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Abstract, There are algorithms for finding zeros or fixed points of nonlinear systems of equa-
tions that are globally convergent for almaost all starting points, i.e., with probability one. The essence
of all such algorithms is the construction of an appropriate homotopy map and then tracking some
smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package
implementing globally convergent homotopy algorithms with three different techniques for tracking a
homotopy zero curve, and has separate routines for dense and sparse Jact bian matrices, The HOM-
PACK algorithms for sparse Jacobian matrices nse a preconditioned conjugate gradient algorithm for
the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for
homotopy curve tracking. Here variants of the conjugate gradient algori:im are implemented in the
context of homotopy curve tracking and compared with Craig’s precon: itioned conjugate gradient
method used in HOMPACK. The test problems used include actual la ge scale, sparse structural
mechanics problems.
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1. Introduction. The fundamental problem motivating this work is to solve a
nonlinear system of equations F'(2) = 0, where F : E® — E" ig a (2 map defined on
real n-dimensional Euclidean space £, The homotopy approach to solving F(z)=0is
to construct a continuous map H(A,z), the “homotopy,” deforming a simple function
s(z) to the given function F(z) as A varies from 0 to 1. Starting from the easily
obtained solution to H(0,z) = s(z) = 0, the essence of a homotopy algorithm is to
track solutions of H(),z) = 0 until a solution of H(1,2) = F(z) = 0 is obtained.
The theoretical and implementational details of such algorittms are nontrivial, and
significant progress on both aspects has been made recently [37], [52].

Homotopies are a traditional part of topology, and only -ecently have begun to
be used for practical numerical computation. The (globally -onvergent probability-
one) homotopies considered here are sometimes called “artificial-parameter generic
homotopies”, in contrast to natural-parameter homotopies, wkere the homotopy vari-
able is a physically meaningful parameter. In the latter case, which is frequently of
interest, the resulting homotopy zero curves must be dealt with as they are, bifurca-
tions, ill-conditioning, etc. The homotopy zero curves for artificial-parameter generic
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homotopies obey strict smoothness conditions, which generally will not hold if the ho-
motopy parameter represents a physically meaningful quantity, but they can always
be obtained via certain generic constructions using an artificial (i.e., nonphysical)
homotopy parameter. Not just any random perturbation will suffice to create a glob-
ally convergent probability-one (generic) homotopy, e.g., the perturbation implied by
discretization is generally not sufficient to produce a probability-one homotopy map.

If the objective is to solve a “parameter-free” system of equations, F(z) =0,
then exira attention can be devoted to conmstructing the horiotopy, and the curve-
tracking algorithm can be limited to a well-behaved class of curves. The goal of
using these globally convergent probability-one homotopies is to solve fixed-point and
zero-finding problems with homotopies whose zero curves do not have bifurcations
and other singular and ill-conditioned behavior. The mathem atical software package
HOMPACK used here for comparative purposes is designed for globally convergent
probability-one homotopies.

The theory and algorithms for functions F(z) with small dense Jacobian matrices
DF(z) are well developed, which is not the case for large sparse DF(z), the topic of
this paper. Solving large sparse nonlinear systems of equations via homotopy methods
involves sparse rectangular linear systems of equations and iterative methods for the
solution of such sparse systems. Preconditioning techniques are used to make the
iterative methods more efficient.

Section 2 discusses the zero-finding problem and the normal flow homotopy al-
gorithm. Section 3 introduces iterative methods for solving invertible linear systems.
section 4 discusses the linear algebra details of homotopy c1 rve tracking and vari-
ous algorithmic possibilities for that. Section 5 presents the numerical results of the
implementation of the various algorithms on several test problems. Some general
conclusions from these results are drawn in Section 6.

2. Globally convergent homotopy algorithms. The philosophy of globally
convergent probability-one homotopy algorithms is to create homotopies whose zero
curves are well behaved with well-conditioned Jacobian matrices and that reach a
solution for almost all choices of a parameter. These homotopies are used to solve
lixed-point and zero-finding problems.

Let B be the closed unit ball in n-dimensional real Euclidean space E™, and let
[+ B — B be a C? map. The fixed-point problem is to solve # = f(z). Define
pa:[0,1) x B — E™ by

(1) pa(A,2) = Mz — f(2))+ (1 - A)(z - a) -

The fundamental result [10] is that for almost all @ in the interior of B , there is a zero
curve v C [0,1) X B of p,, along which the Jacobian matrix Dpy(A, ) has rank n,
emanating from (0,a), and reaching a point (1, %), where 7 is = fixed point of f. Thus
with probability one, picking a starting point ¢ € int B and following 7 leads to a fixed
point Z of f. An important distinction between standard coniinuation and modern
probability-one homotopy algorithms is that for the latter X is not necessarily mono-
tonically increasing along +. Indeed, part of the power of probability-one homotopy
algorithms derives from the lack of a monotonicity requirement for \.

2




The zero-finding problem
2 F(z) =0,

where F : E® — E™ is a C? map, is more complicated. Suppose there exists a C?

map
p:E™x[0,1)x E" — E"

such that
(a) the n X (m 4+ 1+ n) Jacobian matrix Dp(a, A, z) has rank n on the set

p7HO) = {(a,\\z) | l[a € E™,0< A < 1,z € E™ p(e, A, z) = 0},

and for any fixed @ € E™, letting pa(A, z) = p(a, ), z),

(b) pa(0,2) = p(a,0,z) = 0 has a unique solution zq,

(¢) pa(l,2) = F(z),

(d) p71(0) is bounded.

Then for almost all @ € E™ there exists a zero curve 7 of p, along which the Jacobian
matrix Dp, has rank 7, emanating from (0,2,) and reaching a zero 7 of F at A = 1.
v does not intersect itself and is disjoint from any other zeros of p,. The globally
convergent homotopy algorithm is to pick @ € £™ (which uniquely determines Zo),
and then track the homotopy zero curve v starting at (0,2q) watil the point (1,%) is
reached,

There are many different algorithms for tracking the zero « urve +; the mathemat-
ical software package HOMPACK [54], [55] supports three such algorithms: ordinary
differential equation-based, normal flow, and augmented Jacobian matrix. Small dense
and large sparse Jacobian matrices require substantially different algorithms. Large
nonlinear systems of equations with sparse symmetric Jacobian matrices oceur in mary
engineering disciplines (the symmetry in the problems of interest here is due to the
fact that the Jacobian matrix is actually the Hessian of a potential energy function).
In this paper, we consider only the zero finding problem F (z) = 0, the normal flow
curve tracking algorithm, and large sparse symmetric Jacobian matrices DF(z) stored
in a packed skyline data structure.

Consider the homotopy map

(3) palz,A) = AF(z) + (1 - A)(z — a).

The matrix Dypa(z, A) = ADF(z)+ (1 — A) is symmetric and sparse with a “skyline”
structure. Such matrices are typically stored in packed skyline format, in which the
upper triangle is stored in a one-dimensional indexed array. An auxiliary array of
diagonal indices is also required. Assuming that Fi(z)is C?,  is such that the Jacobian
matrix Dpg(x,A) has full rank along v, and v is bounded, the zero curve vis €t and
can be parameterized by arc length s. Thus ¢ = z(s),A = A(3Y along v, and

pa(z(s),A(s)) =0

identically in s.



The zero curve v given by (2(s), A(s)) is the trajectory of the initial value problem

(8 Jpa(a(5), () = [Depa(a(s), As)), Dapa(a(s), (o) (i\;js) -"
=1,

® (&2, -

(6) z(0)=a, MN0)=0.

Since the Jacobian matrix has rank » along v, the derivative (dz /ds, dA /ds) is uniquely
determined by (4}, (5) and continuity, and the initial value problem (4-6) can be solved
for #(s), A(s). From (4) it can be seen that the unit tangent (dz/ds, dA/ds) to v is in
the kernel of Dp,.

