Requirements for a Software
Maintenance Methodolgy

Richard E. Nance, James D. Arthur,
and Benjamin J. Keller

TR 90-4

Technical Report SRC-90-001*

Requirements for a |
Software Maintenance Methodology

Interim Report: Subtask 1

Richard E. Nance
James D. Arthur
Benjamin J. Keller

Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0251

18 January 1990

*Cross referenced with TR CS-90-4, Department of Computer Scienbe, Virginia Tech..

This report was supported by the Naval Surface Warfare Center under contract #N60921-
83-G-A165 B048

ABSTRACT

Software maintenance, although widely recognized as the most costly period in the
life of a system, is given only passing consideration in life-cycle models. An extensive
literature review shows the relationship between the development and maintenance phases
- to be ignored to a large extent. The Abstraction Refinement Model (ARM) describes the
dependency of software maintenance on the quality of development documentation and
depicts the adaptive and perfective maintenance forms as relying on earlier design and -
requirements documents to a greater degree than corrective and preventive maintenance.
The ARM is effective in laying the foundations for a software maintenance methodology,
particularly in explaining the role of reverse engineering. Coupling the ARM with the
Objectives/Principles/Attributes procedure for the evaluation of software development
methodologies proves effective in drawing the contrast with maintenance requirements,
which are specifically identified for further study and assessment.

CR Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications; D.2.7 [Software Engineering]: Distribution and
Maintenance.

General Terms: Documentat_ion;”Management.

Additional Key Words and Phrases: Methodologies, reverse engineering, modél,
maintenance.

Table of Contents

1. Background.......oooiiiiiiiiiiii e 1
L1, Task Organization......ccccoeciveeooieeeeeeeeeoeeoeeeen |
L2, ADPDPTOach. ..ot 1
1.3, Report Orgamizationc.ooouiiiueeeiies e 2
2. Views of Software Maintenancecoeevveneeveeesivoieeinn 2
2.1. Definitions of Software Maintenance................oeeevenvennn... 2
2.2, Life-Cycle DesCTIPHONS . ..vuiivenn e e 4
2.3, The Maintenance FOIMS....o.voovivvoeeesrereeeeeereeeeeesiinsa 6
2.3.1. Requirements DEVENovoviviiniineeeesieinen, 6
2.3.2. Process DIVenccovmiiiiiiiie e 7
2.4. Models of the Maintenance ACHVIHES....evvevevererereeeesias 8
3. Methodologies...ot 15
3.2, Software Development Methodology......cccoevereveervennn... 16
3.3. The Objectives, Principles, Attributes (OPA) Framework. 16
3.4, Application of the OPA Framework to Maintenance
Methodologies. oo iie i cee e, e, 21
4. Factors Influencing a Maintenance Methodologyvvvveneven..nn. 23
4.1. The Development InflUencersc..vveueeineerieesrnnnn, 23
4.2. The Tool and Environment Influencersoeevvuvevn... 24
4.2.1 Information Gathering ToOIS.........ociveenevneennnnnn. 25
4.2.2 Reorganization and Modification ToOIS 25
4.3. Specific Maintenance Considerations...........ooueevvevvevnnnn 26
4.3.1. AnalysiS Phaseocueeiiiiiiiieiiieeeeeee v eieeinan, 27
4.3.2. Transformational Phase............ccoeuneemeeeneneninnnnn, 27
4.4, Maintenance Requirements from the OPA Perspective.......... 28
4.5. The Abstraction Refinement Model Emphasis.................... 30
5. Requirements for a Software Maintenance Methodology 31
6. Summary and Conclusionsuuuvueseeeeeeseeetereeeeeeeeeieeeins 33

7. R ETENICES . oot e e 34

1. Background

Prior research [NANRSY, pp. 3-4] as well as other sources [LINISS, p. 241;
RIDMS8] have confirmed the tendency of the software engineering research community to
ignore software maintenance, while at the same time acknowledging that it is by far the
most costly phase in the life-cycle. This report, the first in a set to be produced under
N6(921-83-G-165 B048: Development of an AEGIS Maintenance Methodology, is
intended as one step toward rectifying this oversight.

1.1. Task Organization

The project organization for the development of an AEGIS maintenance methodology
identifies three subtasks:
1. Definition of maintenance methodology requirements, investigating the

differences in approaches, techniques, and methods that contrast the
maintenance and development phases of the software life-cycle.

2. Development of a model of the AEGIS maintenance process, based on earlier
and on-going work by NSWC and contractors, and through active guidance and
participaiion of an Advisory Panel.

3. Specification of the maintenance methodology based on the general
requirements for maintaining time-critical embedded systems but also
recognizing specific needs of the AEGIS application domain.

