Computer Analysis of User Interfaces
Based on Repetition in Transcripts
of User Sessions

Antonio Siochi
Roger W. Ehrich

TR 90-15

CoMPUTER ANALYSIS OF USER INTERFACES BASED ON
REPETITION IN TRANSCRIPTS OF USER SESSIONS

Antonio C. Siochi
Roger W. Ehrich

Computer Science Department
Virginia Tech
Blacksburg, VA 24061-0106

ABSTRACT

It is generally acknowledged that the production of
quality user interfaces requires a thorough
understanding of the user and that this involves
evaluating the interface by observing the user
working with the system, or by performing human
factors experiments. Such methods traditionally
involve the use of videotape, protocol analysis,
critical incident analysis, etc. These methods
require time consuming analyses and may be
invasive. In addition, the data obtained through
such methods represent a relatively small portion of
the use of a system. An alternative approach is to
record all user input and system output, i.e., log
the user session. Such transcripts can be collected
automatically and non-invasively over a long
period of time. Unfortunately this produces
voluminous amounts of data. There is therefore a
need for tools and techniques that allow an
evaluator to identify potential performance and
usability problems from such data. It is
hypothesized that repetition of user actions is an
important indicator of potential user interface
problems.

This research reports on the use of the repetition
indicator as a means of studying user session
transcripts in the evaluation of user interfaces. The
paper sketches the detection algorithm and

- discusses the interactive tool constructed, the
results of an extensive application of the technique
in the evaluation of a large image-processing
system, and extensions and refinements to the
technique. Evidence suggests that the hypothesis is
justified and that such a technique is convincingly
useful.

KEYWORDS & PHRASES: user interface
evaluation, transcript analysis, repeated usage
patterns, usability, maximal repeating patterns,
user interface management systems _

INTRODUCTION

The past decade has seen the emergence of a new
consciousness in the interactive software
community. Users are demanding that their
software not only provide computational power,
but also that the software be usable. Managers are
growing aware of the long-term costs associated
with poor usability, and developers are beginning
to design systems that fit the user as well as meet
functional requirements,

This push for usability has forced the modification
of standard software development methodologies.
There is growing support for the process of
iterative design and rapid prototyping--a design
process in which user feedback is an essential
element. In support of this, Carroll & Rosson [4]
argue that design is a dynamic process that does
not fit into a strict top-down or hierarchical
decomposition scheme. They stress the importance
of an iterative design process, supported by
empirical evaluations of system prototypes:

The most important aspect of the
empirical approach is that it
encourages the discovery of design
solutions which on purely analytic
grounds might have been missed.
... Qur view is that design activity
is essentially empirical. This is not
because we “don’t know enough
yet,” but because in a design
domain we can never know
enough.

A number of authors have argued in favor of an
iterative design methodology [9, 11, 22, 23].
Whiteside, Bennett, & Holtzblatt [21] state several
reasons for using an iterative design methodology.
First is that “User testing is the most reliable way
to debug the user interface.” Second, the feedback
provided by frequent testing increases the amount

of control managers have over the development
project. Last, because some version of the system
must be available for testing, developers can
respond more quickly to management decisions
which might advance the ship date.

Against this background, the need for evaluating
the human-computer system, especially its user
interface, stands sharp and clear. In response,
many methods.and techniques for evaluating user
interfaces have already been developed. Each has
its strengths, limitations and costs. The
contribution of this research is a new, relatively
low-cost evaluation technique based upon the
detection of repeated user actions in computer-
collected transcripts of user sessions. The
algorithm and tools developed to detect this
repetition can rapidly identify sections of transcript
which contain potential interface problems.
Because of this capability, there is no need to
review all the raw data. This results in faster
analyses and makes feasible the analysis of data
collected over extended periods of time.

EMPIRICAL USER INTERFACE EVALUATION
If one accepts the arguments in favor of an iterative
development methodology, then one is faced with
the task of empirical evaluation and the problem of
locating interface weaknesses as quickly and
inexpensively as possible. Therefore, a brief
review of existing empirical methodologies will
help set the context for the new methodology
involving maximal repeating patterns.

Formal Experiments

Formal techniques employ controlled experiments
and statistical methods to measure specific aspects
of a human-computer interface. Experiments are
usually performed in a laboratory where lighting,
temperature, and ambient noise can be held
constant from subject to subject. Before the session
starts, the subject often completes a questionnaire
‘which seeks to classify the subject in relation to the
other subjects or to some user population. The
experiment is often videotaped, and the subject
may be assigned a standard set of tasks to
complete. During the session, the experimenter is
required to provide each subject with the same
information and must be careful not to ask leading
questions. At the end of the session, the user may
be asked to answer an exit questionnaire. The data
are later analyzed for verbal protocols, critical
incidents, time to accomplish the benchmark tasks,
number of errors, and other similar measures.

Analysis typically involves reviewing the videotape
of the session, and therefore takes at least as long
as the session itself. In practice, however, analysis
takes many more times that amount. Indeed,
Mackay [14] has stated that for a one hour session,
the analysis can take a day or more to perform.

Contextuai Research

Apart from long analysis times, Whiteside,
Bennett, & Holtzblatt {21] state that a problem with
experimental methods performed in a laboratory is
the lack of a natural work context. For example,
benchmark tasks reflect a third party’s judgement
about what is important to the user, “... the
deliberate restricting of focus..., has the effect of
making an a priori value judgement that these
operations are at the heart of usability for the
system.” They advocate a contextual research
method, a method of collecting data about the
user’s actual, everyday experience of using the
system.

One way of collecting such data is the contextual
interview. This consists ideally of visiting users at
their place of work, videotaping, and interviewing
them as they work. The purpose of the interview is
to capture the user’s experience of using the system
at the moment of that experience. The observer can
immediately validate any interpretations by asking
the user. In effect, data collection and analysis are
performed concurrently. Unfortunately, this
technique examines a thin slice of the user’s daily
experience with the system. It is also quite
expensive to send a contextual research team to
gach site. An extended visit, although it would
certainly reveal a lot more about the customer,
would cost correspondingly more.

Transcript Analysis

Each of these methods has its own strengths and
weaknesses. Formal experimental techniques tend
to provide very exact results, but about narrow and
specific areas. However, there are few formal
procedures for identifying those interface aspects
that require experimental investigation. In addition,
experiments are typically expensive to conduct, and
they can take a long time. Contextual research
techniques can provide results in less time and with
less money than formal experiments; however they
are ad hoc, and the results can not be validated in
the strict experimental sense. Both the formal
experimental techniques and contextual research
techniques are invasive as well, although in
different ways: the experimental techniques pluck

users out of their natural environments, whereas
the contextual techniques insert the researcher into
that environment.