The normal flow curve tracking algorithm has four phases: prediction, correction,
step size estimation, and computation of the solution at A = 1. For the prediction
phase, assume that two points P11 = (z(s1), A(s1)), P = (2(s), A(s2)) on v with
corresponding tangent vectors (de/ds(s1), dA/ds(s1)), (dz/ds(sz), dA/ds(sy)) have
been found, and % is an estimate of the optimal step (in arc length) to take along 7.
The prediction of the next point on v is

(7) ZO = p(sy + h),

where p(s) is the Hermite cubic interpolating (z(s), A(s)) at s; and s9. Precisely,
p(s1) = (2(s1), Ms1)),  p'(s1) = (dz/ds(s1),dN/ds(sy)),
p(s2) = (2(s2), A(s2)),  p'(s2) = (dz/ds(s2),dN/ds(ss)),

and each component of p(s) is a polynomial in s of degree less than or equal to 3.
Starting at the predicted point Z{9), the corrector iteration is

(8) 2049 = 20 — [Dp, (20)]" pu(2¥),  k=0,1,...

where [Dpa(Z(’“))]+ is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian
matrix Dp,. Small perturbations of a produce small changes in the trajectory v,
and the family of trajectories v for varying @ is known as che “Davidenko flow”.
Geometrically, the iterates given by (8) return to the zero curve along the flow normal
to the Davidenko flow, hence the name “normal flow algorithm”.

A corrector step AZ is the unique minimum norm soluticn of the egnation

(9) [Dpa]AZ = =pPqu-

Fortunately AZ can be calculated at the same time as the kernel of [Dpa] , and with
Just alittle more work. The numerical linear algebra details for solving (9), the optimal
step size estimation, and the endgame to obtain the solution at A = 1 are in [54], [55].

The calculation of the implicitly defined derivative (dz/ds,dA/ds) is done by com-
puting the one-dimensional kernel of Dp,, i.e., by solving the n x (rn+1) linear system
[Dpaly = 0. This can be elegantly and efficiently done for small dense matrices [47],
(48], but the large sparse Jacobian matrix presents special difficulties. The difficulty
now is that the first n columns of the Jacobian matrix Dp,(z,)) involving DF(z)
are definitely special, and any attempt to treat all n + 1 columns uniformly would
be disastrous from the point of view of storage allocation. Hence, what is required
is a good algorithm for solving nonsquare linear systems of ecuations {9) where the
leading n X » submatrix Dyp, of Dp, is symmetric and sparse. This paper considers
various iterative methods for solving such linear systems of equations.
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3. Iterative methods for invertible linear systems. Nonsquare systems of
the form (9), involved in the tangent vector and normal flow iteration calculations,
are converted to equivalent square linear systems of the form'

(10) =5 J)u=s,

where the » X » matrix B is bordered by the vectors f and ¢ to form a larger system
of dimension (n 4 1) X (n + 1). In the present context B = D p,(z, ) is symmetric
and sparse, but A is not necessarily symmetric.

Iterative methods are used for solving these linear systems. (If B has only a
couple nonpositive eigenvalues, direct methods are a viable alternative; this issue is
addressed later.) Iterative methods compute a sequence of approximate solutions {z;}
which converge to the exact solution z by some algorithm of the form

Ty = Fi(wo,21,...,21),

where zq is an arbitrary initial guess and F; may be linear or nonlinear.

Tterative methods require the coefficient matrix A in the algorithm, generally
only to compute matrix-vector products. Since matrix-vector computations are quite
inexpensive for sparse problems, iterative methods have low computational cost per
iteration. Iterative methods are also aftractive because they have low storage require-
ments, due to the fact that at each iteration, only a small number of vectors of length
N = n+1 need to be computed and stored to calculate the nex. iterate x;41, and A it-
self can be generated or stored compactly. Thus iterative methods are sometimes more
attractive than direct methods for solving large sparse linear systems of equations.

Iterative methods such as the successive over-relaxation (SOR) algorithm [43]
and the alternating direction implicit (ADI) algorithm [57] require the estimation of
scalar parameters. The conjugate gradient procedure [24] is an efficient algorithm
for solving symmetric positive definite systems which requires no such estimates. For
many years, the only iterative methods known to converge for general nonsymmetric
problems were the conjugate gradient method applied to the normal equations [24]
and Lanczos’ biconjugate gradient algorithm [30]. Other early conjugate gradient-like
methods for nonsymmetric problems which avoided the use of the normal equations
were the generalized conjugate gradient method of Concus and Golub [11] and Wid-
lund [56], and Orthomin by Vinsome [44]. These methods only apply to matrices with
positive definite symmetric part, although with preconditioning they can be used to
solve more general problems [18]. Other conjugate gradient-like methods for more gen-
eral problems were proposed by Axelsson [1], Eisenstat, Elmax, and Schultz [17], Jea
[25], Saad [39], Young and Jea [58]-{59], and Saad and Schultz [41]. Preconditioning
techniques that have been effective for symmetric, positive definite systems include the
incomplete LU factorization [30], [31], the modified incomplet: LU factorization [15],
[22], and the SSOR. preconditioning [57). Most of these extend naturally to nonsym-
metric problems. A lot of work has also been done comparing these various iterative
methods and the preconditioning techniques [9], [14], [18], [41]. Unfortunately very
little of this existing theory is directly applicable to the sparse linear systems arising
from homotopy curve tracking.



The rate of convergence of conjugate gradient-type methods depends on the sym-
metry, inertia, spectrum, and condition number of the coeflicient matrix. There are
efficient conjugate gradient algorithms for solving linear systems with symmetric pos-
itive definite coefficient matrices, whereas no comparable theory exists for general
systems with nonsymmetric or indefinite A. This paper compares the relative perfor-
mance of conjugate gradient-type algorithms for solving nonsymmetric or indefinite
linear systems of the form Az = b arising from globally convergent homotopy algo-
rithms, in terms of execution time, storage requirements, and the number of iterations
required to converge.

Let ¢ be a N x N nonsingular matrix. The solution to Az = & can also be
obtained by solving the system:

Az =(Q'A)z=Q b =b.

The use of such an auxiliary matrix is known as preconditioning. The goal of precon-
ditioning is to decrease the computational effort required to solve linear systems of
equations by increasing the rate of convergence of an iterative method. For precon-
ditioning to be effective, the faster convergence must outweigh the costs of applying
the preconditioning, so that the total cost of solving the linear system is lower. The
preconditioned coefficient matrix A is usually not explicitly computed or stored. The

main reason for this'is that although A is sparse, A may not be. The extra work of
preconditioning, then, occurs in the preconditioned matrix-vector products involving
@~!. The main storage cost for preconditioning is usually for ¢, which typically is
stored, so that one extra array is required to handle the preconditioning operation.

As mentioned above, one iterative method known to converge for general nonsym-
metric problems is the conjugate gradient method applied to the normal equations.
Given any nonsingular matrix A, the system of linear equations Ay = b can be solved
by considering the linear system (normal equations)

AtAy = Ab,

or the similar system
AAtz = b, y = Alz

Since the coefficient matrix for the latter system is both symmetric and positive defi-
nite, the system can be solved by the conjugate gradient algorithm. Once a solution
vector z is obtained, the vector y from the original system can be computed asy = Atz.
The drawback of this technique is that, while the coefficient matrix is symmetric and
positive definite, the convergence rate depends on cond(AA*) = (cond(A))? rather
than cond(A); see [18] for a precise statement.

