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Abstract. Optimization problems often depend on parameters that define constraints or
objective functions. It is often necessary to know the effect of a change in a parameter on the
optimum solution. An algorithm is presented here for tracking paths of optimal solutions of
inequality constrained nonlinear programming problems as a function of a parameter. The proposed
algorithm employs homotopy zero-curve tracing techniques to track segments where the set of active
constraints is unchanged. The transition between segments is handled by considering all possible
cets of active constraints and eliminating nonoptimal ones based on the signs of the Lagrange
multipliers and the derivatives of the optimal solutions with respect to the parameter. A spring-
mass problem is used to illustrate all possible kinds of transition events, and the algorithm is
applied to a well known ten-bar truss structural optimization problem.

1. Introduction.

Optimization problems often depend on parameters that -define constraint boundaries or ob-
jective function properties. These parameters are kept constant during the optimization, but it is
often necessary to know what is the effect of a change in some parameter on the optimum solution.
An example is the design of a structure subject to stress constraints, where the stress limit may
be a parameter that can be varied by using lower—grade or better-grade metal alloys. Another
example occurs in optimization with two objective functions, where all the efficient solutions can be
obtained by minimizing all the convex combinations of the two objective functions. The parameter
of interest there controls the relative proportions of the two objective functions in the combination.
The dependence of the optimum on the problem parameter can also be helpful in the modeling
process, since singularities in the behavior of the system can be revealed in this way [1].

There has been substantial interest in calculating the derivatives of optima with respect to
such parameters ( e.g., [2]). More recently there has been an effort to develop an approach to
tracing the family of optima obtained by varying a parameter over an extended range by using
homotopy techniques ([4], [3]). Reference [4] demonstrated that it is possible to trace the optimal
path when the optimum solution for the initial value of the parameter is given. The optimum path
is composed of smooth segments which are connected at transition points where the set of active
constraints changes. The main challenge is to develop techniques for making the transition from
one segment to the next. In 4] such a technique was develcped for the design of a beam with
a given weight so as to maximize the buckling load with the weight being the varied parameter.
The objective of this paper is to develop a general algorithm for tracing the optima of inequality
constrained optimization problems as a function of a parameter.
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2. Problem statement.
We want to minimize a cost function ¢(k,8) subject to constraints G(k,8) < 0,7 =1,...,7n,
where k is a ny-vector of design variables subject to the minimum value constraints k; > ko; and
# is a parameter. The problem is formulated as

minimize e(k, #) ' (1)

subject to
Gi =ko; —k; 20, t=1...,m1, (2)
Giin,(k,0) 20, i=1,...,n2. (3)

The solution should be obtained for a specified range of 8, say 6, £ 8 £ 6. The Lagrangian
function and Kuhn-Tucker conditions for this problem are:

ni+naz
L(A@A)_c(k)+ZA(kﬂ, E)+ Y MGk, 6) | (4)
j=na1tl
ni+ne
Z ,\Jak - X =0, i=1,...,n1, (5)
Jj=n1+1
Gj/\j:U, jﬂl,...,‘h‘q—}-ﬂg, (6)
X; 20, i=1,...,n1 +ma, (7)
G; =20, j=1...,m + na. (8)

Equations (5)-(6) form a system of nonlinear equations to be solved for the design variables
k; and for the Lagrange multipliers \; associated with active constraints of the form (3) and with
the bounds for design variables (2). The solution of these equations is 2 function of §. As the value
of 8 increases the solution of the Kuhn-Tucker conditions follcws a path that consists of several
smooth segments, each segment characterized by a different set of active constraints.

3. Homotopy method.
The system of nonlinear equations (5)-(8) is solved by a homotopy method. The homotopy
method uses the fact that if the solution to the system of equations

F(x,0) =0 | (9)

is known at some point (Xo,8), and the Jacobian matrix DF(xq, 8p) of the function F at {x0,80)
has full rank, then there is some neighbourhood U of (xo,0g) such that there is a unique curve of
zeros of F(x,8) in U passing through (%o,0;). According to the theory in [6], [7], this full rank
of the Jacobian matrix implies that the zero set of equations (9) contains a smooth curve I in
(N + 1)-dimensional (x,8) space, which has no bifurcations and is disjoint from other zeros of (9).
The curve T’ can be parametrized by the arc length s as

x = x(s), 8 = 6(s). (10)



Taking the derivative of (9) with respect to arc length, the nonlinear system of equations is trans-

formed into a set of ordinary differential equations

[Fa(x(s),0(5)), Folx(s),6(s))] - Z_" =0, (11)

| d8
s
and

d,_x
ds _
o =1 (12)
s

where F, and Fy denote the partial derivatives of F with respect to x and @ respectively. With

the initial conditions at s = 0,
X(O) = Xo, B(O) = 9&: (13)

(11)~(13) can be treated as an initial value problem. Its trajectory is the path I' of optimal solutions
Z(s) = (x(s),8(s))-

A software package HOMPACK ([7]) which implements several homotopy algorithms can be
used to track the zero curve I'. The HOMPACK algorithms take steps along the zero curve using
prediction and correction to find the next point. In the prediction phase a Hermite cubic p{s) is
constructed which interpolates the zero curve T at two known points Z (s1) and Z(s2).

The predicted next point is _
7O = p(sg + ), (14)

where p(s) is the Hermite cubic, and A is an estimate of the optimal step (in arc length) to take
along T.