This report describes the work performed during Subtask I, which extends over the period
from 16 August to 15 December 1989,

1.2. Approach

Underpinning this work is the research conducted in a prior project exploring
software development documentation potentials using recent technological advances, such
as hypermedia, mass storage technology, and knowledge representation. That project,
“Documentation Production and Analysis Under Next Generaton Technologies,”
(N60921-83-G-A165 B043-01), proposes the Abstraction Refinement Model (ARM) as a
basis for depicting iterative refinement of development documentation in the specification of
a software system. The ARM demonstrates the critical importance of development
documentation in the early maintenance activities and characterizes the objectives of reverse
engineering more clearly than any model to date. Linking maintenance to development
more explicitly than prior models, the ARM also underscores the necessity for a software
maintenance methodology for time-critical embedded systems, which typically have long
lifetimes.

In bringing such a methodology into existence for the AEGIS Combat System, the
approach taken in Subtask 1 has centered on an extensive analysis of software engineering
literature, seeking to:

(1) compare and contrast (with emphasis on the latter) the activities of development
and maintenance,

(2) recognize explicit treatments of software maintenance for time-critical embedded
systems, and

(3) derive requirements for an “ideal methodology” that could form the target for a
process model and an AEGIS maintenance methodology to be developed by the
Advisory Panel.

This third objective is most important. The project team does not intend to develop the
AFEGIS maintenance methodology; rather, its function is to facilitate that development by
those who know the application domain the best.

1.3. Report Organization

A comprehensive description of software maintenance is provided in Section 2,
which includes some material from the final report of the prior project cited above. This
material is supplied for completeness. Section 3 begins with a definition of
“methodology,” emanating from software development research that éﬁpulates the
importance of software engineering principles and objectives. The major influencers of
requirements for a software maintenance methodology are identified in Section 4. The
methodology requircments are listed in Section 5, followed by a brief summary and

conclusions in Section 6.
2. Views of Software Maintenance

The definition of “maintenance methodology” requires a clear understanding of
software maintenance. Particularly important is an understanding of the need to govern or
manage the maintenance activities through the use of a methodology. The following
section reviews the definitions and descriptions of software maintenance that are found in

the software engineering literature.

2.1. Definitions of Software Maintenance

The difficulty with the term “software maintenance” is the implication which comes
from the original usage of “maintenance.” We think of maintenance as performing repairs
on hardware, or changing parts (such as replacing the oil filter, or changing the oil ina
car’s engine). The need for maintenance is generally predicated on wear or aging of
mechanical parts (certainly true of the oil filter). A natural extension of this view 1o

software implies that “wear” or “deterioration” are factors in the need for software
maintenance. Clearly, in the strict physical sense, wear brought about by software use
does not occur.

What then is the “wear” of software? Software does not have the physical properties
of hardware; it may be stored or represented using physical media, but the mediuvm is nor .
the “software.” Software is a logical object which cannot suffer from use or entropy
(beyond that caused by forgetfulness or erasures of magnetic media). Hence, the extension
of the root causes of hardware maintenance to software seems unwarranted.

Perhaps the original perspective of maintenance requires adjustment. Consider, for
example, a car engine as a functional mechanism. Each part fulfills some sub-function of
the engine. The oil filter has the function of removing impurities from the oil. When
prolonged usage of an oil filter contributes to increased accumulation of particles in that
filter, the filter decreasingly fulfills its function, and must be replaced. From this
perspective maintenance is performed because certain parts of the engine are not adequately
performing their functions.

This latter perspective extends more naturally to software. A software system is
initially described in terms of desired properties (including functionality), which are to be
evident in the behavior of a subsequent realization. The development process, through a
number of specification ransformations, produces that which should demonstrate the
desired properties. Failing to demonstrate the desired properties is the cause for software
maintenance.

Why software does not exhibit a desired property is another question. A car’s engine
might not function correctly because of wear and aging. However, we have noted that this
type of problems does not occur in software. From a software perspective, though, two
root causes underlic need for maintenance: the software is not built properly in the first
place (or other maintenance is performed improperly), or the desired properties have
changed. These causes also impact how maintenance is to be performed, which is a subject
for subsequent discussion.

Understanding that software and hardware maintenance are differentiated by their
oot causes, the definition of maintenance can now be stated. The essential points are
found in several references [GAMSS88], [FLENS88], [CANGS6], [LINISS]:

(1) maintenance is the process of making changes to existing software systems,

(2) changes are made to the software to induce the desired properties, and

(3) the changes should be consistent with respect to existing system requirements and to
gach other.

Effectively, software maintenance is the set of activities which make changes to software to
better match the desired system. While a methodology describes how these changes are to
be made, process and life-cycle models describe changes in the context of the software life.

2.2. Life-Cycle Descriptions

Descriptions of software evolution are referred to as “life-cycle™ models. These
models try to represent the process by which a software system evolves. Included are the
activities which recur throughout the life of the system (leading to use of the term, “cycle”).
Technically, these models should make no mention of either development or maintenance,
but focus instead on the abstract activities which occur in both. Despite this, most life-
cycle models tend to ignore maintenance [SCHNE&7].

