Notational Techniques for Accommodating User
intention Shifts

Antonio C. Siochi, H. Rex Hartson and
Deborah Hix

TR 90-18



Submitted for publication

NOTATIONAL TECHNIQUES FOR ACCOMMODATING
USER INTENTION SHIFTS

Antonio C. Siochi
H. Rex Hartson
Deborch Hix

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061-0106, USA

ABSTRACT _ S
Good user interface designs allow for user intenton shifts. The asynchronous nature of

direct manipulation interfaces inherently demands consideration of user intention shifts
during the performance of a task. Maintaining a focus on the primary function of a task
while a: the same time accommodating user intention shifts is difficult for interface
designers when both these aspects are represented at the same design level. The User
Action Notation (UAN), a technique for representing asynchronous interfaces, contains a
mechanism for specifving poinis in a task where user intention shifts may occur. A
complementary technique, Task Transition Diagrams (TTDs}, 1s used 10 specify tasks that
users can perform o interrupt their current task. The Task Transition Diagram is a notauon
that allows 2 designer to map out the set of tasks and intentions of a user without having to
be concerned with the minutae of how a user accomplishes those tasks.

KEYWORDS AND PHRASES: _ o _
Notation, user actions, asynchronous user interfaces, direct manipulation, task interrupts,
abandoning, interleaving, user interface representaiion, task description.

INTRODUCTION :

Users can and do change their intentions during the performance of a task. In general, user
interfaces that are rigid, and hence unsupportive of such intention shifrs, typically have
poor usability. Consequently, a substantial difficuity in designing interfaces is
accommodaring a user’s intention shifts while at the same time maintaining a focus on the
primary function of the task. This problem is very familiar 1o anyone who has ever had to
write a program where error and condition-checking code interferes with readability of the
primary function of the program. Incorporating such considerations into a task description
can obscure the sequence of actions required for “normal” accomplishment of the task, yet
it is precisely those considerations that help shape the usability of a system. This problem
is especially acute for direct manipulation interfaces, where their asynchronous nature
practically guarantees the occurrence of user intention shifts.

The User Action Notation (UAN) [3, 9], briefly described in a following section, is a task-
oriented technique for designing asynchronous interfaces such as the Macintosh™ Finder.
It readily supports the representation of user actions with associated feedback and state
change information for each specific user task. The focus of the UAN on the specifics of a
single task is both a strength and a weakness.

When a designer’s concern turns to the accommodation of intention shifts, the designer
must be able to show the set of tasks to which a user can shift, and how those tasks are
related. The UAN provides a means of specifying explicit points in the task at which the

™ Macintosh, Finder, and Multifinder are rademarks of Apple Computer, Inc.



task may be interrupted by the user, i.e., intention shift points. However, when a task can
be interrupted, there is a need to show how that task can be interrupted. This paper
introduces Task Transition Diagrams (TTDs), a notation that allows a designer to map outa
set of related tasks and intentions of a user without having to be concerned with the
minutize of how a user accomplishes those tasks. TTDs serve as a technique to
complement the single-task-specificity of the UAN.

RELATED WORK _ ,
Numerous notational schemes have been developed to represent user interface designs.

Two of the earliest nowations are the Keystroke-Level model of Card, Moran, and Newell
(1] and the Action Language of Reisner [8]. These notational schemes were designed to
measure some aspect of the interface. In the case of the Keystroke-Level model,
predictions can be made about performance times for specific tasks. Tasks are described at
the level of keysmokes, homing operations, and mental preparations. In the Action
Language, interfaces are described by means of 2 formal grammar, with the purpose of
analyzing the interface for possible problems such as inconsistencies. A more recent
notation, Task-Action Grammar (TAG) [7], is similar to the Action Language both in form
(it also describes interfaces in terms of a grammar) and purpose. TAG, however, is task-
oriented.

These three notations are actually analytical, rather than synthetic, tools. None of them
provides a means of representing user intention shifts. In fact, the Keystroke-Level model
assumes error-free user performance, In addition, none of the three supports
representation of asynchronous user interfaces.