The corrector iteration is
75+ =z _[DREZMREZ®),  kE=0,1,...

where [DF(Z(")]* is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian matrix DF. In
practice this pseudoinverse is not calculated explicitly; see [7] for the details of the Hermite cubic
interpolant construction and the corrector iteration.

The optimal step size h is chosen to prevent the correction iteration from being too costly.
The user can specify nondefault values used in determining the step size such as, for example, the
maximum and minimum allowed step size. The parameter 8 in equations (11)-{13) is a depen-
dent variable, which distinguishes homotapy methods from standard continuation, imbedding, or
incremental methods. The homotopy approach is also different from initial value or differentiation

methods, since the controlling variable is arc length s, rather than 8.
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4. Solution along a segment.

Since the active constraints in a segment are fixed they can be treated as equality constraints.
Furthermore along each segment some design variables are fixed at their lower bound. The vector
of these inactive (passive) variables is denoted k, and need not be considered as design variables
for that segment. The vector of active design variables k; (i € Z,) is denoted as k,. Along each
segment the Kuhn-Tucker conditions are solved for the active design variables (k; € ka) and for
the Lagrange multipliers associated with the active constraints of the form (3) (A; € Ag, 7 €Zy).
For each segment there are 2 types of equations:

Vi Gj(k 8) =0, jeZ,, (15)
+3 N5t aG«" =0, i €T, (16)
J€T,

The active design variables and the Lagrange multipliers associated with active constraints (3) are
the variables in these equations. For the homotopy solution we need the Jacobian matrix of these
functions with respect to 4, ka, and Ag;. The Jacobian matrix has components of the following

form:

vl _ 0G; avi _ 0G; V1 ~0
80 ~ 08’  Oky  BOkn’  ON
ova »PG;  ava P 8’6‘J av2  aG;
a0 80(% Z N ook Bk Dk T Z N Bk, dr; Ok’ (")

where ¢,m € I, and ¢,j € Z,. The derivatives with respect to k; and k., denote the derivatives
with respect to all active design variables, and the derivatives with respect to A; and A; denote the
derivatives with respect to all Lagrange multipliers associated with active constraints of the form
(3). ’

For example, for ny = 5 with active constraint G,,+2 of the form (3) and active design
variables ky, ks the system of equations is:

ge . 9Gr

6_]61 + /\Tﬁ =1, (18)
de G _ '

3 + A?'ﬂa'—fb— 0, _ (19)
Gr(kr, ks, 8) = 0. (20)

The set of unknown variables is ordered as (6, k1, ks, A7) and the corresponding Jacobian matrix
is:

8% %G, 9% . G, e . G, 3G,
500k T VT000k, OB T V@R Ok T Okoks Ok
5’26 32 G’r 32 32 G7 52 32G7 3G7
. 21
300k T N o00k;s Okok T Mok Bk T 5k ks (21)
261 061 961 :
50 By ok
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The variables of the system of equations are stored in the vector of homotopy variablesy = } k,
Ag
At the start of a segment the set of active design variables and active constraints for this
segment has to be found, so that the vector y be defined. A set of equations is then generated,
with the type of each variable determining the form of the equation appended to the system of
equations. For the Lagrange multiplier associated with an active constraint of the form (3) the
equation has the form (15), and for an active design variable the equation has the form (16). The
Jacobian matrix is calculated according to (17) and the system of equations for the segment is
solved using the homotopy technique. Then the Lagrange multipliers for inactive design variables
are calculated according to (5). In these equations the Lagrange multipliers associated with active
constraints of the form (3) have been computed by the homotopy method, and the Lagrange
multipliers associated with inactive constraints (3) are known to be zero.

5. Segment termination and transition to th= next segment.

At each point of a segment the Lagrange multipliers associated with the lower bound of
the inactive design variables or the active constraints of the form (3) in the segment should be
nonnegative, the value of each G5, j = nq,...,n + no should be less than or equal to zero, and all
design variables should be larger than or equal to their lower bound. If any of the above conditions
is not satisfied the segment is terminated and a new one is started. The transition point to a new
segment is called here a switching point. (It is assumed throughout that a switching point is not
also a turning point of the path of optima.) Depending on the type of termination, the switching
point is the point where

1) one of the positive Lagrange multipliers becomes equal to zero, or
2} a previously negative G; of the form (3) becomes equal to zero, or
3) an active design variable (k; € k,) becomes inactive (equal to kq;).

At the beginning of each segment the system of linear equations (5) is solved for Aq,..., Am,
m = n1 + n2, to check which design variables and constraints are active and to find the initial
values of the Lagrange multipliers for the segment. First the Lagrange multipliers for inactive
constraints are set to zero so that we consider Lagrange multipliers only for potentially active
constraints (those equal to zero). _

Since some of the constraints (3) may be inactive (their values at the switching point are less
than zero), or the derivatives of the constraints (3) with respect to the design variables can assume
values for which some colummns or rows in the coefficient matrix of the system (5) are linearly
dependent, the rank of this matrix can be less than ns. The rank of the coefficient matrix for the
system (5) determines the number of the constraints (3) which are assumed to be active in the
next segment.