One empirical technique that preserves the natural
work context and is not invasive is transcript
analysis. All user input and system output is
captured in real-time to a file which is analyzed
later. This file, or transcript, serves the same role
as a videotape of the terminal screen. Both are
records of the interactions performed in a user
session.

The advantages of transcript analysis are
numerous. First, the data represent the user’s
interaction with the system under actual working
conditions, which satisfies Whiteside, Wixon, and
Holtzblatt’s concern. Second, since the data are
stored in on-line files, they are accessible to
algorithmic analysis and data reduction techniques.
Such analytic tools liberate the evaluator from the
tedium associated with analysis, thereby
encouraging the use of evaluation. Third, because
data collection is automatic, there is no need for an
observer or experimenter to be present. This
absolutely eliminates any interference due to an
observer, and means that data can be collected in
situ, rather than at a laboratory, and collected from
many users at the same time. Fourth, analytic tools
also enable rapid analysis, thus providing quick
feedback to designers or immediate debriefing of
subjects. The analytic tools also make possible
certain analyses involving vast quantities of data,
which would never have been considered with
videotape.

However, there is still the matter of collecting the
data. As will be seen in the examples that follow,
the collection techniques range from ad hoc
modification of the interface to using external
hardware to collect keystrokes. Ideally, transcript
analysis should be supported by a User Interface
Management System (UIMS). This would
eliminate the need to modify the interface to collect
user input. It would also provide integrated support
for the data collection, management and analysis
activities of an evaluator, This has been argued for
by Ehrich [6], Olsen & Halversen [16], and
Hartson & Hix [11]. The major benefit of this
integration is that it gives explicit recognition to the
essential nature of evaluation in the iterative
development methodology.

Certainly this technique does not capture as much
data as videotape does. For that matter, neither
videotape nor this technique can capture user
intent. The question, however, is whether logging
user sessions can capture enough data to be useful.
In addition, it is essential that the analysis be
automated in some fashion, since merely recording
user input replaces the hours of videotape with
megabytes of files.

There are several examples of this technique in the
literature. Cohill & Ehrich [5] describe a set of
programs and routines developed to collect
keystrokes and state information, and compress the
raw data. Because of limited resources, they could
not afford the usual data collection procedures.
Their budget allowed for only one experimenter,
and the schedule required running two to four
subjects at a time. Since the variables they were
measuring (time spent in help, number of times
help was invoked, frequency of command use} did
not require human judgement, an automated
technique was used. They inserted calls to the
metering routines at strategic points in the code of
the system they were investigating, and then using
their tools, reduced the resulting data to a form
suitable for immediate input to SAS. They found
the tools they developed to be “extremely
convenient,” and report that it was better to collect
as much data as needed, and reduce that data,
rather than skimp on data collection, despite the
large amounts of data involved.

As part of the special services of DMS, an early
UIMS, Ehrich [6] provided similar logging
routines that tool builders could use in order to
provide interface developers with logging services.
Olsen & Halversen [16] also implemented this
concept and studied the issues involved in such an
enterprise. Their metrics included performance
time, mouse motion, command frequency,
command pair frequency, number of physical and
logical input events, and visual and physical device
swapping. The interface profile used by their
UIMS to generate the interface is also used by the
metrics computation and report generation program
to generate human-readable reports. The reports
present, for each metric, a list of commands ranked
from worst to best for that metric. This report is
then used to detect problems in the interface.

Neal & Simons [15] utilize a different approach.
They set up one computer to intercept, record, and

time-stamp each keystroke. The keystroke was
then passed to the other computer which ran the
application system. An advantage of this method is
that no modifications to the application system are
required. Analysis was performed by “replaying”
the keystroke file, that is, the file was used like a
videotape. Unlike videotape, the observer was able
to annotate the logfile directly with observations
(e.g., critical incidents) or comments. The system
also provided some analysis help in the form of
frequency of occurrence of critical incidents, the
time between such incidents, or an incident and the
next user keystroke, frequency of use of
commands or function keys, time spent in help,
total session time, and number of help requests.
Neal & Simons found their methodology to be “...
very effective for objective evaluation and
comparison of software including the user interface
design and software documentation.”

Good {8] analyzed existing logging data collected
at numerous sites, representing the use of five
different text editors. The results were used in the
design of a new text editor. Transition frequencies
between keystrokes were used to aid in the layout
of keys, e.g., the inverted-T layout of the cursor
keys. The command set was based upon command
usage frequencies. The new editor itself was
instrumented to log commands, and usage data
were collected to determine the judiciousness of the
design decisions taken and to provide feedback for
the next design iteration.

Hanson, Kraut, & Farber [10] collected command
usage data on UNIX™ and applied elegant
statistical analysis techniques to the data. They
determined a core set of commands by studying
command frequencies. They also constructed a
command transition matrix from the data. From
this matrix, and by applying multivariate grouping
techniques, they were able to determine the
modularity of each command, i.e., the degree to
which a command is used together with many other
commands. Treating this same matrix as a
contingency matrix enabled Hanson, Kraut, &
Farber to determine the sequential dependencies
among commands. They prescribed some
restructuring of the UNIX interface based upon
. these results.

TUNIX is a trademark of Bell Laboratories.

The examples presented above have a common set
of analyses. These revolve around the reduction of
data to summary results, such as command usage
frequencies, command or keystroke transition
frequencies, or time spent in a certain state. Such
measures are convenient but do not completely
reflect the kind of information a person collects
from a transcript by reading it.

Reading transcripts does more than convince the
reader about the need for analysis tools. One
immediately notices certain patterns of command
usage, i.e., a sequence of commands that the user
repeats. A major contribution of this research is a
new way to extract information from transcripts: an
algorithm which scans transcripts to detect
repeating patterns.

MAXIMAL REPEATING PATTERNS (MRPs)

A user session transcript is the complete record of
user input actions and system responses generated
as a result of using the system. User input actions
are extracted from this transcript and represent the
time-ordered sequence of input actions performed
by the user. In a command line interface this extract
consists of lines of command strings. Other
interface styles, such as direct manipulation {17],
will have different types of user actions. Such
actions, however, can be represented in some
textual fashion [19], and thus should yield to the
techniques described here. It is therefore sufficient
to examine only command line interfaces as a
preliminary investigation.