Another major class of notaton is graphical. Interfaces are represented as directed graphs
in which nodes correspond to machine states and arcs indicate control flow among the
states. Examples inciude [10], {6], and [11]}. These technigues are based on state
machines, and hence lack adequate support for asynchronous interfaces. Jacob [4]
addresses this problem by specifying several asynchronous staie machines instead of a
single machine. These schemes, however, provide no separation berween how a task is
performed and what tasks can be done.

The other major class of notation is based on task analysis, which is “an empirical method
which can produce a complete and explicit model of tasks in the domain, and of how
people carry out those tasks™ [5]. The GOMS - Keystroke Level model [1], and TAG [7]
Fir in this class as well, Interface design based on task analysis proceeds by building a
model of the user’s task using some task representation technique.

THE USER ACTION NOTATION: AN OVERVIEW

There are at least two domains of interface design and representation: behavioral and
constructional [3]. Behavioral design and representation involve physical, cognitive, and
perceptual user actions and interface feedback, i.e., behavior both of the user and of the
interface as they interact with each other. Each behavioral design must be translated into a
constructional design that is the computer system view of how the behavior is to be
supported. Any description that can be thought of as “running on the machine” is
constructional. Two examples are state mansition diagrams and event handlers.

In contrast, behavioral descriptions can be thought of as being “performed by the user.”
Behavioral descriptions are important because if is in the behavioral domain that interface
designers and evaluators do their work. Thus, there is a need for behavioral representation
techniques 10 keep a user-centered focus during the interface development process.



The UAN is a user- and task-oriented notation that describes the behavior of the user and
the interface during their cooperative performance of a task. The primary abstraction of the
UAN is a task. A user interface is represented as a quasi-hierarchical structure of
asynchronous tasks, the sequencing within each task being independent of that in the
others. User actions, corresponding interface feedback, and state change information are
represented at the lowest level. Levels of abstraction are used to hide these details and
represent the entire interface. At all levels, user actions and tasks are combined with
temporal relations such as sequencing, interleaving, and concurrency to describe allowable
temporal user behavior [2]. The UAN can be used to supplement scenarios, indicating
precisely how the user interacts with the screen layout shown in a scenario. Figure 1
shows an example of a simple UAN task description. The task is that of moving 2 file icon
in the Macintosh Finder.

Task: move a file icon

User Actions Feedback State Changes

~[filelcon] ; My, fiielcon! currentObject = filelcon,
fileIcon is selected

~[x,y]* . outhine(filelcon) > ~

MA @(x.v) show{iilelcon) update location of filelcon

Figure 1. UAN task description for moving a file icon.

The first column in this UAN task description specifies the user actions required for this
task. Reading this column, the first line denotes moving the cursor 1o the context of the file
icon {~[filelcon}), and depressing the mouse bution (Mv). In the second line, ~[x,y]*
indicates movement of the cursor to any (X,y) coordinate on the screen, zero Or more imes
(*). In the third line, the mouse button is released (M?). The second column describes
interface feedback corresponding to user actions in a precise iine-by-line correspondence,
e.g., depressing the mouse button causes filelcon to be highlighted (filelcon!); in the
second line, the outline of filelcon follows the cursor as it changes position. This level of
precision can be lost in a prose descripton, where actions and feedback are intermingled.
In the third column, state information can also be associated as appropriate with user
actions, e.g., depressing the mouse buiton selects filelcon as the current object. Fora
more detailed presentation of the UAN, see [3] or [e].

TASK INTERRUPTION _
From a human-computer interface development view, a user task consists of a sequence of

user actions or sub-tasks, the last one of which marks the end of the task, i.e., task
closure. Thus in the task of moving a file icon shown in Figure 1, the action of releasing
the mouse button (M?) signals task closure. Each 1ask is associated with a user intention.
A user performing all and only the user actions of that task achieves task closure without an
intention shift. Should the user change intention in the middle of a task and perform some
action other than the next in the sequence, we say that task is interrupted. In the task in
Figure 1, if the user positions the cursor over the file icon, but then moves the cursor away
without depressing the mouse button, the task of moving the file icon is interrupted; there is
a user intention shift. This point of interruptibility is indicated in a task description by a
semi-colon, as shown in the first line of the user action column in Figure 1.