The QR factorization with column pivoting is used to find the rank (r) of the coefficient matrix.
Next the system (5) is solved for all subsets of » columns which are linearly independent assuming
that the Lagrange multipliers for the constraints (3) corresponding to the remaining columns are
zero. To get the solution for each subset at least r design variables are assumed to be active (the
corresponding Lagrange multipliers are set to zero). For each subset of » columns (corresponding
to » constraints) all combinations of r out of n; design variables are assumed to be active. The
system is solved in turn for each combination to find all sets of active design variables and active
constraints (3) such that the Lagrange multipliers are nonnegative.
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Sometimes there are several solutions satisfying the condition that all the Lagrange multipliers
be nonnegative. Then for each solution the derivatives of the design variables with respect to the
arc length s are calculated. A set of active constraints (3) and active design variables is accepted

when the values of these derivatives indicate that no active constraint will be violated for increasing

" values of s.

To calculate the values of the derivatives of the design variables with respect to # the Kuhn—
Tucker conditions (5)-(6) are differentiated with respect to §. Thus we obtain:

8(Ve) 8N

(A-I—Z) +N39 + (390)4-(%))‘3:0, (22)
Oka | 0G, -

NT—2+ =2 =0, (23)

where ka, Ag are a vector of design variables and a vector of the Lagrange multipliers for active

. oG; . .
G, Ga is a vector of active constraints G;, j € I, , N has components n;; = -51:1, (€I, i€
1

d* .
Z.) , A is the Hessian of the objective function ¢, a;; = 5;-576—-, and Z is a matrix with elements
iRy
G . o .
= %ok, A A M- After equations (22) and (23) are solved, derivatives of each G corresponding

JET,
to an active constraint (3) with respect to 8 are calculated according to

9G; aG; ok |
8 = B, 90 €1, (24)

For each candidate solution satisfying the Kuhn-Tucker conditions, derivatives with respect to arc
length s are then calculated by multiplication by d8/ds (taken from the previously calculated point
on the segment—all that matters is the sign of d8/ds). We calculate the derivatives with respect to
arc length s of design variables, Lagrange multipliers and G;’s corresponding to active constraints.
A solution is accepted if the derivatives with respect to s of active design variables that are at their
lower bound are nonnegative, the derivatives with respect to s of zero Lagrange multipliers that
correspond to active constraints (3) are nonnegative and the derivatives of G;’s that are equal to

Zero are nonpositive,

The path of optimal points can be discontinuous [1], [3]. It is possible that beyond some value
of # there are no neighbouring optima. At this point # is fixed and the problem must be solved
by a standard optimization algorithm to find a new optimum. A path of optimal solutions can
then be resumed at this new point and followed as before. It is also possible that beyond a certain
value of # no optimum exists, for example, if the problem becomes unbounded. A more detailed

description of this segment switching algorithm is given in the Appendix.
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Figure 1. Spring-mass system.

6. Spring-mass system example.

6.1. Problem definition.

Consider the mass-spring system in Figure 1 including 5 springs and 3 masses. Let €1y.0.,05 >
0 be costs associated with the springs, uy, %y, 3 be the mass displacements and ki,..., ks the spring
constants. The objective is to vary the spring constants so as to minimize the cost of the springs
subject to the condition that displacements are bounded in magnitude by u,. We want to find the
dependence of the optimum solution on the displacement limit u,. This simple problem permits us
to generate a variety of segment transition scenarios by varying the spring constants and applied
forces. The problem is formulated as :

minimize C(k) = C1k1 + Cgkg + C3k3 + C4k4 + Csks (25)
subject to
Gi=1-k20, i=1,...,5, {26)

Ge = —uq+u1(k, F) 20, G7y=—-u,+u(k,F)S0, Gg=—u,+ us(k,F) £ 0, (27)
Gg = =Uy — ul(k,F) é 0, Gm = =ty — 'u?(k, F) é 0, G11 = —Ug — ua(k,F) § 0, (28)

where F is the force vector and k is the vector of spring constants.
The displacements u; are obtained by solving the equilibrium equations

Ku=F, (29)
where K is the stiffness matrix related to the spring constants:
By +ky+ks  —k —ks3
K= —ks ky + &y —ky . (30}
--k3 —k4 k5 '+‘ kg + k4

The solution needs to be obtained for all values of allowable displacement u,. The homotopy
parameter is taken as § = 1/u,, (0 < # < oo). The Lagrangian function and Kuhn-Tucker
conditions for this problem are:

5 5 g 11
L= ekt M(1-k)+ > Alujos - 1/8) + > M~ ~ 1/8), (31)
i=1 i=1 j=6 =9
.+}8:,\-8“"‘5 51:/\-8“5“8 Ai=9 i=1,...,5 (32)
Ci : 4 6’61 —. i ak' T = Jy t=1,...,9,
j=6 J=9
GjA; =0, i=1,...,11, (33)
Aj 20, i=1,...,11, (34)
G; 20, i=1,...,11. (35)
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Figure 2. Displacement u;(f) from Table 2.

6.2. Results.

Paths of optimal solutions for the spring problem for different cost coefficients and sets of
forces selected so as to bring about different switching point scenarios are described in Tables 1-7.
For small values of @ (large values of the allowable displacement u,) none of the displacement
constraints are active. At the beginning of the first segment all design variables are assumed to
be at their lower bound {ky = 1.0) and the greatest displacement is assumed to be active. The
reciprocal of the magnitude of the greatest displacement is the starting value for the homotopy
parameter #. Next the value of the 8 is increased and the optimal values of the design variables and
the Lagrange multipliers associated with active displacements are computed using the homotopy
method.

The path shown in Table 1 consists of five segments. Segments were terminated when a design
variable became active or when a constraint for a displacement became active. The design variable
k1, which was decreasing in segments 2 and 3, starts from its lower bound value in segment 4.