An implementation of the conjugate gradient algorithm in which y is computed
directly, without reference to z, any approximations of z, or 4 A? is due to Craig [13]
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and is described in [19] and [23]. (Of course, the convergence rate still depends on
cond(AAT) = (cond(A))? in general.) Craig’s preconditioned algorithm is:

choose o, Q;

set rg = b — Ayg;
set 75 = Q" ry;
set po = A'Q 7 7y;

for i = 0 step 1 until convergence do

begin
a; = (‘Fiv ‘Fi) :
(piapi)

Yi+1 = Yi + aipg
Fir1 = i — aiQ 71 Apy;
b = FittsFivn).
(5, 7%)
piv1 = A'Q iy + bipi;

end

Here (z,y) denotes the inner product of z and y. For this algorithm, a minimum of
5(n + 1) storage locations is required (in addition to that for 4). The vectors y, 7,
and p all require their own locations; @ ~'F can share with Ap; Q1 Ap can share with
A'Q~*F. The computational cost per iteration of this algorithm is:

(a) two preconditioning solves (Q~1v and Q~%v);

(b} two matrix-vector products (Av and Alv);

(c) 5(n + 1) multiplications (the inner products (p,p) and (,#), ap, bp, and
a1 Ap.

3.1. Alternatives for solving (10). There are three mair approaches to solving
(10):

(1) In the block factorization approach to the problem, a block elimination algo-
rithm is used instead of working with the whole matrix A directly. Such an algorithm
would take advantage of the special properties of the submatrix B,

(2) The general approach works directly with the whole matrix 4 without taking
any special advantage of the fact that the submatrix B contained in A4 is symmetric.

(3) The splitting approaches lie somewhere between (1) and (2). Here A is split
into the sum of a symmetric matrix M and a low rank correction L. These methods
also take advantage of the fact that the leading submatrix B is symmetric and can

use conjugate gradient algorithms requiring a symmetric coefficient matrix.
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Approach 1 — block factorization methods. The linear system (10) can also be written

) o= (2 2)(5)- ()

A block-elimination algorithm [5] would be:

factor B;

solve Bv = f;

solve Bw = b';

compute y" = (8" — cfw)/(d - clv);

compute y' = w — y"v.
With such block factorization methods, the work consists mainly of one factorization
of B (assuming that is possible) and two backsolves with the factors of B. Observe
that block elimination will frequently fail in the homotopy context, because even
though rank A = n + 1 and rank (B f) = rank Dp, = n, it may very well happen
that B = Dgp, is singular (rank B = n — 1). Singular B can be handled by deflation
techniques [5]-[8], resulting in a direct algorithm very similar to other direct algorithms
discussed below under matrix splittings. If the deflated systems were solved iteratively,
this would constitute yet another iterative algorithm with no apparent advantage over
the other iterative algorithms considered here. Deflation and block elimination will
not be considered further.

Approach 2 — general methods. These algorithms work on the nonsymmetric A di-
rectly. If yo is an initial approximation of y, and ry the corresponding residual vector
ro = b — Ayg, then the Krylov subspace methods consist of %inding an approximate
solution belonging to the affine subspace 5+ K; i, where K is the Krylov subspace gen-
erated by ro, Arg,... A7~ 'ry. There are several such methods besides Craig’s method
known as Orthomin(k) [44], Orthodir and Orthores [59], the Incomplete Orthogonal-
ization Method [40], the GCR method [18], and the GMRES 1aethod [42]. Typical of
these methods is the preconditioned Orthomin(k) algorithm, given by:

choose yg;
set rg = b ~ Ay
set 75 = Q lry;
set py = 7o;
for i = 0 step 1 until convergence do
begin
(ﬁhQ—lApi) .
(@1 Ap;, @1 A4p;)’
Yi+1 = ¥i + aipi;
Fiv1 = 75 — a;Q 7 Ap;;
p _ (@7 1AF,, Q7 Ap;)
(@' Ap;,Q4p;) °

i
Pivr =Fqrt+ Y. blpy
j:(i--k-’-l)_l_

a; =

J=max{0,i — k4 1},...4;

end




where (i — k + 1)1 = max{0,¢ — &k + 1}. As for the storage costs, Ap; is overwrit-
ten by @ 'Ap; and A7 by @1 AF. Thus storage is required for Y, 7, {pj}zé—k+1)+’

{Q‘—IApj}zi_k+1)+, and Q™1 A7

However, Orthomin(k) is guaranteed to converge only for positive definite coeffi-
cient matrices A (equivalently, A with positive definite symmetric part (4 + A%)/2.)
(Some authors define positive definite only for symmetric matrices, while others say
A is positive definite if 2°Az > 0 for all z # 0 in E™, whether A is symmetric or
not. This latter meaning is used here.) More general systems Az = b, where A4 is
not positive definite, can be solved by applying Orthomin(k) to the transformed sys-
tem ZAz = Zb, where Z is nonsingular and ZA is positive definite. The matrix Z
must be known and used explicitly in the iteration, a major obstacle to the general
applicability of Orthomin(k).

The GCR method may also break down if the coefficient matrix is not positive
definite. Although Orthodir does not break down in this case, it is observed to have
stability problems [40]. GMRES, on the other hand, although equivalent to GCR
for positive definite coeflicient matrices, can be used to solve systems for which the
coeflicient matrix is not positive definite. However, GMRES requires storage of the
order of the number of iterations performed for convergence. Hence, the algorithm is
used iteratively, i.e., it is restarted every k steps, where % is a fixed parameter, leading
to the following GMRES(%) algorithm [42]:

choose 3y, tol;
set rg = b~ Ayp:
while ||ro|| > tol do
begin

set o1 = ro/l|rol;

for j =1 step 1 until £ do

begin

for 1= 1 step 1 until j do A;; = (Av;,v;);

j
i1 = Avj — E hi v

i=1
hiv,g = [18541lhs
vier = i1 [ byt
end
Solve min ” lroller — .Ekil:” for z), where Hy, is described in [42];
T
set ¥y = yo + Viwy; set 7o = b— Ayo
end
In practice the algorithm calculates |jr;|| (|ir;]| can be calculaced without forming y;
or rj = b — Ay; explicitly) at each iteration of the j loop, and breaks the j loop if

{l7jl| < tol [42], [45]. Also, it is important in practice that the lassical Gram-Schmids
process in the inner j loop be replaced by the modified Grim-Schmidt process to
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ensure stability. GMRES(%), like Orthomin(k), is guaranteec to converge when the
coefficient matrix is positive definite. However, for an indefinite coefficient matrix,
GMRES(k), while it does not break down, may fail because the residual norms at
each step, although nonincreasing, do not converge to zero.

Approach 3 ~ coefficient matrix splittings. There are several ways of splitting the
coefficient matrix A in (10) as the sum of a symmetric matrix M and a low rank
matrix L. The choice (¢, d) as the last row of M gives the splitting

B ¢ f—c
(11) M:(ct d): Lzuefz-i-l: u:( 0 )s

where e, is a vector with 1 in the (n + 1)st component and zeros elsewhere. There
are many reasonable choices for (¢?, d), discussed later (recall that (¢, d) can be almost
any, in the sense of Lebesgue measure, vector for which (10) preduces a solution to the
true problem (9) or [Dp.ly = 0). The linear system Ay = b is tuen solved by applying
iterative techniques to two linear systems with coeflicient mat ix M followed by the
Sherman-Morrison formula; the algorithmic details of this ace in the next section.
Another possibility would be to compute a symmetric indefinite factorization of M,
and not use iterative methods at all. However, this destroys the skyline data structure
containing M, and a tacit assumption here is that the skylin= data structures must
be preserved. If it were acceptable to destroy the skyline data structure, this direct
approach would likely be the most efficient of all for skyline sparsity patterns, but
would not generalize to arbitrary sparsity patterns (which the iterative methods will).
Another way of splitting up the coefficient matrix A is

(12) A=D - Ay - Ay,

where D is the diagonal of A, Ay, is the strict lower triangle of - A, and Ay is the strict
upper triangle of —4. The symmetric successive over-relaxation (SSOR) iterative
method [57) is the following two stage algorithm:

(D —wAp)2ig1ys = {(1 ~w)D + wAyle; + wb,
(D —wAv)ziy1 = [(1 —w)D + wArlzir1ys + wh,

where w is a real scalar parameter between 0 and 2. With

1 1 .
m(p - wAL)D (D — wAU;,

Q=
this method can be formulated as a one step algorithm

Quiyr = (Q — A)z; +b.