Repeating Patterns: The Repetition
Hypothesis

This paper will assume that the Rationality
Principle [3] holds, i.e., that user behavior at a
computer is purposeful, and hence that users carry
out a sequence of tasks to achieve some goal.
Users accomplish tasks by manipulating the
computer’s input devices and monitoring its output
devices in a manner dictated by the user interface.
Commands and data are entered, and the resulting
output is observed. If the results are satisfactory
then the task was accomplished. If the results are
not, or if an error occurs, users must respond since
the task was not accomplished. Transcripts of user
sessions are records of this flow of input, resulting
output, and input in response. It can be reasonably
assumed that such transcripts reflect sequences of
tasks users carry out. Furthermore, inasmuch as
these sequences of actions are made possible, and

are partly governed by the interface, the quality of
the user’s interaction with the system is also
reflected by those transcripts.

In order to detect user tasks, this research
hypothesizes that repeated sequences of actionsin a
transcript indicate a task rather than a random
sequence of user actions. Moreover, the greater the
number of repetitions of a sequence, the greater the
likelihood that the sequence actually represents a
task. Repeated sequences of user actions are
therefore behaviorally interesting.

Repetition is also interesting of itself. Each action a
user performs takes a certain amount of time and
involves a chance for errors. Repeating such
actions increases both the performance time and the
chances for errors. By detecting frequently
repeating actions and providing macros for them, it
may be possible to reduce performance times and
eITOrS.

When errors are generated during the course of
repeated actions, it may be the case that users are
having problems with a particular task. Users may
be trying variations of a command (e.g., changing.
the order of command arguments) in an attempt to
make it work. Such repetitions might indicate

~ problems with, for example, the command syntax
or help system of the interface.

This paper therefore hypothesizes that repeated
sequences of user actions may indicate problems
with the user interface. The ability to detect such
repeating patterns may therefore prove useful to
interface evaluators,

The String Model of Transcripts

The problem of detecting repeating sequences of
command strings in the extract is equivalent to
detecting repeated sequences of characters in a

string, where each character in the string represents -

a command. The complete string then represents
the entire extract, and a task would be represented
- by some substring. Only substrings of length at
least two will be considered.

Detecting repeated substrings presents some
difficulties. Consider the string “abcabc”. The
repeating substrings are “abc”, “ab”, and “be”.
Which repeating substrings should be reported?
Recalling that each character in the string really
represents some user action, the question is really

“which substring or pattern is behaviorally
interesting?”’

Because “ab™ and “bc” are substrings of the
repeating substring “abe,” it is more efficient to
report just the substring “abc,” since any substring
of a repeating substring must also repeat. Apart
from the computational expense of finding and
reporting all repeating substrings, there is the
expense of analyzing the prodigious volume of data
that would be produced. -

Consider further the string “abababab.” Is the user
performing 4 sets of “ab,” or 3 sets of “aba” or
“bab,” or 2 sets of “abab,” etc.? This question
cannot be answered from a purely syntactic point
of view, but requires knowledge of the semantics
of “a” and “b.” By reporting only longest repeating
substrings, “ababab” in this case, it is possible for
the analyst to study other substrings as required,
and not be inundated with data. The detection
algorithm is therefore confined to maximal
repeating patterns, which are now defined. For a
formal definition, see [13].

Definition

A repeating pattern is a substring which occurs at
more than one position in a string. A maximal
repeating pattern, MRP, is a repeating pattem that
is as long as possible. Substrings of longer
patterns are also considered MRPs if they occur
independently. For example, in the string
“abcedyabedxabee,” the substrings “ab”, “abc”,
“abcd”, “be”, “bed”, and “cd” are repeating
patterns, whereas only “abcd” and “abc” are
maximal repeating patterns. “abcd” is an MRP
because it is not a substring of any repeating
pattern, i.e., it is of maximal length. “abc” is an
MRP even though it is a substring of *abcd”
because “abc” also appears independently of
“abed” (after the “x™). This special case is an
attempt to preserve “context,” i.e., the sequence
“ab¢™ has two contexts in which it occurs, “abcd”
and “abce.” It may be important to know that in
one case “abc” precedes “d” while in another it
precedes “e.”

MRPs may also overlap, as in “abcabcabe,” where
“abcabe” is the MRP (one instance occurs at the
first position, and the other instance at the fourth
position).

S =abcabcxab$
(position) 0123456789

I ={ abca, bea, ca, abex, bex, ox, x, ab$, b$, $}

4
3 0
___ Figure 1. Position tree for the string S = “abcabexab.”
Algorithm Siochi [18] has developed an order O(n?) algorithm

The detection of MRPs and the positions at which
they occur can be a very expensive task since the
problem is not a pattern searching problem, but a
pattern detection problem where the patterns are not
known beforehand. A brute-force algorithm would
exhibit an O(n3) time complexity, which for large n
would discourage interface evaluators from using
the method.

to detect all the MRPs in a transcript, as well as
report the positions at which they occur. This
algorithm makes use of position trees [2, 20],
which are trees whose leaves correspond exactly to
each position in a string and whose arcs are
labelled with characters of the string (see Figure 1).
Each position in a string is uniquely identified by a
substring—the shortest substring which occurs at

Raw Transcript

2)

5)

B) G: QUIT

1) Welcome to GIPSY
3)G: SYSTEMDIR

43 MAPSIF;§
S)YTOTAL OF 1 FILES
7) G: SYSTEM PURGE

S) YOU THINK OF SCMETHING BETTER

Extracted input lines

* B QUIT

* 3:|SYSTEM[DIR
+ 7:ISYSTEM|PURGE

Extracted Commands
{standard form)

SYSTEM
SYSTEM
QuUIT

Figure 2. The normalizer converts raw transcripts to a standard form.

that position and nowhere else. The path from the
root to a leaf corresponds to this identifying
substring. As a result, any proper substring of this
path is a repeating substring and occurs at the
positions represented by the leaves in the subtree
whose root is the terminal node in that path. For
example, in Figure 1 the proper substring “be”
occurs at positions 1 and 4.

The algorithm starts with a longest repeating
substring, since such a substring is an MRP by
definition, and eliminates leaves from the position
tree whose positions fall within that longest
repeating substring. Referring again to Figure 1,
the algorithm would start at the node labelled a.
The prefix “abc™ occurs at positions 0 and 3 and

therefore any substrings occurring at positions 1,
2, 4, and 5 cannot be MRPs. The algorithm thus
deletes those leaves. This procedure is repeated for
the next longest repeating substring, until no more
leaves can be eliminated. The longest prefixes of
the paths to the remaining leaves are the MRPs,
and the remaining leaves are the positions at which
they occur.