The path in Table 2 contains three segments, shown in Figure 2 for the displacement u; (the
large solid dots mark the transition points). For both switching points in this table a design variable
and a constraint for a displacement became active simultaneously. The new design variable in the
new segment was chosen by considering all possible sets of active design variables according to the
procedure described in Section 5. Note that the initial value of the Lagrange multiplier Ag (for
constraint on us) in segment 2 differs from its end value in the previous segment.

The path in Table 3 consists of four segments. The cost coefficients in Table 3 have been
chosen to get a swiiching point where two variables (k4 and ks5) become active at the same time
(segment 1 ~ segment 2). Two other switching points are the points where the constraints for a
displacement became active.

In Table 4 all three displacements and three spring constants become active at the starting
point. The path of optimal solutions contains only one segment. The active design variables in
this segment have been found by considering all possible sets of active variables.

The path in Table 5 consists of two segments. At the switching point two spring constants
and two displacements become active simultaneously.
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Figure 3. Displacement uy(8) from Table 6.
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Figure 4. Displacement us(#) from Table 7.

In Table 6 the cost coefficient for spring 5 is a strongly decreasing function of  and becomes
negative in segment 3. The path (see Figure 3) contains three segments, For the first switching
point a design variable (k4) and a constraint for displacement u, become active simultaneously.
At the next switching point another spring constant (k;) becomes active. For § > 0.0254071 the
problem becomes unbounded and the cost function could be dpcreased indefinitely for increasing
values of ks, k4 and k;.

In Table 7 the constraints on u; were changed to depend on the parameter 6 in a different
way than given in (27) and (28). The path (see Figure 4) consists of six segments. At the first
switching point the lower bound for displacement u; and the spring coustant k4 become active.
The second segment is terminated when the constraint for displacement 1, and the spring constant
k4 become inactive. At the next switching point the lower constraint for the displacement u; and
the spring constant ky become active. Later the constraint for displacement u; becomes inactive
(segment 5). In segment 6 the upper constraint for the displacement u; becomes active.

9
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7. Ten-bar truss example.
7.1. Problem definition.

The ten—bar truss shown in Figure 5 is a well known structural optimization problem. The
truss is designed for minimum weight subject to the condition that stresses in bars do not exceed
the allowable stresses o,,:(8), i = 1,..., 10, '

The problem is formulated as

10
minimize w(a) = Zsz‘ai, (36)
=1 :
subject to
G;=0.1-a; 20, i=1,...,10, 37)
Gj= —omij(@}+0;(a,F) 20, j=11,...,20, (38)
Gj=—omj(d)~o0;(a,F)20, j=21,...,30, (39)

where F is the force vector, 1is a bar-length vector and a is the design variable vector consisting of
cross-sectional areas. The solution needs to be obtained for § € (0e,0), where 8 is the homotopy
parameter described later.

The Lagrangian function and Kuhn-Tucker conditions for this problem are:

10 10 . : 20 ’ 30
L= Zplfas + Z/\i(o-l —a;)+ Z Ai(@i-10 = Om(i-10y) + Z At(=01-20 — Om(1-20)), (40)

i=1 i=1 Jj=11 . i=21
. 2 A doj_10 X 3 da;_q0 A= 0 -
p"+_z ja_,-'_,z e~ A =0, i=1,...,10, (41)
i=11 =21
Gjdi =0, i=1,...,30, . (42)
/\3-_20; J=15-5301 (43)
G; £0, j=1,...,30. (44)
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Figure 6. Stress o4(6) from Table 8.

7.2. Results.

First all the allowable stresses for all bars were set equal in magnitude to the reciprocal of
the homotopy parameter @ (that 4 is the reciprocal of the magnitude of the stress allowable). The
results are presented in Table 8 and Figure 6.

For small values of 8 the allowable stress is very large and all the design variables are assumed
to be at their lower bound (ag = 0.1 in®). When 8 exceeds the reciprocal of the greatest stress
magnitude for this minimum gage design some arcas must increase. The value of 8 s increased
and the optimal design variables and the Lagrange multipliers associated with active constraints
for stresses are computed. The reason for terminating each segment is given in the table. The
classical solution for this problem is obtained when the allowable stress is 25 ksi (6 = 0.04).

In Table 9 the allowable stresses for bars 1,...,8,10 are fixed and equal to 25 ksi whereas
the allowable stress for bar 9 is an increasing function of 8 (~21 — 1008 < o9 < 21 + 1008). It
is known (e.g., [8]) that when the allowable stress is larger than 37.5 ksi the optimal design is no"
longer fully stressed, as member 9 is neither at the allowable maximum stress nor at minimum
gage. The first segment starts at the optimum point for all allowable stresses equal to 25 ksi.
Next the allowable stress for bar 9 is increased. The path of optimal points consists of three
segments. For 8 = 0.09177669 (0,0 = 30.17ksi) the cross-sectional area of bar 10 becomes an
active design variable and the stress in that bar assumes the maximum allowable value (constraint
on gy becomes active). For 4 = 0.16500000 (og = 37.5 ksi) design variables a; and as become -
active, stresses in these bars attain the maximum allowable value (constraints for oy and o5 become
active), and the constraint for the stress in bar 9 becomes inactive. For increasing values of # all
design variables and all the Lagrange multipliers remain at the same value.