In the homotopy context, D=1 frequently does not exist, and a diagonal matrix X
such that [diag (A4 + ¥)] ~! does exist may not be of low rank (meaning that the
solution for A cannot be easily recovered from the solution for A + X). Consequently
SS50R and methods based on similar splittings are of limited utility in the homotopy
context; in fact, SSOR failed for all the test problems in § 5. A few experiments were
also tried with SSOR (w = 1) as a preconditioner, but it was not competitive, and is
not considered further here.
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3.2. Some preconditioning techniques. This section considers some precondition-
ing techniques to be used in conjunction with the algorithms just described. Pre-
conditioning matrices constructed from approximate factorizations of the coefficient
matrix are considered first. A lower triangular matrix L and an upper triangular ma-
trix U/ that are in some sense approximations of the factors in the LU factorization
of A, but that are also sparse, are constructed. The precoﬁdifioning matrix is the
product § = LU. The heuristic used to insure that the preconditioning is inexpensive
to implement is to force the factors to be sparse by allowing aonzeros only within a
specified set of locations.

(i) The incomplete LU factorization (ILU). Let Z be a set of indices contained in
{(¢,7) |1 < 4,7 £ N, i# j}, typically where A is known to be zero. The incomplete
LU factorization is given by ¢ = LU, where L and U are lower triangular and unit
upper triangular matrices, respectively, that satisfy

{Lij = U,'j = 0, (ﬁ,]) = Z,
Qij = Aij, (t,7) ¢ Z.

The incomplete LU factorization algorithm is:

for i = 1 step 1 until ¥ do
for j =1 step 1 until ¥ do
if ((¢,7) ¢ Z) then

begin
min{i,j}—1
sij=Ai— > LilUy;
t=1
if (2 2 j) then Lz'j = 84 else Ugj = Sij/j:ujg‘;
end

It can happen that L; is zero in this algorithm. In this case L;; is set to a small
positive number, so that Q;; # Au.

(ii) The modified incomplete LU factorization (MILU). Let Z be the set of indices
that determine the zero structure, and assume that (#,7) ¢ Z,1 < i £ N. The modified
incomplete LU factorization is given by @ = LU, where I, and U are lower triangular
and unit upper triangular matrices, respectively, that satisfy

Li;=0U;;=0, (z,]) €Z, |
Qii,-vz Ajj, (i,7) & Z,i # 3,
Yim1(@ij—Aij)=a, 1<i<N,

where « is a scalar. The modified incomplete LU factorizatior algorithm is:

for i =1 step 1 until N do
begin
Ly = o

for 1 =1 step 1 until N do
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begin

min{i,j}—-1
si; = Ayj = Z LUy
=1
if ((¢,7) ¢ Z) then
begin

if (i > j) then L;; = 345 ;
if (i = j) then Ly = Lis + sii 3
if (i < j) then T:Tij = 8ij ;
end
else Ly = Ly + 853
end
for j =i+ 1 step 1 until n do
Uij = Usj/ Lais

end

Since LU factorizations preserve a skyline sparsity structure, the MILU factorization
is the same as the ILU factorization for a = 0. The motivation for the MILU fac-
torization is to control the elements of @ where it does not match A, at least in an
average sense. In the homotopy context here with skyline A and a > 0, Q@ can be
construed as an approximation to A that is closer to (or more) positive definite than
A.

4. Algorithms for computing ker[Dp,]. As discussed in Section 2 for the
normal flow algorithm, a corrector step AZ is the unique minimum norm solution of
(9), which uses the solution of the rectangular linear system [Dpgly = 0. This section
describes various algorithms for the solution of such linear systems.

Let (%,A) be a point on the zero curve 7, and § the unit tangent vector to v at
(Z, ) in the direction of increasing arc length s. Then the matrix

(13) A= (Dmpcégm1)\) thacgmr A)) ,

where gc* d) is any vector outside a set of measure zero (a hyperplane), is invertible
at (#,A) and in a neighborhood of (Z,A). Thus the kernel of Dp, can be found by
solving the linear system of equations

(14) Ay = aepq1 = b,

where (¢t d)7 = a.

The coefficient matrix A in the linear system of equations (14) has a very special
structure which can be exploited in several ways. Note that the leading nxn submatrix
of A is Dyp,, which is symmetric and sparse, but possibly indefinite. Since symmetry
is advantageous for some algorithms, A can be made symmetric and invertible by
choosing ¢ = Dypg. If rank Dgpe = n — 1, then D)p, is not » finear combination of
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the columns of Dypq,, because rank [Dypq D Apa] = n by the homotopy theory. Thus
ct = (D, pa)t is not a linear combination of the rows of the symmetric matrix D,p,,

D..'*:Pa

D)\Pa.)
the first n columns of A, so the column rank A = n 4 1 for gny choice of d. Now

Dyp, :
D )\pa)

d to make the last column of A independent from the first n columns. Dyp, is a
unique linear combination of the columns of Dyp,, and any choice of 4 other than this

and the row rank [( t] = n. Finally (Dlp ") is not a linear combination of

suppose that rank Dgp, = n. Then rank [ ( ] = n, and it suffices to choose

combination of the components of (D A ,oa,)15 will make the (n+1)st column independent.
Let A denote A at (%,)). Since dim[ker(4)] < 1, Ay = 0 implies ¥y = af, and thus
with §* = (§%, Fnt1)> (D,\pa(:ﬁ,i))tg} + dFnp1 = 0. Choosing any 8 # 0 and solving
(D;\pa(ﬁ,j\))tﬁ + dingp1 = B for d (Fn41 # 0O since rank Dgp,(E,)) = n) gives a d
such that rank(A) = n + 1 for (z,A) near (, ).

Observe also that if Dyp, is positive definite, choosing ¢ > 0 sufficiently large

guarantees that
pra -D)\Pa )
A=
( (D)\Pa)t d

is also positive definite. Proof: Since A is symmetric, by Sylvester’s Theorem A is
~ positive definite if and only if all its leading principal minors are;positive. Since Dyp,

is positive definite, the first n leading principal minors are positive, and it suffices to .

show det A > 0. Expanding det A along the last column,
det A = d - det D,p, + terms not involving > 0

for d > 0 sufficiently large. 0
Another approach is to attack (14) indirectly as follows. Write

(17) A=M+ L,
where
Dopl(ZE,A) ¢
Lzuefﬂ_l, = (DRP&(%}I\)_C)

Observe that for almost all choices of (¢ d) the symmetric part M is also invertible.
Then using the Sherman-Morrison formula, the solution y to the original system Ay =
b can be obtained from

M~ uetyy
(M—lu)‘fenﬂ +1

(19) y= [I } M1,

which requires the solution of two linear systems Mz = v and Mz = b with the sparse,
symmetric, invertible matrix M. The scheme (17-19) was propesed in [27], and further
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investigated by Chan and Saad [9]. First, the HOMPACK approach to the solution of
these linear systems will be discussed.