TOOLS

The Normalizer

The normalizer translates raw transcripts into a
standard form that the MRP tool uses, thereby
keeping the MRP tool independent of the formats
which data logging routines might use. As a result,
the transcripts of any system can be analyzed

without changing the MRP tool, provided a
normalizer can be written for that system’s
transcripts.

The normalizer consists of a couple of short AWK
programs and a C-shell script. AWK [1] is a
pattern scanning and processing language available
on most UNIX systems, while C-shell is a UNIX
command line interpreter. An AWK program is a
sequence of pattern-action pairs. The AWK
interpreter reads a line of the input file and executes
the actions for each pattern matched by the input
line.

Figure 2 shows the transformations carried out by
the AWK programs. The first AWK program
extracts user input lines from the raw transcript,
including line numbers. The second AWK program
then extracts the command portions which form the
input for the MRP tool.

A more powerful means of building a normalizer
would be to use LEX and YACC [12, 13], a pair
of compiler writing tools available on UNIX
systems. LEX and YACC effectively transform a
grammar describing the raw transcript file into a
normalizer.

The MRP Tool

Capabilities. The MRP tool produces a list of
MRPs from a normalized transcript. An evaluator
can then

+ scan this list

+ select MRPs from this list based
on a few criteria (e.g., the length
of an MRP)

» examine the MRPs at various
levels of detail _

* obtain summary information
about the transcript (e.g., number
of MRPs found, frequency of
occurrence of commands)

« save any of this information to a
file

as well as perform operating system commands (in
this case, UNIX) from within the tool. There is
also a limited form of macro capability, which
when combined with the C-shell allows a set of
MRP tool operations to be performed automatically
on several different normalized transcripts.

The tool does not produce metrics-style numbers
indicating the usability of an interface; such

metrics are an open research issue. It is important
to realize that the MRP tool is not a “data
summarizer,” but an identifier of potentially
interesting episodes in the transcript. The tool is
valuable in two ways: an evaluator does not have to
read the entire transcript to find repeating patterns,
and the tool may uncover patterns the evaluator
might miss. It remains the evaluator’s job to
determine the significance of individual MRPs.
General Operation. The MRP tool uses three types
of input files:

» .raw — the complete transcript data
file containing both the user input
and the system output

+ .inp — derived from the .raw file
and contains only those lines from
the .raw file that correspond to
user input

s .cmd — derived from the .inp file
and contains only the command
portion of the input line

The MRP tool uses the .cmd file to scan for MRPs,
while keeping track of where instances of an MRP
occur in both the .inp and .raw files (i.e., the line
numbers in these files at which the instances
occur). The relationship of these files is shown in
Figure 2.

As a result of the scan, the tool produces a list of
MRPs found in the transcript (see Figure 3). Each
MRP in the list has at least two instances that occur
at distinct positions in the transcript file!. An
interface evaluator analyzes the transcript by
examining the MRPs in the list and selecting those
that are “interesting.” For example, an evaluator
might notice that a certain MRP has a large number
of instances or that an MRP is a sequence of
repetitions of the same command. For each MRP
that is “interesting,” the evaluator may examine the
instances of that MRP first by viewing the
complete input lines which make up the instance
and, if more detail is needed, by examining the
output lines associated with those input lines. Any
interesting information discovered can be copied to
another file.

In addition, the evaluator can select MRPs from the
list based upon criteria such as length of an MRP,

11f a sequence of commands occurs at only one position, it
does not repeat (hence is not an MRP).

A new list is created containing all MRPs which
satisfy the selection criteria. This “filter” list can be
refined by further applications of selection criteria.

A command occurrence table is generated as a by-
product of the MRP detection operation. The
evaluator uses a separate program to compute

mrp list
abed | ——P

l

abc

> | >2a

point to problems with the interface, that would
indicate the method was promising, and that further
research into the method should be undertaken.

GIPSY

GIPSY is an image processing system designed to
run on the VAX™ sgeries of computers [7]. At

raw transcript

result is foo
>b
ok
>C

fine

>d

L |>a
result is goo
>b

what?

positions at which
instances of mrp "abc" occur

>C
ok
>d
> X

—p | >a

no result
>b

error

>0

Figure 3. Relationship of MRP list to the raw transcript file.

statistics such as usage frequency, number of
sessions represented by the transcript, and
maximum, average, and minimum number of
commands executed per session.

TESTING MRP USEFULNESS

The usefulness of MRPs in interface evaluation
was determined by analyzing the interface of
GIPSY, 2 large and complex system in regular use
at the Spatial Data Analysis Laboratory at Virginia
Tech. GIPSY was selected as the testbed because

of this fact, and because its users were known to

complain about its being hard to use. Thus if MRP
analysis did not reveal any problems with the
interface, it was unlikely that MRP analysis would
prove useful in interface evaluation. If MRPs did

present, it supports over three hundred and fifty
image processing algorithms, ranging from the
classical to the most advanced. It is in use at’
numerous sites throughout the United States. Its
interface is a highly modal command line
interpreter which supports execution of local
operating system commands from within GIPSY.

Data Collection

GIPSY was modified to record all user keystrokes
and system output on a user session basis. All
keyboard and screen activity was recorded since it
was not known precisely what information would
prove useful. The data were collected over three

VAX is a trademark of Digital Equipment Corporation

Normalized transcripts

Raw
transcripts

Analyze
MRPs

Select users
to interview

Summarize
findings

Interview

MRPs,

found),

—
-3

command counts

complete command lines,
pointers to raw transcript sections,
MRP information {e.g., number of MRPs

data flow
control flow

users

Figure 4. The Evaluation Procedure.

months, producing over twelve and a half
megabytes or three hundred thousand lines of raw
transcript.

Data Analysis

The evaluation procedure is illustrated in Figure 4,
while Figure 5 shows the use of the tools in the
procedure. In this analysis phase, the first step was
to concatenate in chronological order the collection
period transcripts of each user into a single raw
transcript representing all the sessions of that single
user. This reduced the number of files to be
analyzed, and allowed a single analysis across all
sessions of that user. After the raw transcripts were
translated into a standard format, MRPs were
extracted using the MRP tool. The MRP list was
scanned by the evaluator, and where necessary, the
complete command lines corresponding to the
MRPs were reviewed and the raw transcript
sections corresponding to the MRPs examined.