The semi-colon in a UAN task description allows a designer to accommodate intention
shifts by indicating where a task can be interrupted without having to specify details of how
the user interrupts the current task. This has the benefit of preserving the clarity of a UAN
task descripton.

1)



Two Classes of Interruption ) ' . .
Users can interrupt tasks in one of two ways, abandoning or interleaving, reflecting

different intention shifts. Abandoning requires identification of explicit user actions that
bring about closure with the intent to abort the task. For example, the user can abandon the
task of using a dialogue box by clicking on a cancel button. -Other examples include
abandoning the task of choosing an item in a pulldown menu by moving the cursor off the
menu then releasing the mouse button and abandoning the task of deleting a file by moving
the file back into its original window instead of releasing it into the trash can.

The second class, interleaving, occurs when a user interrupts a task with another one but
with the intent of returning to the original task. For example, a user might move between
two open dialogue boxes, shift from one application to another in Multifinder™, or
respond 1o & System event such as incoming mail.

Both classes of task interruption are specified in the UAN with semi-colons (see Figure 1).
In this paper we are concerned only with the case of abandoning a task. Interleaving is
discussed in [2].

Abandoning a Task

The Semi-colon: A Local View. During the performance of a task the user may change
intentions and decide to abandon the current task. As an example, consider the task of
selecting an item from a pulldown menu. Task descriptions in Figure 2 show the sequence
of actions a user performs to select an item from a pulldown menu, together with exact
points in the sequence where this task can be interrupted (i.e., the semi-colons). The first
serni-colon indicates 2 point where users can change their mind about pulling down this
menu at all. The second and third semi-colons indicate points where the user may decide
not to pick any of the iterns in this menu. Note that the actions which cause this
interruption are not explicitly specified in the task description. This makes reading (and

writing) the actions for this task swaightforward while allowing for a user’s intention
shifts. :

Task: select 1tem from pulidown menu

User Actions Feedback State Changes

~[menutte] ; Mv; menutitiel
show (puildownmenu)

{ ~[menuitemn] menuitem! '

[menuitem]~)* ; menuitern-!

~[menuitem'] menuitem'!

MA menuitem'!! menuchoice = menuitem
hide (pulldownmenu)

Figure 2. Selecting an item from a puildown menu.

Task Transition Diagrams (TTDs): A Global View. Unfortunately, the representation of
interruption as a semi-colon in a UAN task description is incomplete. Very often thereis a
need to show what the user can do to interrupt a task. For example, at the second or third
semi-colon in Figure 2, the user could move the mouse to another menu title (indicating a
change of which menu to pull down), or move the mouse off the menu completely
(indicating the user’s intent of not selecting any of the items). Such detail is more
efficiently and effectively presented at a level higher than the actions in this task description
— a level which shows the relationships among these tasks.



State Transition Diagrams (STDs) are a well-known method for showing a constructional
view of the system. The system can be in one of a set of states (represented by nodes), and
the transition (represented by arcs) from one state to another is governed by events, €.g.,
the sensing of a user input. In contrast, a Task Transiton Diagram (TTD) shows a set of
related tasks a user can perform in a system. A task is represented as a node. The
relationship among tasks reflects the various possible intentions of a user, i.e., an arc from
task A to task B indicates that a user performing task A may have an intent to perform task
B. There is no labelling of arcs, or rather there is an implicit Jabelling of an arc with the
intent to perform the task to which the arc leads. The resulting graph can be considered a
non-deterministic state machine which shows what a user can do in a system, not how 1o
do those things.

In the pulldown menu example, Figure 3 shows the relationships among the sub-tasks of
selecting a menu item from a pulldown menu. Note that a path from the first sub-task
through the last shows completion of the task (task closure being indicated with the
triangle). Thus the user selects a menu title, selects a menu item, then closes the task. This
simple figure corresponds to the UAN task description of Figure 2 without the serni-
colons: the sub-task of selecting a menu title corresponds to the user actions in the first line
of Figure 2, while the sub-task of selecting a menu item corresponds 1o the user actions in
the second and third line of the same figure. A designer looking at the TTD in Figure 3
might ask, “What if the user wants to abort this task, or discovers that the wrong menu 18
pulled down?” Figure 4 answers these questions by showing interruptor tasks (e.g., Select
Another Menu Titie, Abandon Choosing Menu Item) which are available to the user at the
points indicated in the UAN by semi-colons.