Let |gk| = max; |§;| define the index &. In HOMPACK, (¢! d) = e, where ey is
a vector with 1 in the kth component and zeros elsewhere. Hence (13) becomes

Ae (Dpa(twv\)) _

€k
The kernel of Dp, can be found by solving the linear system of equations
Ay = grept1 = b,
Again, splitting the coefficient matrix as
A=M+1L

gives a symmetric

M= (Dmpa(i;’)\) *) ’
€y

Dapa(E,A
L =ue,, u:( }"Do(m )) —ep(1l ~ Sk nt1)-

('The Kronecker § knt1 takes care of the special case k = n + 1.) Then the Sherman-
Morrison formula (19) is used for the solution y of the linear system (14). Craig’s
preconditioned algorithm is used for solving the systems Mz = v and Mz = b. The
preconditioning matrix @ is taken as a positive definite approximation of M (the
Gill-Murray preconditioner, described in detail in [21] and [52]).

If M had only one or two negative eigenvalues, then after several rank one updates
making M positive definite, a direct Cholesky factorization could be obtained, and
then the solution to (14) recovered after several more applications of (19). This direct
algorithm for solving (14) would be effective for such M, but since only one or two
negative eigenvalues for M cannot be assumed in general (the M for a large shallow
dome problem has many negative eigenvalues along the unloading portions of the
equilibrinm curve), a direct rank one update/Cholesky scheme would not be suitable
for HOMPACK.

' There are several other schemes which could be used instead of the one in HOM-
PACK for finding the kernel of Dp,, for example,

(i) using different last rows for the augmented coefficient matrix A of (13), i.e., other
vectors (¢! d) instead of el;
(ii) using other preconditioners on M
(iii) using other algorithms for the solution of the linear systems Mz =  and Mz = b,

e.g., Orthomin(k), SSOR, etc., instead of Craig’s algorithin;

(iv) doing (i), (ii), or (iii} on the nonsymmetric A directly instead of on the symmetric

M in the splitting A = M + L.

Combining the preconditioning techniques with the algorithms for solving linear
systems with different last rows for A produces a large number of possible methods.
The next section focuses on a subset of these possible methcds and compares their
efficiency.
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5. Numerical experiments. Of the various algorithmic possibilities mentioned
in the previous section, those considered further are given short names in the list below.
Some possibilities do not make sense or are impractical in the homotopy contexs, and
thus are not considered. Of the almost all mathematically valid choices for the last
row (¢! d) of A, only e} (the easiest to implement), ¢ = Dypa(Z,A) (the easiest
symmetrization of A), and the tangent vector 7' at the previous point on the zero
curve (the optimal choice for conditioning, since it is orthogonal to the top n rows of
A at (%, X)) are used.

SC — A = M + [ splitting, Craig’s method with M, no preconditioning;
SCGM - A = M+ L splitting, Craig’s method with M, Gill-Murray preconditioning

from HOMPACK;
SCILU - A = M + L splitting, Craig’s method with M, incomplete LU precondi-

tioning;

SCMILU - A = Ji’ + I splitting, Craig’s method with M, modified incomplete LU
preconditioning;

C — no splitting, Craig’s method with A4, no preconditioning;

CGM - no splitting, Craig’s method with A, Gill-Murra;- preconditioning from
HOMPACK;

CILU - mno splitting, Craig’s method with 4, incomplete LU preconditioning;

CMILU - no splitting, Craig’s method with A, modified incomplete LU precondi-
tioning.

SR — A= M + L splitting, GMRES(2) with M, no preconditioning;

SRGM - A = M + L splitting, GMRES(2) with M, Gill-Murray preconditioning
from HOMPACK;

SRILU — A = M + L splitting, GMRES(2) with M, incomplete LU preconditioning;

SRMILU — A = M + L splitting, GMRES(2) with M, modified incomplete LU pre-

conditioning; _

R — no splitting, GMRES(2) with 4, no preconditioning;

RGM ~ no splitting, GMRES(2) with 4, Gill-Murray preconditioning from HOM-
PACK;

RILU - no splitting, GMRES(2) with A, incomplete LU p: econditioning;
RMILU - no splitting, GMRES(2) with A, modified incomplete LU preconditioning.

The test problems are now described in detail, beginning with the shallow arch
structural response problem.

5.1. Shallow arch. The equations of equilibrium of the arch are obtained from
the principle of the stationary value of the total potential energy, according to which,
of all the kinematically admissible displacement fields, the one that makes the total
potential energy of a structure stationary also satisfies its equations of equilibrium.
The total potential energy  of a structure is given by the sum of its strain energy
and the potential of external loads.

The shallow arch of Figure 1 is discretized by an assemblaze of straight p-¢ frame
clements such as those described in [26]. A frame element is a structural compo-
nent that is initially straight and undergoes axial, bending, and torsional deformation
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resulting from finite displacements and rotations of its ends (nodes) p and g. The
displacements of the end g relative to the end p are

§u X, - X, I Uy~ Uy
bv | =[Tp | Yo—Yp | = | 0| +[Th| Vo=V |,
§w Z,— 7, 0 W, - W,

where I is the initial rigid body length, and U;, V;, W; (i = p or ¢) denote the
global displacements of the nodes. The matrix [T}, can be shown to be [26] [T], =

[T1(¢Es gbya qbz)] [Tl(g:rp, gy'pg ﬁzp)] with

cyCx CyS2  —3y
[Tl(a:ca Qy, sz)] = (_Cwsz T 848yCy  CpCy + 525y8; chy) 3
SpSz + Co8yCz  —8zC; + Cp8y8;  Cyly
¢; = cosay; and 8; = sine; for i = z, y, and 2. Angles ¢,, ¢,, and ¢, are the initial
orientation angles and angles 8., 8,,, and 4., are the rigid body rotations of the end
p. In the equation for [T],, Euler angle transformations are implied with the order of
the rotations being o, oy, and ag. :

|a
o L \le

TicurEe 1. Shallow arch.

Similarly, with the restriction of small relative rotations within the element, the
rotations ¥z, ¥y, 1, of the end g relative to the end p are

'{b:r Ba:q - g:vp
Py | = [T]:o Oyg — Oyp | -
"bz qu - sz

With the relative generalized displacements (6u, §v, §w) and (¥, 9y, .} known,
the usual deformation patterns of the reference axis of the beam: element in the coro-
tational coordinate system are assumed to be

we =k, 0= (36" — 26%)(F0 - zat) + (€~ )0,
B=tbe, ()= TOE 26w+ ysthe) - (€~ ENpys

where £ = z/L and y, and z, are the coordinates of the shzar center of the cross
section of the beam. The strain at any point (y, 2) on the cress-section of the frame
element can be shown to be

e= 2 n[ 30— 26)(60 - sua) + 2036 - 11

- C ]:%(1 - 25)(‘51‘“ + ys@bm) - 2(3E - 1)¢y:| ’
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with 5 = y/L and ¢ = z/L. In these equations it is implicitly assumed that the lateral
displacements and twists are referenced to alongitudinal axis through the shear center,
while the axial displacements and rotations are referenced to the centroidal axis.
The total potential energy of such a discretized model of the arch can be expressed

as

m

T= Z Ue — ths

e=1
where U7¢ is the strain energy of the eth element, e = 1, ..., m, ¢ .is the vector of nodal
displacement degrees of freedom of the entire model and ¢ is the vector of externally
applied loads. The strain energy U¢ of the eth frame element is given by

L,
Ue=£/ e2d'v=E/ / e?dAdz,
2 Jy 2 Jo Ja,

where ¢ is the strain of a point (2, y,z) of the beam, which was derived above, Sub-
stituting for ¢ and doing the integration gives

E 2 12 2 1 2,12
Ue = Up-q = Q_LB{AE(’SU) + I—gfz [(6?)) -+ §Le¢z .- Leév ’(,bz
12 1
+ L_gfy [(6'&))2 + ng’qbi + L.éw ’(,by:l },

where A, is the cross-sectional area, and I, and I, are the cross-sectional moments
of inertia about the y and z axes respectively, It is evident that the potential energy
7 of the model is a highly nonlinear function of the nodal displacements. The equa-
tions of equilibrium of the model are obtained by setting the variation 7 to zero, or
equivalently by

Vr =0,

Closed form analytical expressions for V7 can be obtained with some difficulty, but
obtaining the Jacobian matrix of Vr analytically seems out of the question. Hence
the Jacobian matrix of the equilibrium equations is obtained by finite difference ap-
proximations.