8. Concluding remarks.

An algorithm was developed for tracking paths of optimal solutions of inequality constrained
nonlinear programming problems as a function of a parameter. The algorithm employs homotopy
zero curve fracking methodology to track segments where the set of active constraints js unchanged.
The transition between segments is handled by considering all possible sets of active constraints
and eliminating nonoptimal ones based on the signs of the Lagrange multipliers and the derivatives

11



of the optimal solutions with respect to the parameter. The algorithm was validated for various
kinds of transitions between segments using a simple spring problem, and was also successfully
applied to a well known 10-bar truss problem.
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Appendix. Pseudo-code for algorithm.

The subroutine STEPNT from HOMPACK is used to track the zero curve I' of the system of
equations (5)~(8) in (, %, A) space. The subroutine takes one step at a time along T, choosing the
optimal size of the step.

A switching point is localized using Hermite cubic interpolation and the secant method (sub-
routine ROOTNF in HOMPACK). The accuracy of tracking the zero curve I' and of finding the
switching point is set to 10~¢. :

The variables used by the program are:

LPAR: identity vector of homotopy va,na,bles IPAR, IVAR: work identity vectors of
homotopy variables, y: vector of values of homotopy variables, w: work vector of values of
homotopy variables, y(1): value of the homotopy parameter f, #y: temporary value of the
homotopy parameter §, flag: a flag set true for a switching point; '

1. flag := true; 8 := 8,; y:= solution at 4,.
2. If flag = true then
3. set initial values for STEPNF;
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Solve system of eqn {5} to find a set of active design variables and the Lagrange multipliers for active Gj.
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Figure 7. Flowchart for algorithm.
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12,
13.
14.
15.
16.
17.

4.
5,

o0

1G.
11,

do 5.~7. over all possible variable sets:

solve the system of equations (5) to check which design variables become inactive and to
find the values of the Lagrange multipliers for active constraints of the form (3);

if a set of active design variables and active constraints (3) with positive Lagrange multi-
pliers is found, solve the system of equations (22)—(23) to check that no active constraint
will be viclated for increasing s;

if any active constraint will be violated for Increasing s go to 5 to find the next set;

if there are multiple valid subsets of variable, set a flag and halt;

if no set of active design variables and active constraints (3) can be found for the next
segment set an error flag and terminate the computations;

set initial values for the new variables;

flag := false; endif.

Call STEPNF to take the next step (calculating the new set of variables).

Compute the constraints (3) and the Lagrange multipliers for inactive design variables.
Save the current vector of variables in LPAR.

IVAR:=LPAR.

wi=y, fp=y(1).

If any design variable became less than ko; then

18.
- 19.
20.
21.
22,
23.
24.
25.
26.

27.

IPAR:=LPAR;

choose the design variable with largest violation of its lower bound;

use ROOTNF to find the point where that design variable is equal to kg;;

if any other design variable is less than ky; go to 19;

flag := true;

wi=y;

IVAR:=IPAR;

use the current values of the design variables to calculate the G;’s of the form (3);
use the current values of the Lagrange multipliers for active constraints of the form (3)
to find the Lagrange multipliers for inactive design variables from equations (5);
t¢h:=y(1); endif.

28. If the value of any G; of the form (3) becomes greater than 0 then

29.
30.
31.
32.
33.
34.
35.

36.

37.
38.
39.
40.
41.

IPAR:=LPAR;

choose the greatest G; of the form (3) with inactive constraint;

use ROOTNF to find the point where the value of this G is equal to 0;

if any G; of the form (3) with inactive constraint is greater than 0 go to 30;

if 81 < y(1) go to 43;

if#; =y(1) IPAR:=IVAR;

add the Lagrange multiplier associated with the constraint for G ; to the set of variables
IPAR;

if any other G; with inactive constraint of the form (3) is equal to 0 add the Lagrange
multipliers associated with this constraint to the set of variables IPAR;

flag := true;
wi=y;
IVAR:=IPAR;

use the current values of the design variables to calculate the G’s of the form (3);
use the current values of the Lagrange multipliers for active constraints (3) to find the
Lagrange multipliers for inactive design variables from equations (5);
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43.

55.

G9.
70.
71.
72,

42.

61:=y(1); endif.

if any Lagrange multiplier for inactive design variable is less than 0 then

44,
43.
46.
47,

48.
49.
50,
51.
52.
53.
54.

IPAR:=LPAR;

choose the most negative Lagrange multipliers associated with an inactive design variable;
use ROOTNF to find the point where the Lagrange multiplier is equal to 0;

if any other Lagrange multipliers associated with inactive design variables are negative
go to 45;

if 8, < y(1) go to 55;

if 6, = y(1) IPAR:=IVAR,

flag := true;

wi=y

IVAR:=IPAR

use the current values of the design variables to calculate the G;’s of the form (3);

use the current values of the Lagrange multipliers for active constraints of the form (3)
to find the values of the Lagrange multipliers for inactive design variables from equations
(5); endif.

if any Lagrange multiplier for active constraint of the form (3) is less than 0 then

56.
57.

58.
59.

60.
61,
62.
63.

64.
65.
G6.
67.
68.

IPAR:=LPAR; ‘

choose the most negative Lagrange multiplier associated with an active constraint of the
form (3);

use ROOTNF to find the point where the Lagrange multiplier is equal to 0;

if any other Lagrange multipliers associated with active constraints of the form (3) are
negative go to 57; '

if 1 < y(1) go to 69;

ify = y(1) IPAR:=IVAR;

remove the Lagrange multiplier from the set of variables;

if any other Lagrange multipliers associated with active constraints of the form (3) are
equal to 0 remove these Lagrange multipliers from the set of variables;

flag := true;

Wiy

IVAR:=IPAR

use the current values of the design variables to calculate the G;’s of the form (3%

use the current values of the Lagrange multipliers for active constraints of the form (3)
to find the values of the Lagrange multipliers for inactive design variables from equations

(5); endif.