Yet it is not sufficient 1o maintain a separate notational scheme identifying these interruptor
tasks. It is equally important to know the exact points within a task at which a user may
shift to the interruptor tasks. A complete view of the principal task and its interruptor 1asks
thus requires both a2 UAN description of the principal task, as well as a TTD identfying the
interruptor tasks and showing the relationship among all these rasks.

Figure 3. Inital TTD showing sequence of sub-tasks.



Select
Initial
Menu

Title

Abandon
Choesing
Menu
Hem

Select
Another
Menu

Title

Figure 4. How a user can interrupt the pulldown menu task.

THE COMMON PREFIX PROBLEM

From the constructional point of view, there is a distinction to be made berween a user

interrupting a task and the computer determining which of several tasks with a common

prefix the user was performing. Consider the tasks of moving a file to another folder,

copying the file to another disk, and deleting the file as shown in Figure 5. These tasks
~ have a common prefix sequence of user actions:

~[file]Mv.

When the user performs the actions indicated in this prefix, the user knows which of the
three tasks the user intended. A computer program, however, cannot “know” the user’s’
intent, and hence must interpret the actons. In this case, not enough user input has been
provided for the program to distinguish among the three possible intentions. Let us assume
that the user intended to delete the file and now performs ~[trashlcon]MA, It is now
possible for the program to determine that the task performed is deletion of the file. It
cannot, however, be assumed that the user abandoned either the copy or move tasks, since
neither was the intended task. This illustrates a difference between the behavioral view and
the construcdonal view. The UAN shows the viewpoint of the user, and the user knows
what task is intended. The computer, however, must interpret user actions to decide what
task the user is performing.

In the behavioral domain, a designer needs to visualize the task structure supported by an
interface. Given the asynchronous, task-based nature of the UAN, stuctures such as
common prefixes are particularly difficult to discern because they are distributed over the
task struciure. In the current example, unless the move, copy, and delete tasks were listed
together, it would have been difficuit to realize that indeed a common prefix existed. In this
case, the common prefix happens to reflect a design decision (select file first, then specify
action to be performed on it). However, since the UAN forces a focus on individual tasks,
it is easy to miss situations in which commen prefixes might cause problems.



Consider the select and move tasks in MacDraw™. It is a common enough experience for
users to move an object accidentally when they had intended only to select it. These tasks
actually have a common prefix, ~[object]Mv. The select task would be closed by
immediately releasing the mouse button, whereas the move task requires first moving the
cursor to some other screen location. The degree of hand-eye coordination a user has will
determine the amount of inadvertent movement that occurs during a select task, and since
any movement results in a move 1ask, the designer should incorporate some timing
considerations or slack movement (free play) in order to reduce the chances of moving an

object when the intent was only to select it.

Task: move (file)

User Actions Feedback State Changes

~[file]Mv file! currentObject = file

~[newWindow]MA show (file) @ newWindow | move file 1o subdirectory
' newWindow

Task: copy (file)

User Actions Feedback State Changes
~{file]Mv file! currentObject = file
~fotherDisk]MA show (file) @ otherDisk copv file 1o disk otherDisk
Task: delete (file)

User Actions Feedback State Changes
~[file]Mv ' file! currentObiect = file
~iwashlcon]M” erase (file) mark file for gelenon

Figure 5. UAN task descriptions for moving, copying and deleting a file.

TTDs can be used to show the relationships among tasks with a common prefix. Figure 6
shows a TTD for the three tasks of Figure 5. Note that this TTD shows a sequence of
selecting a file then do something to it. A fundamental user question is thus answereq:
“What can I do to a file?” In fact, adding an arc connecting the select file task directly to
task closure {the triangle) would indicate that in addition to copying, moving, or deleting a
file, a user could just select the file. It should be possible to construct such a TTD
automarically from a set of UAN task descriptons, thus enabling the designer to visualize
the relationships of tasks with a common prefix and check the actual design against the
planned design.