At this point a fair number of GIPSY problems
were detected. However, several MRPs appeared
anomalous or insignificant. These were
investigated by interviewing two GIPSY users.
The evaluator generated a list of questions to ask
selected users. The users were asked to validate the

10

deductions made by the evaluator, or to explain
certain episodes in the transcript which were
indicated as interesting by the MRP tool but which
appeared anomalous to the evaluator. This step was
essentially a debriefing structured by the results of
the MRP analysis. The findings were then
summarized.

RESULTS

The MRP analysis showed several interesting
GIPSY interface problems. The interviews
validated certain deductions made in that analysis
and clarified the anomalies of that stage. In all,
twelve problems were revealed, two of which were
previously known.

MRP Tool Resulis

The wanscripts of seventeen users, totaling 17,086
command lines, were analyzed over an eight hour
period. The bulk of this time was spent studying
the lists of MRPs generated by the tool, each of
which took a few seconds on average to generate.
Table 1 gives, for each user, the number of MRPs
detected, the length of the longest MRP, and
whether or not both type 1 and type 2 MRPs were
found.

uset
transcript
1

Concatenate
session files

NORMALIZER

MRP Tool

user
transcript

Normaiized Transcripts

SYSTEM
to evaluate

user

se0 transcript
n

2

transcripts

MRPs,
complete command lines,
pointers o raw transcript sections,
MEP information (e.g., number of MRPs
found),

ommand counts

Arrows indicate data flow

Figure 5. MRP analysis tools and the evaluation process.

Table 1. Some information from MRP analysis of seventeen transcripts.

User Namber |- Number Length of Type 1| Type2 MRPs per
of Lines | of MRPs | longest MRP MRP ? | MRP ? | command line
uo1 118 26 8 0 1 22
547 85 13 17 1 0 15
Uo03 2728 520 26 1 0 19
uo4 76 10 9 0 1 .13
05 50 13 4 1 0 .26
U6 223 34 6 1 1 15
Uo7 220 41 6 1 0 19
uos 4778 951 29 1 i 20
009 66 9 7 1 0 .14
U10 234 44 6 1 0 19
U1l 2867 681 21 1 1 24
Ui2 22 | 3 6 1 0 14
U13 121 14 26 0 0 A2
Ul4 1079 268 25 1 1 25
uls 2248 476 19 1 1 21
Ui6 1262 220 37 1 1 17
Ul7 909 200 17 1 0 22
Totals 17086 3523 269 14 8 average =21
Average number of MRPs per user = 207 82% of users had type 1 MRP
Average length of longest MRP = 16 47% of users had type 2 MRP

11

Some of the MRPs were considered noteworthy
because they violated expected usage patterns of
commands in general. For example, ten GIPSY
commands were found in MRPs consisting of

that the user invoked command X using file A as
input and file B as output.

Occurs 235 times:

consecutive invocations of the same command (see CHRSIFA>B

Figure 6). These MRPs are the type 1 MRPs EXSIF B

reported in Table 1. Type 1 MRPs may indicate DSPLY B

that a user needs to perform) o

the same commfnd on This MRP indicates
several objects, or that the that a user tends to
user is “fine-tuning” a ©) DSPLY modify a file (using
single object. For example, 1) DSPLY EXSIF) that was just
a user may have a list of =) DsPLY processed with the
files that need to be 3) DsALY CHRSIF command.
converted from one format 4) DSPLY The DSPLY (display)
to another, or a user may be 5} DSPLY command is used to
debugging a GIPSY macro. 6) DsPLY verify the
In the first case, a possible ~ [21" 656 657 658 1137 1138 modifications. Because
remedy could be to allow an 1139 1565 1574... this MRP occurs many
arbitrary number of Total number of positions = 8. times (235 times in

arguments for each such
command. The second case
demands a closer study of
the nature of the “fine-
tuning.” The fact that 82%

Figure 6. An instance of a type 1 MRP:
consecutive invocations of the same command.

three months), a macro
which combines these
commands is

desirable.

of the sample users exhibit 0) Such MRPs often use
this MRP type suggests that 1) the output of one
this indicates a problem 2) command as input to a
inherent in the interface 3) succeeding command.
design, rather than a 4) These MRPs suggest
collection of user 5) specific macros,
idiosyncrasies, 6) including any

at: 511 687 668 669 670 671 | necessary parameters
Type 2 MRPs consist of 872 &73.. and local variables.
consecutive lines where no Total number of positions = 21.

commands were entered
(see Figure 7). These
indicate anomalous use of
the command line
terminator, which for GIPSY is the carriage return.
This MRP type may be due to factors such as poor
keyboard design, defective keyboards, or long
response times. It may also be due to objects
falling on the keyboard and striking the return key.
However, the high proportion of users who exhibit
this MRP, and the long experience designers have
with keyboards suggest that system response time
is the more likely cause.

Other MRPs provided specific information about
which commands were used together. An example
is described below. The notation “X A > B” means

Figure 7. An instance of a type 2 MRP: empty
command lines.

12

Several MRPs show
the user confirming
the effects of an image
manipulation
command. They indicate the strong need for
feedback in the interface. Instead of typing the
DSPLY command each time, the image
manipulation commands could have an option to
redisplay the image after processing it. This would
cut down on the amount of user typing required.

Occurs 29 times:
STOP
STOP

This MRP is highly unusual because it shows that
in several sessions users did not invoke any
GIPSY commands, i.e., users would start GIPSY
then immediately quit. It is likely that users forgot

to perform some command in the local operating
system, or decided to do something else.
However, GIPSY provides a command
(SYSTEM) which allows users to access the local
operating system from within GIPSY. Given the
existence of this command, the “stop; stop”
becomes all the more anomalous.

Structured lnterview Results)
‘After the studying the MRP tool results, it became

clear that some MRPs could only be explained by
asking users what they had been doing at the time.
Two of the segventeen users, U17 and Ul4, were
selected to be interviewed approximately one year
after the data were collected. Both users were
GIPSY experts and did GIPSY development work.
The basis for the selection was availability, since
most of the users could no longer be contacted,
e.g., the students in the image processing class.

In each interview, the user was presented with the
list of MRPs detected in that user’s transcript and
asked to remember what he had been doing of
trying to do. When viewing the MRPs along,
neither user could remember what they had been
doing, but when the MRP tool was used to show
the complete command lines corresponding to the
MRPs, they were able to remember some tasks.
When shown sections of the raw transcript
corresponding to the MRPs, both users
remembered almost. all the tasks. This is @
remarkable finding, considering the time that had
elapsed.