LPAR:=IVAR.

yiz=w.

Output the values of the Lagrange multipliers, G;’s of the form (3) and design variables.
If @ < 8, then go to 2 else halt.
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Table 1, Spring example with cost function e(k) = ky + 2k + 3ks + 4k + Bks.
Forces: 1 = 100, I, = —~300, F3 = 400.

segment variable start value end value displacement start value end value

1. g 0.00727 0.00768 U3 137.50 136.10
ky 1.00000 1.39271 7 —-50.00 —59.85
As 0.04266 0.06618 Uy 62.50 - 50.18

Lagrange multiplier for ks lower bound becomes equal to 0

2, 8 0.00768 0.01118 U3 130.10 89.43
ky 1.36271 1.15654 Uy —59.85 —89.43
As 0.06618 0.13861 Uy 50.18 31.68
kg 1.00000 1.82648

Constraint on uy becormes active

3. 0 0.01118 0.01125 Us 89.43 88.88
ky 1.15654 1.00000 ' ) —-89.43 —88.88
Ag -0.13861 0.15421 Uy 31.68 33.33
ks 1.82648 1.87500
Ao 0.00000 0.01875

Lagrange multiplier for k4 lower bound becomes equal to

4, 7 0.01125 0.08000 u3 88.88 12.50
As 0.15421 6.08000 ) —-88.88 —12.50
ks 1.87500 10.00000 U3 33.33 12.50
Ag 0.01875 1.60000 '
ky 1.00000 - 11.00000
ky 1.00000 6.00000

Constraint on u; becomes active

5. ¢ 0.08000 0.11764 U3 12.50 8.49
As 6.08000 12.48470 Ug -12.50 -8.49
ks 10.60000 13.76484 Uy 12.50 8.49
A0 1.60000 3.68175
k4 11.00000 16.64726
k1 6.00000 9.76484
As 0.00000 0.44292

All Lagrange multipliers are positive. They increase or remain at the same values.
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Table 2. Spring example with cost fanction e(k) = ky + 2ky + 3k + dky + ks,
Forces: Fy = 100, F; = —-300, F3 = 400.

segment variable

1. 8
ks
Ag

Lagrange multiplier for ky

2. f
ks
Ag
A1o
ky

Lagrange multiplier for k&

3. d
ks
Ag
Ao
ka
ko
Ag

start value

0.00727
1.00000
0.01163

0.01125
1.87500
0.05484
0.03374
1.00000

0.03000
5.00000
0.38999
0.23999
3.50000
1.00000
0.60000

end value displacement start value end value
0.01125 U3 137.50 88.88
1.87500 U -50.00 —88.88
0.02784 Uy 62.50 33.33
lower bound becomes equal to 0 and constraint on us becomes active
. 0.03000 Ug 88.88 33.33
5.00000 g —88.88 —33.33
0.38999 %1 33.33 33.33
0.23999 ' :
3.50000
2 lower bound becomes equal to 0 and constraint on %3 becomes active
0.14410 Ug 33.33 6.93
27.82023 Us —-33.33 -6.93
8.45016 u1 33.33 6.93
5.26333
14.91011-
6.70505
0.82210

The Lagrange multipliers associated with inactive spring constants remain at the same values

(M = 1.0, Az = 3.0).
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Table 3. Spring example with cost function e(k) = ky + 2k, + 3ks + 1.75734k4 + 5ks.
Forces: Fy =100, F; = —300, £ = 400,

segment variable start value end value displacement start value end value

1. @ 0.00727 0.00768 U 137.50 130.10
ky ‘ 1.00000 1.39271 U —50.00 —59.85
Asg 0.00426 8.06618 U1 62.50 50.18

Lagrange multipliers for k4 and ks lower bounds become equal to 0 simultaneously

2. ' ¢ 0.00768 0.01992 U3 130.10 50.17
As 0.06618 (.38823 U -59.85 -50.17
ky 1.39271 2.26352 Uy 50.18 23.45
k4 1.00000 2.25560 : '
ks 1.00000 292772

Constraint on us becomes active

3. g 0.01992 0.09121 U3 50.17 10.96
Az 0.38323 6.45331 Us -50.17 —-10.96
Ao 0.00000 0.73171 ur 23.45 10.96
ky 2.26352 7.12131
ks 2.25560 12.68197
ks 2.92772 11.12131

Constraint on u; becomes active

4. 8 0.09121 0.12734 u3 10.96 7.85
Ag 6.45331 11.91582 2 —10.96 —7.85
Ao 0.73171 1.62785 U 10.96 7.85
Ag 0.00000 0.46004
Ky 7.12131 10.73401
k4 12.68197 18.10101
ks 11.12131 14.73401

The Lagrange multipliers associated with

or increase (A3 = 3.0, A2 = 8.24),

18
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Table 4. Spring example with cost function o(k) = &y + 2k, + 3k3 + 4kyg + 5k;.
Forces: F;} =100, F, = —133.33, F5 = 100.

segment variable start value end value displacement
1. g 0.03000 0.40465 ug3
ky 1.00000 25.97681 Uz
As 0.15000 17.18364 U1
A1o 0.09000 18.90107
As 0.03000 13.03830
ks 1.00000 19.73261
ks 1.00000 7.24420

start value

33.33
—33.33
33.33

end value

2.47
—-2.47
2.47

The values of the Lagrange multipliers for inactive spring constants k3 and ks change very

slowly. (A3 = 3.0, A5 = 3.0)

Table 5. Spring example with cost function e(k) = ky + 2k2 + 3ky + 4k, + 5ks.