™ MacDraw is a trademark of Claris, Corp.



Figure 6. TTD for tasks with a common prefix.

SUMMARY AND CONCLUSION :
Interfaces which fail to provide for user intention shifts often have poor usability.
Accommodating such intention shifts when designing an interface is difficuit if the
description of the interruptor tasks must be made at the same design level as the principal
task. A separation of these tasks can be achieved by using the User Actdon Notation
(UAN) and Task Transition Diagrams (TTDs). The UAN provides a micro-behavioral
view by describing details of how a task is performed, together with specifications of
where in the task user intention shifts may occur. TTDs provide a macro-behavioral view
by showing the interruptor tasks and the relationships between these tasks and the principal
task. TTDs thus are a technique that complements the UAN. TTDs are also useful since
they can be used to help a designer visuaiize the rask structure present in the set of
asynchronous UAN task descriptions. -

FUTURE WORK

Research is underway on the translation of behavioral specifications of interfaces (e.g.,
UAN, TTD) to constructional implementatons (e.g., Motif™). The major issue is that
these domains have different structures. Effort is also being directed towards computer
analysis of UAN task descriptions, in terms of common prefixes, inconsistency, and
ambiguity. The automated producdon of TIDs from a set of UAN task descriptions for
analyzing relationships within sequences of related tasks in a user interface design is aiso
being studied.

™ Motif is a trademark of the Open Software Foundation



ACKNOWLEDGEMENTS ) i ) )
The authors acknowiedge support for the Dialogue Management Project, of which this

work is a part, from the Virginia Center for Innovatve Technology, Contel Technology
Center, the Software Productivity Consortium, IBM Corp., the National Science
Foundation, and the Office of Naval Research.

REFERENCES

1.

L%

10.

11,

Card, S. K., Moran, T. P, and Newell, A. The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Assoc., New Jersey, 1983,

Hartson, H. R., and Gray, P. D. Temporal Aspects of Tasks in the User Acrion
Noration. Submitted for publication. Also available as TR 90-12, Department of
Computer Science, Virginia Tech, Blacksburg, Va 24061-0106, 1990.

Hartson, H. R., Siochi, A. C., and Hix, D. The UAN: A User-Oriented

Representation for Direct Manipulation Interface Designs. Submitted for

publication. Also available as TR 90-16, Deparmment of Computer Science, Virginia
Tech, Blacksburg, Va 24061-0106, 1950.

Jacob, R. J. K. A Specification Language for Direct Manipulation User Interfaces.
ACM Trans. on Graph. 5, 4 {1986), 283-317.

Johnson, P., and Johnson, H. “Knowledge Analysis of Tasks: Task Analysis and
Specification for Human-Computer Systems.” Engineering the Human-Computer
Interface. McGraw-Hill, 1988.

Kieras, D., and Polson, P. G. A Generalized Transition Network Representation
for Interactive Systems. In Proceedings of CHI 1983, Conference on Human
Factors in Computing Systems , Boston, Mass., 1983, 103-108.

Payne, S. J., and Green, T. R. G. “Task-Action Grammars: A Model of the Mental
Representadon of Task Languages.” Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., 1986.

Reisner, P. Formal Grammar and Human Factors Design of an Interactive Graphics
System. [EEE Trans. Soft. Eng. SE-7 (1981), pp. 229-240.

Siochi, A. C., and Hartson, H. R. Task-oriented Representation of Asynchronous

User Interfaces. In Proceedings of CHI 1989 Conference on Human Factors in

Computing Systems , Austin, Texas, 1989, 183-188..

Wasserman, A. L, and Shewmakc,- D. T. “The Role of Prototypes in the User
Software Engineering Methodology.” Advances in Human-Compuier Interaction.
Harson ed. Ablex, Norwood, New Jersey, 1985.

Yunten, T., and Hartson, H. R. “A SUPERvisory Methodology And Notaton
(SUPERMAN) for Human-Computer System Development.” Advances in Human-
Computer Interaction. Hartson ed. Ablex, New Jersey, 1983.