By symmetry only half the arch need be modelled, and the results here are for
the arch parameters used in [28], with a full arch load of 3000 lbs. This is just below
the limit point. To go through the limit point and along the unloading portion of the
equilibrium curve apparently requires very accurate Jacobian matrices and nnmerical
linear algebra, and none of these iterative linear equation solvers used in HOMPACK
were able to go past the limit point without tweaking the HOMPACK stepsize control
parameters. ‘

5.2. Shallow dome. The shallow dome of Figure 2 is buiit up from space truss
elements with three global displacement degrees of freedom (u;,us,us) at each of the
two nodes. For an element of original length L between its two nodes p and g, the
change in length éL is given by

i=1

3 1/2 3 1/2
6L = Z(;r;q,; + g — Tpi — um')z] - {Z (i - "“"pi)g] J
i=1
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FiGURE 2. Triangulation for 21 degree of freedom shallow dome.

where 2,5, u;;, 1 = p,q; j = 1,2,3 are the global coordinates and displacements of the
two nodes. This can be simplified to
3 Q(Aa:,;Au,-) (Au,')2
SL=L|1+) +

1/2
-,

I2 L2

i=1

where A is the difference operator for the g and p values. Accordingly, the axial strain
in the e-th element is

6L 3 (2AAazAw) | (Au) i
e _ _ T AU i
G‘T_[HE( 17t )] ke

i=1

The strain energy of the e-th element in a purely linearly elastic response is given by

e_E ey2 MEAELE ey2
US_Q/(G)dV_ 2 (6)’
v

where E and A are the Young’s modulus and cross-sectional area, respectively, of the
e-th element.
The total potential energy of the dome is then given by

T= i ve-U7Q,
e=1

where U;, ¢ = 1,...,6 are the six components ug, upk, k¥ = 1,2,3, and @Q is the
generalized force vector. The equations of equilibrium of the model are then obtained
by setting

m
V=) EA®I*Ve - Q = 0.

e=1
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Both the gradient of x as well as its Hessian can be evaluated explicitly without
resorting to finite differencing operations as in the case of the frame element used to
model the shallow arch. .

The effect of modelling the shallow dome with truss elements in concentric rings
is that changing the number of truss elements changes the model and its behavior.
Thus the dome problems with different degrees of freedom reported in the tables are
qualitatively different, with different buckling loads and bifurcation points. The results
reported here are for shallow domes with base radius 720 and sphere radius 3060, and
a point load at the very top.

5.3. Artificial turning point problem. The turning point problem is derived from
the system of equations

F(x) = (F(x), F(x), ..., Fn(x)) = 0

where

_(miatwmt Tiy1)

Fi(x) = tan~(sin[2:(i mod 100)]) 50 )

i=1,...,N,

and zp = zn41 = 0. The zero curve y tracked from A = 0 to A =1 corresponds
to pa(z,A) = (1 — 8M\)(z — a) + 8A F(z), where a was chosen artificially to produce
turning points in y. HOMPACK had no difficulty going through numerous turning
points using iterative linear equation solvers.

Tables 1-6 show some timing results for these three test problems. An asterisk
indicates either that the iterative linear equation solver stalled, v was lost because of
inaccurate tangents from the linear equation solver, or the time was at least an order
of magnitude larger than anything else in the table. The times are for tracking the
entire zero curve 4 and thus represent the solution of many linear systems of varying
degrees of difficulty. The experiments were done in double precision using a single
processor of a Sequent Symmetry $81 multiprocessor. The major headings are the
acronyms for the algorithms, and the subheadings denote the choice (¢! d) for the
last Tow of A. The MILU algorithms used & = 1. There is asymmetry in the tables
because some possibilities do not make sense. For instance, there is no CGM with e
because the Gill-Murray preconditioner requires a symmetric matrix, and there are no
S* with Dyp, since the choice ¢t = (DApa)t makes A symmetric so there is no need
to split off 2 symmetric matrix 3 from A.

6. Discussion and conclusions. The convergence rate of conjugate gradient
iterative methods for linear systems depends on the spectrum and the condition num-
ber of the coefficient matrix, and therefore one would predict 7* should be a better
choice for the last Tow of A than el. Since 7 is orthogonal to the rows of Dpy(%,N),
a good approximation to the first n rows Dp.(z,)) of A, one :xpects A with ¥ to be
better conditioned than with ez. Tables 1, 3, and 5 show that apparently this better
conditioning does not compensate for the extra work involved in using §. Although ¥
is sometimes better than ey, there seems to be no strong evidence that is worth the
trouble.
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TABLE 1
Execution time in seconds for shallow arch problem.
sSC SCGM SCILU SCMILU
i - t ~t 1 —t ¢ ~t
n ek Y ek Y ek i ek y
29| 1108 947 | 468 8181 599 470 908 975
47 | 16904 | 17593 | 7322 | 10105 | 5674 | 5957 | 11538 | 12390

SR SRGM SRILU SRMILU
29 * *| 461 | 559 4431  * *
47 * * | 5314 * 5796 | 6332  * *
TABLE 2
Execution time in seconds for shallow arch pioblem.
C CILU CMILU CGM

i €x gt -D}\pa. etk gt -DJ\pa. ei; gt DApa D)\Pa

29 856 8841 919] 533 | 458| 443| 841 845 900 464
47114205 | 13591 [ 14606 | 5794 | 5807 | 6776 | 9943 | 10968 | 10135 [ 6921

R RILU RMILU RGM
29 * * *1 443 431 506 * * 1 429
47 * * * 15355 | 5304 | 5697 * * *1 5260
TABLE 3
~ Execution time in seconds for shallow dome problem. ~ - -
SC SCGM SCILU SCMILU
no ek | F ek | T k| T || 7

21 57 86| 108 37| 21 25 92 141
546 | 3127 1 4803 [ 2710 | 1787 | 492 | 630 | 4892 6687
1050 | 5615 | 8553 | 5107 | 3177 | 887 | 1133 | 8259 | 11672

SR SRGM SRILU SRMILU
21 * * * * 14 15 ES *
546 * * * *1299| 335 *
1050 * * * * 1559 625 * *
TABLE 4
Execution time in seconds for shallow dome problem.
C CILU CMILU CGM
L e};: gt D)\ptl e?c gt D)\pa ez gt -D)tpa D)\pa

21 46 47 471 16 16 16 68 79 69 89
546 | 2495 | 2545 | 2573 [ 355|369 | 365 3037 | 3585 | 3094 | 2233
1050 | 4504 | 4691 | 4690 | 632|665 651 | 5536 [ 6327 | 5570 | 4313
R RILU RMILU RGM
21 * * *O11) 12 11 * * * *
546 * * *1230 (241 232 * * * *
1050 * * * 425|446 | 430 * f * *
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i
TABLE &
Execution time in seconds for turning point problem.