Forces: F;=103.33, F3=-133.33, F3=100.

segment variable start value end value displacement
1. # 0.02823 0.03000 U3
k1 1.60000 1.10000 Uy
Ag 0.04517 0.05100 U
Lagrange multipliers for &, and k3 lower bonds become equal to 0, constraints on u3 and uy become active
2. ¢ 0.03000 0.39936 U3
As 0.14999 16.74794 Ug
Alo 0.09000 18.40774 31
Ae 0.03299 13.03830
ky 1.10000 - 26.95553
k2 1.00000 7.15607
kg 1.00000 19.46823

The values of the Lagrange multipliers for inactive spring constants k3 and kg change very

slowly (A3 = 3.0, X5 = 3.0).
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start value

34.58
-31.66
35.41

33.33
-33.33
33.33

end value

33.33

~33.33

33.33

2.50
—2.50
2.50



Table 6. Spring example with cost function e(k) = ky + 2ky + 3%y + 4ky + (2~ 6(3/0‘01171_1))]65.
Forces: Fy = 100, F; = —300, Fy = 400.

segment variable start value end value displacement; start value end value
1. ¢ 0.00727 0.01125 u3 137.50 88.88
ks 1.00000 1.87500 s ~50.00 —88.88
Ag 0.01530 0.02893 U1 62.50 33.33
Lagrange multiplier for k4 lower bound becomes equal to 0 and constraint on u2 becomes active
2. g 0.01125 0.01818 3 88.88 55.00
ke 1.87500 3.03011 g ~88.88 —55.00
Ag 0.05581 0.09823 Uy 33.33 33.33
Ao 0.03360 0.09260 '
ky 1.00000 1.92409
Lagrange multiplier for &, lower bound becomes equal to 0
3. 8 0.01818 0.02540 U3 55.00 39.35
ks 3.03011 4.62390 ug —-55.00 —39.35
Ag 0.09823 0.00000 uy 33.33 18.00
Ao 0.09260 0.18975
ky 1.92409 2.49822
ko 1.00000 1.80146

For 8 = 0.02540 the path terminates with no neighbouring solutions. The problem becomes
unbounded {e(k) —~ —0o0). '
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Table 7. Spring example with cost function c(k) = ky + 2ks + 3k + Aky + k5.

segment .variable

1. g
ks
As

Forces: F1 = 100, F = =300, F» = 400.
G7 = ug ~ 1/6 — 0.009(1/8 — 137.5)2,
Gio = ~uz — 1/8 — 0.009(1/6 ~ 137.5)".

start value end value displacement start value
(.00727 0.01846 U3 137.50
1.00000 3.46153 Ug —50.00
0.01163 0.07498 U1 62.50

end value

54.16
—116.66
12.50

Lagrange multiplier for b, lower bound becomes equal to 0 and constraint on #s becomes active

2. 4
ks
Ag
Ato
ky

3. )
ks
As

4, #
. ke
ky
As
Ag

ks
Ag

20.83
—143.33
~7.50

12.50
—150.00
—12.50

4.76
~119.04
—-4.76

2.93
—94.13
2.93

1.64
-96.71
1.64

0.01846 0.04800 U3 54.16

3.46153 9.96000 g —116.66

0.10127 0.52656 % 12.50

0.03287 0.02460

1.00600 1.00000

ks and the comstraint for v, become inactive

0.04800 0.08000 U3 20.83

9.96000 17.00000 ) —143.33

(0.50688 1.40800 1 —-7.50

Lagrange multiplier for k, lower bound becomes equal to 0 and constraint on u; becomes active

0.08000 0.21000 g 12.50
17.00000 43.00000 g —150.00

1.00000 1.50000 U —-12.50

1.43384 9.15923

0.04307 0.00000

Constraint on u; becomes inactive

0.21000 0.34088 Uz 4.76
43.00000 67.17601 U -119.04

9.15923 23.11248 %1 —~4.76

1.50000 2.09066 :

Constraint on u; becomes active

0.34088 0.60946 U3 2.93
67.17601 120.89250 Uy —-04.13
23.11248 73.88685 Uy 2.93

2.09066 2.05004

0.00000 $.27801

The Lagrange multipliers associated with inactive spring constants ki, ks, k3 change very

slowly.
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Table 8. Ten-bar truss example with uniform stress limits:
—-1/8<o0; < 1/86, t=1,...,10, areas given in in2,

segment variable start value end value stress start value end value
(ksi)

1. ) 0.00048 0.00051 o1 1953.65 1939.50
as 0.10000 0.10623 o2 401.25 402.71
Az 0.00005 (.00006 a3 —2046.35 —-1939.50
Oy —598.75 —-597.29
o5 354.90 342.21
o 401.25 402.71
or 1479.76 1499.76
O3 1348.67 1328.65
oy 846.77 844.68
O10 567.45 569.51

