784 r 29376
4 3 65536 12672 94462
4 4 65536 7920 214080
4 5 65536 3520 314880
4 6 65536 1056 . 293760
4 7 65536 192 161280

(Compare equation (77).) The total degree, by contrast, is
id = 24,

Sometimes, one can do better with a customized Bezout breakdown. Consider the partitioning
of variables:
k k .
U{xzi'—l)m?i’ mZk-{-i} U{T‘i} U{‘rk+17 cen $'r1"+s}-
i=1 i=1
To compute the combinatorial product D, assign dummy vaiiables ¢, ¢, se- vy @k to the first %
Eroups, 1y, Prt2, ..., to the second k groups, and @511 to the last group. Then

k
D=2%p Gy + -+ ¢)* [18: + bras = dorgr)? (g + Prti)

i=1

and
k .
d = Coef [D, (H ¢’?¢k+£) ¢§k+1J .
i=1
This simplifies to
k
d = 2*Coef [D’, (H ¢?¢5k+:‘) ¢5§k+1J
i=]

where
k
D' = {H 367 Breys + 26:(: + 20+ )b2k41 + (6 + ¢k+i)¢’§k+1] (14 -+ di)°.
i=1

Table 1 gives the total degree, standard Bezout number, and customized Bezout number for
the case ¥ = 4. Note that the customized Bezout number is better than the standard Bezout

number for s = 1 but worse for s> 1.
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