The interviews revealed or confirmed several
specific problems both in the GIPSY interface and
the functionality of some commands. For example,
the deduced reasons for the “stop; stop” MRP
above were confirmed by both users. In fact, they
perceived the response time for the SYSTEM
command to be excessive, and had developed a
decision rule to the effect that for some commands,
it is faster to leave GIPSY, invoke the operating
system commands, then return to GIPSY, than to
use the GIPSY SYSTEM command.

In another MRP, it was deduced that Ul4 was
using a command to test for the length of a file.
U14 performed a binary search by successively
specifying values to the command depending upon
whether an error (attempt to access d non-existent
record) occurred. The command that provides
information about files did not report its length.
This led to the binary search behavior of Ul4.

13

When U14 was questioned about this, he verified
the deduction of a binary search and its use to
determine a file’s length.

Another interesting MRP from Ul4 was

ARITHM A>B

EXSIF B

LWPIC B>C

(ARITHM and EXSIF modify files, while LWPIC
prints them out.)

When questioned about this MRP, U14 reported
that the LWPIC command did not support the
printing of binary image files. Note that although
this MRP did identify the need for a macro, in this
case the macro was compensatory behavior. This
result makes the point that MRPs identify repeating
usage patterns, but not the reasons for the
repetition, nor solutions to the problems identified
by the repetition. Examination of the contexts in
which the MRP occurs is required to deduce those
Tedsons.

MRPs also prompted both users to make further
specific comments about the interface. For
example, both users said that another reason for
not using the SYSTEM command was that the
error messages it returns are not so clear as those
returned by the operating systen: “It takes you a
while to realize what’s wrong.”

Probiems With the Technique

A problem with the technique was that the number
of detected MRPs reach into the hundreds for
almost half of the transcript files (see Table 1). If
this were the case in general, the problem of tedium
is resurrected. Figure 8, however, shows that the
relationship between number of command lines in a
transcript and number of detected MRPs is linear.
This means that part of the reason why numerous
MRPs were detected is because there was initially
so much information.

A related problem with the detected MRPs is the
large amount of noise present. Some MRPs did not
appear to indicate anything interesting about the
interface, while other MRPs were actually
larger MRPs, and repeated
information provided by the longer MRP. The first
case involved MRPs which occurred at only two
positions, thus this type of noise may be
attributable to chance. Some sort of statistical
filtering of the MRPs, i.e., reporting only those

1000,

9004

800-

7004

6004

5004

400+

Number of Mrps

3004

200+

100

y = .207x - .313, r2 = .988

O Number of Mrps

-100

500 O

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Lings

Figure 8. Plot of number of lines vs. number of MRPs detected.

occurring at greater than chance levels, may reduce
this kind of noise. The second type of noise is due
to the definition of an MRP and is probably the
main contributing factor to the large number of
MRPs detected, considering the vastly greater
number of shorter MRPs (See Figure 9).

14

CONCLUSIONS
The results demonstrate that the technique was

useful for finding specific problems in the GIPSY
interface, e.g., the problems with the SYSTEM
command. The MRP algorithm found repeating
patterns of user actions in the transcripts, and these
patterns indicated aspects of the GIPSY user

10000 : : =
9000
8000
7000 -
6000
5000 -

40004

number of positions

3060 4

2000 4

1000 -

Hﬂ{lunm_ﬂ

-1000

mip len

20 25 © 30 35 40

Figure 9. Distribution of number of positions an MRP occurs at according to its length.

interface which needed attention. Although the
MRPs did not show the root causc of a problem,
much less indicate solutions, the MRPs did identify
specific, real problems. Tt is therefore reasonable to
expect that this technique would work for other
cormrnand line-based systems.

Advantages

The most important benefit provided by this
technique is its rapid ability to identify sections of
the raw transcript which potentially show
difficulties users were experiencing with the
system. This means that vast amounts of data can

15

be analyzed in a short time. The three calendar
months of actual use data of seventeen users,
totaling seventeen thousand command lines were
analyzed in about eight hours. Of this total, the
MRP tool took only a few seconds per transcript 1o
detect the MRPs.

The technique was also useful in preparing and
conducting the structured interviews. Complete
command lines and the sections of raw transcript
identified by the MRPs enabled users to recall what
they had been doing, and reminded them of

problems they had with the system. Although for

the interview the resulting MRPs had to be studied
(taking about one and a half hours per MRP list)
and users debriefed (taking about one and a half
hours each), this still represents a tremendous
savings of time if the equivalent observations had
been made by videotape.

Another asset of this technique is the quick access
the MRP tool provides to information such as
MRPs, complete command lines, and raw data.
The interviews depended extensively on this
information, and when a busy user has graciously
volunteered some time, it is important that the user
not be kept waiting.

The specificity of the problems identified by this
technique is useful to developers responsible for
maintaining the system. The ability to point to and
present raw transcript sections corresponding to
problems is a tremendous advantage in debugging
and is not usunally provided by user complaints.

Limitations

The central limitation of the technique is the type of
information it provides. The MRPs focus on
specific, detailed problems encountered by users.
General aspects of the usability of the system are
not directly exposed by this technique. For
example, although this technique identified the
previously known GIPSY problems of poor
response time and error messages, it did not show
the well-known deficiency of GIPSY, which is the
great difficulty users have in finding out which
command to use for the task they wish to perform.
However, the mere fact that GIPSY has more than
three hundred and fifty commands -should
immediately raise concerns about the accessibility
of those commands. This type of information is
readily discernible from even a short exposure to
GIPSY, or casual conversation with users. It is the
details of everyday use that are missed in such
dialogue, probably because users have adapted to
those problems and thus do not talk about them. It
is precisely those details which the MRP technique
addresses and has been shown to detect.

One might argue that since users have adapted to
those problems, it would not have been cost-
effective to fix them. This statement has some
~ validity, yet it ignores the fact that such adaptation
has associated costs in terms of increased
performance times and lower user satisfaction.
Each adaptation is a set of tasks the user has to
perform either to avoid some undesirable interface

16

behavior or to effect some missing functionality.
The extra time involved in such tasks cannot be
denied.

A more detailed limitation is that studying the
MRPs alone does not produce as much insight as
studying the complete command lines. This is
because MRPs show only command names, while
complete command lines show arguments as well.
Similarly, the interviews generated more
information about the interface. In general, the
technique does not use a lot of other information
that could be part of a transcript file. For example,
error patterns, help usage, user think and
performance times, and system response times
could all be recorded on the transcript. In fact,
some of the detected MRPs showed classes of
usage patterns such as repeated invocations of a
command on an object, or pipelining the output of
one command into the input of another. A broader
evaluation tool should encompass these diverse
elements.