SC SCGM SCILU | SCMILU

i t =t i 7t 1 7t
(i € Y €} y € u €. Y

20 28 36 121 13y 6| 6 39| 47
60 266 356 41| 50 20| 22| 163 | 213
1251 1635 2310 127 170 | 54| 65| 568 | 795
250 | 3026 | 3767 228 | 267 | 95|109|1032| 1335
500 6279 | 7783 448 | 501 | 189|207 | 2130 | 2656
1000 | 14150 [ 17768 | 1077 [ 1174 | 434 [ 490 | 4874 | 6052

SR SRGM SRILU | SRMILU
20| 1301 *| 13 18} 4| 41 120 *
60 * *oo47 ¥ 13| 14 * *
125 * * * *1 36| 40 * *
250 * * * *1 60| 69 * *
500 * * * 11194131 * *
1000 * * * *1274 1296 * *
TABLE 6
Execution time In seconds for turning point problem.
C CILU CMILU CGM
n | et | 7 |Dxpalei | 7 [Dipal € | § | Dapa| Darpa

20 17 19 21 4 7 4 24 26 27 5
60 167 | 176 1861 13| 22 13 109 | 112 118 22
1251 111711132 1384 38| 64 421 412 421 | 446 85
2501 22961925 3873| 66110 74| T65| 699 726 | 134
500 | 474113899 8352129 |210| 14815731381 1465{ 260
1000 | 11577 {9335 | 20375 | 323 [ 493 | 353 | 3605|3031 | 3308 617
' R RILU RMILU RGM

20 «|  +[ 1263] 3] 3] 3| 43| w| 7| 6
60 *| ¥ *1 9| w0} ol *| *|o2016]| *
125 o *1 26| 31| 28| *| *| k|
250 | o# *| 45| 51| 46| x| K| Kl
500 o I *1 88| 98| 88| x| K| K| K
1000 o B *1199 225 202| x| ¢| ¢

Figure 3 shows the condition numbers of A and Q! A along 4 for the shallow arch
problem with n» = 29 (CGM). The shallow arch problem is indeed a hard problem,
but Figure 3 alone would not suggest that—see the discussion of the shallow arch
problem’s spectra later. The Jacobian matrix D,p, becomes indefinite near A = .88,
at which point the Gill-Murray preconditioner ceases being nearly perfect. This figure
is typical for the Gill-Murray preconditioner. (During the course of the experiments
it was observed that points far from v frequently generate much worse conditioned
problems. This has important implications for curve tracking strategy, because large
steps along 4 will be offset by expensive numerical linear algebra to return to v.)
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Ficure 3. Condition numbers for A (black dots) and Q' A (grey
dots) against X\ along «; shallow arch, n = 29, CGM.

Tables 2, 4, 6 show that there is no clear winner between ék, 4, and Djapg, and
further there is little correlation between the algorithm and the best choice for .
One is tempted to pick CGM with ¢ = (DApﬂ)t over SCGM with ¢! = ei, based on
Tables 5, 6 and the fact that CGM only solves one linear system per tangent vector
computation, as opposed to two linear systems with M for the splitting algorithms.
However, from Tables 1 and 2, SCGM with ey is substantially better than CGM
with Dyps. This demonstrates that only counting the number of linear system solves
can be dangerously misleading. The results do indicate that for a given choice of ¢,
when no preconditioning is used or when MILU preconditioning is used, it is slightly
more efficient to use the no-splitting strategy than the splitting. However, with ILU
preconditioning the differences between corresponding splitting and no-splitiing cases
are not at all significant.

Tables 1-6 seem to strongly support an argument for CILU as the best Craig
method, even though the ILU factorization fails to exist at turning points, and is
unstable whenever A is indefinite. What is not indicated in the tables, though, are all
the homotopy curve tracking runs which failed because the IL U'preconditioner failed
to exist or generated an overflow, or the difficulty caused HOMPACK by inaccurate
tangents resulting from the ILU. Because of this potential catastrophic failure or
instability, the ILU preconditioner would never be seriously considered for robust
homotopy algorithms. Still, the tables do show why numerical analysts’ paranoia
. about unstable algorithms is not shared by engineers.

The algorithms SSOR. and Orthomin(k), discussed earlie’, are not shown in the
tables because they totally fail at turning points and along unloading portions of
equilibrium curves (for reasons stated in §3). When these methods do work, they
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can be very efficient (e.g., Orthomin(1) on A with ¢! = (D,\pa,)It took 443 (6092)
seconds for the shallow arch problem with » = 29 (47)), but that is no consolation for
homotopy curve tracking.

GMRES(k) has a solid theoretical justification [42], and has been used very suc-
cessfully in a variety of contexts [4], [42], [45], [46]. Nevertheless, GMRES(k) with
k < n performed unacceptably on the test problems here without preconditioning.
For the shallow arch problem with n = 29 and tol = 10712, GMRES(29) on A with
ct = (D;\pa)t took 591 seconds, comparable to CGM and SCGM. Tor k = 1, 3, 25,
GMRES(k) took over a day of CPU time. Relaxing the tolerance to 10-%, GMRES(25)
took 18,330 seconds. This is especially noteworthy because the A matrices are sym-
metric and positive definite up to A = .88, and mildly indefinit= from there to A = 1.
For the turning point problem with n = 20, tol = 1072, ¢t --—-;(D;\pa)t, the perfor-
mance degradation from the full GMRES to GMRES(k) was dramatic. With & = 20,
19, 18, 15, 10, 8, GMRES(%) took, respectively, 19, 117, 154, 375, 338, 420 seconds.
Thus for these problems, without preconditioning, only the :ull GMRES method is
competitive,

The tables also show results for GMRES(2), implementec with all the same pre-
conditioners and choices of (¢! d) as was Craig’s method. k = 2 was chosen because
a preconditioned GMRES(2) requires exactly the same amount of storage as the pre-
conditioned Craig’s method. Numerous other runs were made with k£ = 1, 3, 5, or 10,
but there was no substantial difference from k& = 2 on the larger problems. In virtually
all cases the asterisks in the tables correspond to a stalled residual norm somewhere
along 7. It was noted, though, that many of the linear systems along v were solved
efficiently by GMRES(2). Perhaps the most disappointing failure was that of RGM
on the shallow dome problem even for n = 21, because the Gill-Murray preconditioner
was fairly good there. It is evident from the tables that GMRES(2), without nearly
perfect preconditioning (ILU), is unsuitable for use in a general, robust homotopy
curve tracking code like HOMPACK.

There are some theoretical results concerning the convergence of GMRES(k) given
by Saad and Schultz [42]. These results give worst-case bounds on the rate of residual
norm reduction which are determined by the distribution of eigenvalues of A. For
the shallow arch and turning point problems, the eigenvalues of A4 were determined
numerically along the homotopy curve, and the resulting bounds were often (although
not in every case) found to guarantee only hopelessly slow residual norm reduction,
indeed often to guarantee no residual norm reduction at all even when & = n.

Tables 7-12 show the average, maximum, and minimum number of conjugate
gradient iterations per linear system solution along the homotopy zero curve v for
the same algorithms as Tables 1-6. Such iteration statistics give an intuitive feel
for how the algorithms behave, and are sometimes very revealing, Tables 7 and 8
show that symmetry does improve the algorithms’ efficiency, and that all other things
being equal, achieving symmetric coefficient matrices is worthwhile. (The S$* algo-
rithms based on symmetry are not uniformly better, because ali other things are not
equal.}) Note that in all cases for Craig’s method the maximun number of conjugate
gradient iterations is less than or equal to eight times the average, which says that
the convergence behavior is fairly consistent. On the other hand the range between
the minimum and maximum (for the C¥* algorithms) is as great as 3 to 536 (C for
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TABLE 7
Average, maximum, and minimum number of conjugate sradient iterations
per linear system along homotopy curve for shallow arch problem.

SC SCGM SCILU SCMILU

i g £ it i =t A =t
T € i €L Y € y € U

29| 66,109,1 1 66,101,1 | 4,10,1 | 28,40,1 2,3,1(3,3,1| 39,63,139,58,1
471190,313,1 {194,291,1 ] 5,10,1 |37,53,112,3,1 | 3,3,1 | 64,103,1 | 65,97,1

SR SRGM SRILU SRMILU
29 * *1 4,921 *11,2,1 1,21 *
47 * *12,140,1 ¥*11,2111,2,1 * *
TABLE 8

Average, maximum, and minimum number of conjugate gradient iterations
per linear system along homotopy curve for shallow arch problem.