Lagrange multiplier for a, lower bound becomes equal to 0, constraint on o1 becomes active
2. g 0.00051 0.00066 o1 1939.50 1499.76
ay 0.10000 0.12932 o 402.71 402.71
a3 0.10623 0.13738 o3 —1939.50 —1499.76
Aaz 0.00005 0.00009 oy ~597.29 -597.28
A1 0.00051 0.00008 Us 342.21 342.21
T 402.71 402.71
e 5 1499.76 1499.75
Oy 1328.65 1328.65
oy 844.68 844.68
010 569.51 569.51

Lagrange multiplier for a; lower bound becomes equal to 0, constraint on o7 becomes active
3. ¢ 0.00066 0.00126 o1 1499.76 788.78
@ 0.12932 0.19748 o 402.71 442.24
a3 0.13738 0.30961 o3 ~1499.76 —788.79
a7 0.10000 0.25857 a4 —597.28 —-837.76
Asg 0.00012 0.00046 os 342.21 0.00
A1z 0.00016 0.00059 T6 402.71 442.24
A11 0.00005 0.00018 oy 1499.76 788.79
T3 1328.65 788.79
Ty 844.68 788.79
T10 569.51 625.43

Lagrange multipliers for ag, ag lower bounds become equal to 0, constraints on O3, &3 become active

4, g 0.00126 0.00162 o1 788.78 _ 616.78
a3 0.19748 0.26213 a3 442.24 383.22
a3 0.30961 0.38639 o3 —788.79 -616.78
ar 0.25857 0.31715 o4 —357.76 ~616.78
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as 0.10000 0.14142 o 0.00 0.00

ag 0.10000 0.14142 O6 442.24 383.22
A2z 0.00034 0.00057 o7 788.79 616.78
Ao 0.00026 0.00043 o3 788.79 616.78
Ag 0.00026 0.00043 a9 788.79 616.78
A7 0.00037 0.00061 10 625.43 542.95
A 0.00029 0.00048

Lagrange multiplier for a4 lower bound becomes equal to 0, constraint on ¢4 becomes active

5. ¢ 0.00162 0.06266 a1 616.78 15.96
ay 0.26213 12.47049 o2 383.22 9.92
a3 0.38639 12.59476 o3 -616.78 -15.96
a4 0.10000 6.20418 Oy ~-616.78 —-15.96
az 0.31715 8.94977 o5 0.00 0.0
ag 0.14142 8.77403 Og 383.22 9.92
ag 0.14142 8.77403 o7 616.78 15.96
Az 0.00057 0.78533 gg 616.78 15.96
A1g 0.00043 0.78533 o9 616.78 15.96
Ats 0.00043 0.78533 o1 542.95 14.02
A7 0.00061 0.78533
A1y 0.00048 0.78533
Ang 0.06000 0.39266
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Table 9. Ten-bar truss example with variable allowable stress for member 9:
—25.0 < o; < 25.0, i=1,...,8,10,
—25.0 — 1006 < 0y < 21.0 + 1000, areas given in in?.

segment variable start value end value stress start value end value
(ksi)

1. @ 0.04 0.09177 oy 25.00 25.00
a1 7.94000 7.93000 o3 15.52 17.67
as 8.06000 8.07071 o3 ~-25.00 -25.00
as  3.94000 3.93000 o4 —25.00 -25.00
ay 5.74000 5.75685 s 0.05 6.0
as 5.57000 5.55685 T 15.52 17.67
ag 5.57000 4.60344 o7 25.60 25.00
Azz 0.31357 0.32062 Og 25.00 25.00
A1g 0.31357 0.22013 T 25.00 30.17
As 0.31357 0.31874 10 21.95 25.00
As7 0.31357 0.32125
A11 0.31357 0.31937
Azg 0.15678 0.15937

Lagrange multipliers for @10 lower bound becomes equal to 0, constraint on 710 becomes active

2. ¢ 0.09177 0.16500 o1 25.00 - 25.00
a 7.893000 7.90000 (o) 17.67 25.00
a3 8.07071 8.10000 o3 -25.00 —25.00
2y 3.93000 3.90000 Oy —25.00 -25.00
ar 5.75685 5.79827 s 0.0 0.0
ag 5.55685 3.51543 Os i7.67 25.00
g 4.60344 3.67695 ar 25.00 25.00
a1g 0.16000 0.14213 O3 25.00 25.00
Ay 0.31400 0.32333 09 30.17 37.50
Als 0.21300 0.13999 o0 25.00 25.00
A1z 0.31000 0.31333
A7 0.31600 0.32666
An 0.31100 0.31666
Aag 0.15500 (.15666
Az 0.00290 0.00666

Lagrange multipliers for as, ¢z bounds become equal to 0, constraints on g, ¢» become active,
constraint on oy becomes inactive

3. g 0.16500 15.96428 o1 25.00 25.00
ay 7.90000 7.90000 oy 25.00 25.00
a3 8.10000 8.10000 a3 -25.00 —25.00
a4 3.90000 3.90000 oy —25.00 -25.00
ar 5.79827 5.79827 a5 0.0 0.0
ag 5.51543 5.51543 ag 25.00 25.00
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3.67695
0.14213
0.39333
0.14666
0.17333
0.46666
0.24666
0.08666
0.07333
0.06666
0.16000

3.67695
0.14213
0.39333
0.14666
0.17333
0.46666
0.24666
0.08666
0.08666
0.06666
0.10000

25

oy
g3
Tg
T10

25.00
25.00
37.50
25.00

25.60
25.00
1617.40
25.00