Another characteristic of this technique is the need
for analytical acumen. The analysis depends on the
evaluator’s skill and knowledge of both the
evaluation method and the application system being
evaluated. Human judgement is still required in
deciding which MRPs to examine further, in
making deductions, and in proposing changes.
Also, a sequence of commands may be repeated
often, but the conclusion is not necessarily that a
macro is needed. The repetition may be a user-
adaptation to a different interface problem.
Consequently, the MRP tool is more analogous to
a microscope than to a weighing scale: the tool
provides an ability to analyze transcripts at different
levels of detail, rather than a measure of some
characteristic of the interface.

Finally, the technique was applied to a system with
a command line interface, ignoring the important
class of direct manipulation interfaces. This was a
deliberate decision to simplify the problem,
especially since the viability of the technique was
the object of investigation. '

Recommendation

From the previous discussion it can be seen that
MRP analysis is good for working at the detailed
level of interfaces, but not at a general level. At this
point, MRP analysis would be most useful in the
summative evaluation, beta-test, and maintenance
phases of software development.

FUTURE WORK

Reducing Analysis Time

The MRP tool provided detailed information about
interface problems by pointing to transcript
sections that were analyzed by both the evaluator
and two users. This is valuable information, but
considering the graph of Figure 8, a large scale
study would inundate the evaluator with MRPs.
This can be addressed by reducing the number of

MRPs to study.

One way to accomplish this would be to limit the
amount of data collected, as is eventually done.
The maximum amount of data that would be
collected can be estimated by first determining how
many MRPs the evaluator can analyze in the time
scheduled. This number is then substituted for the
variable y in the equation shown in Figure 8, and
that equation solved for x, the number of command
lines a user types.

Another way is to develop filtering algorithms or
heuristics which can be applied to the MRP list. A
simple attempt at heuristics was implemented in the
MRP tool, where the evaluator examined only
those MRPs whose lengths were greater than
average. Algorithms which reduce the amount of
redundant information, and a re-evaluation of the
MRP definition (specifically removing the
independent occurrence condition) should be
investigated. '

A Transcript Analyzer

Because of the central limitation of MRP analysis
of transcripts, a broader transcript analyzer should
be considered. This analyzer would provide the
evaluator with a suite of analysis tools, of which
the MRP tool is but one. Other tools that would be
useful include pattern matching tools, grammatical
analysis tools, and statistical tools. These tools
may act as a preprocessor for transcript data, and
still other tools may locate or count complicated
relational events of the form (A preceded by B and
two consecutive occurrences of A). Such tools
would permit the MRP analyzer to focus on
particular aspects of a transcript, and they would
allow an investigator to play with the data, perhaps
1o test whether certain types of behavior suggested
by MRP analysis are in fact occurring elsewhere in
the dialogue.

Earlier we described the possible use 6f AWK,
LEX, and YACC in constructing the normalizer.
AWK is effective in locating complicated patterns

17

in a transcript, whereas LEX and YACC are useful
tools for building procedures that identify
complicated relationships among patterns. These
are the types of tools that are needed to augment the
MRP toolkit; because of their sophistication they
need powerful human computer interfaces
supported by a UIMS.

Time Stamping

MRPs might provide better information if
combined with time-stamping data. This would
enable a quantitative expression of user effort
represented by each MRP, and could provide
evaluators with another means of selecting which
MRPs to focus on. MRPs with elapsed times
greater than expected would be prime candidates
for further investigation. Time information can also
be used in a cost-benefits analysis to determine
which problems in the interface to fix. This is an
extremely important benefit in any engineering
process, for as Whiteside, Bennett, & Holtzblatt
[21] point out, engineering a piece of software
involves the allocation of scarce resources.

Similarity Indicator for Command Lines
MRPs show only commands. It was noted that
more information, in the form of the complete
command lines (i.e., MRP instances), was
necessary for analysis. A means of representing
those portions of the command lines which differed
across instances of an MRP might reduce the need
to examine complete command lines. A similarity
representation might show, for example,

EXSIF f??.dat > {?2.0ut
EZPLOT {77.0ut
at positions: 1, 234

where the question marks indicate differences in
the MRP instances. This representation technique

could be implemented using a modified string to

string correction algorithm, similar to that used by
the diff program in UNIX.

Use as a Support Technique

Another interesting avenue to explore would be the
use of MRP detection as an aid to videotape-based
interface analysis. A major problem with videotape
is having to Teview the tape manually for critical
incidents. Since the MRP method points to
potential problem sections in the transcript, it could
also be used to indicate similar sections of
videotape. This may be readily accomplished by
inserting the frame numbers generated by the

videotape machine into the transcript file at the
appropriate locations

SUMMARY

This paper reported on the development of a new -
technique for evaluating interfaces by analyzing

user session transcripts. The technique involved
the detection of repeated user actions in those
transcripts and is based on the hypothesis that
repetition of user actions is an indicator of potential
interface problems. The concept of maximal
repeating patterns, or MRPs, was developed as a
means of defining the repetition.

A tool was developed which extracts MRPs from
transcripts in O(n?) time. This tool also enabled the
evaluator to manage lists of MRPs, select MRPs
based on their length or frequency, and view the
raw transcripts pointed to by those MRPs.

The technique was tested on GIPSY, an image
processing system in use at several sites
throughout the country. The data were collected
from actual users at one site over three months and
the analysis involved both an independent study of
the MRP lists and structured interviews of two

users. The technique was shown to provide useful |

information about the GIPSY interface by revealing
several specific problems.

The advantage of the technique is its speed and
ability to scan large amounts of data, providing
pointers to transcript sections which potentially
show problems users were having. The
technique’s limitation is that the information it
provides is at a detailed level, and does not directly
indicate general problems. This implementation
also produces MRPs which are redundant or seem
insignificant,

Despite these limitations, the technique provided
useful information about the GIPSY interface. In
addition, it is important to remember that MRPs
represent the experience of users in their natural
. work context. As such, MRPs are a source for the
discovery of how users actually use the system.