C CILU
n ei: gt Dip, ei _ gt Dyp,
29 99,127,51 91,107,38 98,120,52 | 3,3,2 [ 4,52 | 3,3,2
47 | 265,360,109 | 239,305,133 | 265,355,105 | 3,3,2 | 4,4,2 | 3,3,2
CMILU . CGM
29 56,68,30 56,65,35 55,65,30 — — 1| 6,7,2
47 87,119.48 91,102,53 87,131,48 — — | 6,7,2
: R RILU
29 * * 11,11 1,21 1,11
47 * * *11,1,101,21 0 1,11
RMILU RGM
29 * * * — — | 22,1
47 * * * — —1 2,2,1
TABLE 9

Average, maximum, and minimum number of conjugate gradient iterations
per linear system along homotopy curve for shallow dome problem.,

SC SCGM SCILU !. SCMILU

t =t t =t t =t 4 at
n €L i € Y €L y €1 i

21117,31,1 | 24,36,1 | 16,115,1 | 746,12,3,1]2,3,1]14,30,1 [21,321
546 | 38,75,1 | 54,87,1 | 15,113,1 | 9,63,1|2,3,1(3,2,1124,45,1 | 37,71,1
1050 | 38,76,1 | 53,91,1 | 16,114,1 [8,101,1 [2,3,1 | 3,3,1 | 24,47,1 | 36,61,1

SR SRGM SRILU SRMILU
21 * * * *11,21]1,21 *
546 * * * *|12111,21 *
1050 * * * *11,2,1]1,2,1 * *

n = 1000 in Table 12), showing that there is a wide variation in the difficulty of the
linear systems encountered along y. The convergence behavior of GMRES(2) is not
as consistent as for Craig’s method, with the maximum being as much as 70 times the
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TABLE 10 -
Average, maximum, and minimum number of conjugate gradient iterations
per linear system along homotopy curve for shallow dome problem.

C CILU
n 62: y_t -D)uoa Ei gt -D)\Pa.
21 |26,36,14 | 26,36,14 | 26,36,14 [ 2,3,2 [ 2,32 2,32
546 | 58,81,17 | 57,82,17 { 58,82,18 | 2,32 | 2,3,2| 2,32
1050 | 58,87,18 | 59,91,18 | 58,83,18 | 2,32 | 2,32| © 232
CMILU CGM
21| 19,258 22,288 19248 —| —Il231132
546 | 34,47,12 | 38,52,12 | 344511 —| — [22,111,2
1050 | 34,49,12 | 38,50,12 1 34,49,13 | —| —|23.113.2
R RILU
21 * * *11,1,1(1,1,1 1,1,1
546 * L,1,111,1.1 1,11
1050 * % 1,1,111,1,1 1,1,1
RMILU RGM
21 * * * — . *
546 * * * - — *
1050 * * * _ _ *
TaBLE 11

Average, maximum, and minimum number of conjugate gradient iterations
per linear system along homotopy curve for turning point problem.

sC SCGM SCILU SCMILU
n el it el it el 7t el it
20 21,28,1 | 24,2911 46,1 57,1(22,1(221| 17,271 19,261
60| 60,100,1 69,87,1| 48,1 581123,1|2371| 21,37,1{25,39,1
125 127,261,1 { 154,264,1 | 59,1 [6,11,1(2,3,112,3,1| 26,51,1 | 31,51,1
250 | 139,302,1 | 150,246,1 | 5,11,1 | 5,10,1 [ 2,2,1 | 2,3,1 | 27,60,1 | 30,55.1
500 | 149,314,1 | 164,281,15,11,1 [ 5,10,1{2,2,1 [2,3,1| 28,621 |31,53,1
1000 | 151,312,1 | 162,289,1 | 5,11,1 | 5,11,1]2,2,1|2,3,1| 28,64,1 | 31,56,1

SC SCGM SCILU SCMILU
20 | 732,4446,1 *16,58,1 8,751 {1,1,1]|1,1,1 [ 40,315,1 *
60 * *16,54,1 *[1,1,1]1,1,1 * *
125 * ¥ * *11,1,1]1,1,1 * *
250 * * * *11,1,11,1,1 * *
500 * * * 1,111 1,11 | * *
1000 * * * *LLIILLL * *

average (SRGM for n = 47 in Table 7).

The Gill-Murray preconditioner is clearly excellent, as showyn by the average num-
ber of iterations in Tables 7-12 and Figure 3. It is more robust than the ILU and
MILU preconditioners in the presence of turning points and ndefinite D,yp,. How-
ever, the shallow dome problem (Tables 3, 4, 9, and 10) shows that the Gill-Murray
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TABLE 12
Average, maximum, and minimum number of conjugate gradient jterations
per linear system along homotopy curve for turning point problem.

C CILU
n el 7t Dipa et | 7 | Dips
20| 24,29,1| 24,281 26,31,112,2,114,5,1| 2,3,1
60| 70,86,1| 69,84,1 74,91,212,3,114,71| 2,32
125 | 159,292,1 | 151,232.1 179,3283 [2,3,1 4,51 | 2,32
250 | 196,404,1 | 150,246,1 | - 231,407,3 | 2,3,1 | 4,5,1] 2,3,2
500 { 216,427,1 | 165,337.1 268,489,3 [2,3,1[4,6,1| 2,3,2
1000 | 224,446,1 | 164,323,1 285,536,3 | 2,3,1 | 4,5,1 | 3.3,2

- CMILU CGM
20| 20,23,1| 20231 20,263 —| —| 3,92
60 26,36,1] 25341 26,362 —1 —|3,12,1
125 33,49,1| 31481 33533 —| —|5,15.2
250 | '36,61,1| 30,45,1 324811 —| —|4,152
500 | 38,74,1| 31,531 335331 —| —|5,16,2
1000 39,75,1| 31,50,1 33543 —| —15,162
R RILU _
20 * *11905,21000,2 | 1,1,1{1,2,1| 1,1,1
60 * * *ILL1)1,2,0 ] 1,11
125 * * 1,111,210 1,11
250 * * *I1,1,111,2,0 ] 1,11
500 * * *1L,1,11,2,1 1,11
1000 * * *11,0101,210 1,11
RMILU RGM _
20| 47,110,2| 61,200,2 79,226,2| —| — 14,921
60 * *| 568,12486,2] —| — *
125 * * = I X
250 * * * — — *
500 * * * -— _— *
1000 * * * - - *

preconditioner may do & very poor job indeed on strongly indefinite matrices (which
occur on the unloading parts of the shaliow dome equilibrium curve)., While reducing
the average number of iterations, the Gill-Murray preconditioner actually increases
the maximum number of iterations compared to the unpreconditioned algorithm.

It would be possible to test separately each aspect of the iterative linear system
solving algorithms, such as convergence rate, sensitivity to starting point, cost of
preconditioning, storage cost, computational complexity per iteration, etc. What
ultimately matters, however, is the combined performance of the total algorithm on a
wide range of typical realistic problems. Measuring the performance along homotopy
zero curves for nontrivial problems is an attempt to measure the overall performance -
in sifu.

A succinet, albeit oversimplified summary of the discussion js that ILT precondi-
tioning is the most efficient but it may completely fail for some cases, while the Gill-
Murray preconditioner rarely fails but is somewhat slower, especially for very large
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or strongly indefinite problems. With somewhat imperfect preconditioning, Craig’s
method is more robust than GMRES(k) for k < = for homotopy curve tracking.

7. Acknowledgment. The authors are indebted to the referees for excellent
suggestions, and to Tony Chan, Dianne O’Leary, Philippe Toint, and David Young for
comments on this work.
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