ACKNOWLEDGEMENTS

This research was partially supported with funds
obtained from grants by the IBM Corporation,
Software Productivity Consortium, and the
Virginia Center for Innovative Technology. We
also acknowledge the support of the Dialogue
Management Project and thank the SDA Lab at

18

Virginia Tech for serving as a testbed for the
research. Finally, we would like to express our
appreciation to the Contel Technology Center for
funding our current research on this topic.,

REFERENCES

1. Aho, A., Weinberger, P., and Kernighan, B.
AWK — a Pattern Scanning and Processing
Language. Soft. Prac. and Experience. (Jul.
1978).

Aho, A, V., Hopcroft, J. E,, and Ullman, J.
D. The Design and Analysis of Computer
Algorithms. Addison-Wesley Series in
Computer Science and Information
Processing. Harrison ed. Addison-Wesley,
Reading, Massachusetts, 1974.

Card, S. K., Moran, T. P., and Newell, A.
The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Assoc., New
Jersey, 1983.

Carroll, J. M., and Rosson, M. B. “Usability
Specification as a Tool in Iterative
Development.” Advances in Human Computer
Interaction. Hartson ed. Ablex, Norwood,
New Jersey, 1985.

Cohill, A. M., and Ehrich, R. W. Automated
Tools for the Study of Human/Computer
Interaction. In Proceedings of Human Factors
Society 27* Annual Meeting (Norfolk, Va.,
Oct. 10-14). Human Factors Society,
California, 1983, pp. 8957-900.

Ehrich, R. W. The DMS Multiprocess
Execution Environment. CSIE-82-6, Virginia
Tech Computer Science Dept., 1982,

Garland, E., and Ehrich, R. W. A GIPSY
Primer. Spatial Data Analysis Laboratory:
Blacksburg, VA,, 1987.

Good, M. The Use of Logging Data in the
Design of a New Text Editor. In Proceedings
of CHI' 85, Conference on Human Factors in
Computing Systems ACM, New York, 19835,
pp- 93-97.

Gould, J. D., and Lewis, C. Designing for
Usability: Key Principles and What Designers
Think. Commun. ACM. 28 (1985), pp. 300-
311,

10.

11.

12.

13.

14.

15.

16.

Hanson, S. J., Kraut, R. E., and Farber, J.
M. Interface Design and Multivariate Analysis
of UNIX Command Use. ACM Trans. Office
Info. Sys. 2, 1 (1984), pp. 42-57.

Hartson, H. R., and Hix, D. Toward
Empirically Derived Methodologies and Tools
for Human-Computer Interface Development.
ITMMS. 31 (1989), 477-494,

Johnson, S. C. Yacc: Yet Another Compiler
Compiler. Computing Science Technical
Report No. 32, Bell Laboratories, Murray
Hiil, NJ 07974, 1975.

Lesk, M. E. Lex — A Lexical Analyzer
Generator. Computing Science Technical
Report No. 39, Bell Laboratories, Murray
Hill, NJ, 1975.

Mackay, W. E.et al. Video: Data for Studying
Human-Computer Interaction. In Proceedings
of CHI’ 88 Conference on Human Factors in
Computing Systems (Washington, D. C.,
May 15-19). ACM, New York, 1988, pp.
133-137. '

Neal, A. S., and Simons, R. M. Playback: A
Method for Evaluating the Usability of
Software and its Documentation. In
Proceedings of CHI’ 83 Conference on Human
Factors in Computing Systems (Boston,
Mass., Dec. 12-135). North-Holland,
Amsterdam, 1983, pp. 78-82.

Qlsen, D. R., and Halversen, B. W. Interface
Usage Measurements in a User Interface
Management System. In Proceedings of ACM
SIGGRAPH Symposium on User Interface
Software (Banff, Alberta, Canada, Oct. 17-
19). ACM Press, 1988, pp. 102-108.

19

18.

19.

20.

21.

22.

23.

. Shneiderman, B. Direct Manipulation: A Step

Beyond Programming Languages. [EEE
Comput. 16, 8 (1983), pp. 57-69.

Siochi, A. C. Computer-based User Interface
Evaluation by Analysis of Repeating Usage
Patterns in Transcripts of User Sessions.
(Dissertation) Virginia Polytechnic Institute &
State University, Blacksburg, Va., 1989.

Siochi, A. C., and Hartson, H. R. Task-
oriented Representation of Asynchronous
User Interfaces. In Proceedings of CHI'89
Conference on Human Factors in Computing
Systems (Austin, Texas, April 30 - May 4).
ACM, New York, 1989, pp. 183-188.

Weiner, P. Linear Pattern Matching
Algorithms. In Proceedings of /EEE 14tk
Annual Symposium on Swiiching and
Automata Theory , 1973, pp. 1-11. .

Whiteside, J., Bennett, J., and Holtzblatt, K.
Usability Engineering: Qur Experience and
Evolution. DEC-TR 547, Digital, 1987 (to
appear as a chapter in Handbook of Human-
Computer Interaction, M. Helander ed.,
North-Holland).

Williges, R. C. The Use of Models in Human-
Computer Interface Design. Ergon. 30,3
(1987), 491-502.

Williges, R. C., Williges, B. H., and
Elkerton, J. “Software Interface Design.”
Handbook of Human Factors. Salvendy ed.
Wiley, New York, 1987.

APPENDIX
MRP Tool Functions

+ gomain | filter: goes to the main MRP
Iist or the filter list

« mkmrp FILENAME: makes the MRP
list from the file named as argument

» info: show information about the + save <all> mrp | details | info | stats

current MRP list
stats : show command usage statistics

show X | first | next | prev INUMBER |
all " types the MRP marked with X,
the first, next, or previous MRP, the nth
MRP, all MRPs, or the current MRP.

filter (num [len <|=[1> NUMBER):
fitters the MRP list by number of
occurrences or length of MRP

details first | next | prev | all | “: types
the command lines corresponding to the
positions of the current MRP, arguments
are similar to the show command

+» wid NUMBER: set the number of lines

to print before and after each MRP detail
raw : view the raw transcript file
mark 7 1 X <COMMENTS>: list the

marks, or mark the current MRP with the
character X and comments

20

FILENAME: saves the current MRP,
details, information, or statistics to
FILENAME. if “all” is specified, saves
all MRPs, etc. replaces contents of
existing file.

append <all> mrp | details | info | stats
FILENAME: same as save, except
appends to FILENAME

readfrom <FILENAME>: reads MRP
tool commands from FILENAME, if
argument is missing, reads from the
keyboard

! unix command string: shell escape;
argument is a command line which is sent
to UNIX for execution

+ # <COMMENTS>: use this as first

word on a line to mark the rest of the line
as a comrnent,

« quit: exit the MRP tool