Criticism focusing on the tendency to ignore maintenance is well deserved.
Consider, for example, the waterfall life-cycle model [BOEB76]. In the waterfall life-cycle
model the process “flows” down through a number of development stages into the “final”
stage of maintenance (Figure 1). This model, although touted as the classical “life-cycle”
model has no cyclic aspect. Instead the model shows the “complete” process of
development with maintenance added almost as an afterthought. The de-emphasis on
maintenance is representative of a lack of understanding of what maintenance is and its
significance, especially when even the most conservative estimates project that software
maintenance contributes over 67% of the life-cycle costs [ZELM75].

Although other life-cycle models do meet our expectation of being cyclic, they are
often deficient in other ways. Models such as Gidding’s Domain Dependent software life-
cycle model [GIDR84], and Boehm’s Spiral Model [BOEB86] portray the cyclic nature,
but focus primarily on development activities, assuming that these are also adequate to -
describe maintenance. As expressed by Peters [PETL89] this view implies that
maintenance is a “miniature development cycle.” Although permitted to continue, this
perception is recognized as being incorrect [CHANGSS].

REQUIREMENTS
VALIDATION
SOFTWARE
L .| REQUREMENTS

VALIDATION

PRELIMINARY

[. cesew
VALIDATION

DETAEED
DESICN
VALIDATION
CODE AND
T CEBUG
DEVELOPMENT
TEST

TEST AND

PRECPERATIONS
VALIDATION
TEST CPERATIONS
AND
L= MAINTENANCE.
REVALIDATION

Figure 1. Waterfall model of the Software Life-cycle.

Models like the ones mentioned above are deficient in two significant areas. First,

they emphasize development over maintenance. As systems continue to age, the impact of

the development phase lessens and its relative importance decreases. Secondly, the models

lack an explicit connection between the development and maintenance activities. These

models represent a lack of understanding as to the impact that development exerts on

maintenance. To some extent these deficiencies can be explained by a lack of

understanding of maintenance and maintenance activities.

Observation

P

requirerments

ez

Ab ion

validation

|

Specifications é———i
verification
Prototype
—
erification
Experimentation
L.%
validation

Figure 2. (Gidding’s Domain dependent software life-cycle model.

f CUMULATIVE COST
e

PROGRESS

THROUGH
DETERMINE STEPS EVALUATE ALTERNATIVES,
GBJECTIVES, IDENTIFY, RESOLVE RISKS
ALTERNATIVES,
CONSTRAINTS

RISK ANALYSIS

RISK ANALYSIS

RISK ANALYSIS

| -
RPROTON. — 7
A jrvpe | \PROTOTYPE)

OPERATIONAL
PROTOTYPE

COMMITMENT g
PARTITION ROTS PLAN, CONGEPT OFf—~ — — —
LIFE GYCLE
DETAILED
SOFTWARE DESIGN
PRODUCT
DESIGN /
I
Tegr| DESIGN VALIDATION j uniT | CODE
AND VERIFICATION § TEST |
IENTE' |]
GRATION
IMPLEMENH TANCE |7est |
'TATION | TEST
|
PLAN
NEXT PHASES DEVELOP, VERIFY

NEXT-LEVEL PRODUCT

Figure 3. Boehm’s Spiral Model.

2.3. The Maintenance Forms

In the attempt to better understand what maintenance is and how it should be
approached, a number of maintenance forms have been identified. The classic forms are
derived from the relationship between the software product and the system requirements,
More recent forms are process oriented or motivated by the types and methods of changes
made. Both classes of maintenance forms are considered, but the requirements-driven
forms appear to have the most impact on maintenance methodologies. Unless stated
otherwise, the remainder of this report is confined to the requirements-driven forros.

2.3.1 . Requirements Driven

The classic forms of maintenance are categorized as: corrective, preventive,
perfective, and adaptive [SWAE76). The first three forms are characterized by the system

requirements remaining constant, where the maintenance effort focuses on improvements
consistent with those requirements. More definitively, they are:
(1) corrective - the correction of faults in a software system _
(2) preventive - the addition of facilities to make a software system more robust, and
(3) perfective - the improvement of functionality of a software system to better meet
the current requirements.
The fourth form addresses changes in the system requirements, i.e.,
(4) adaptive - the addition of functionality to a software system to accommodate -
changing requirements.
The four forms seem to partition maintenance activities clearly. Because people often argue
that preventive maintenance is in some sense perfective, literature citations sometimes list
only three forms of maintenance.
We find it convenient to combine maintenance forms. In particular, both corrective
and preventive are code-level (or behavioral level) activities requiring an algorithmic
perspective; perfective and adaptive, however, are more pervasive, requiring a design-level

or higher perspective of the system.
2.3.2. Process Driven

Other categorizations of maintenance have been offered. These categorizations are
concerned with “how” maintenance activities are to be carried out. Derived directly from
the maintenance process, these are termed “process-driven forms.”

One set of process-driven forms is defined by Gamalel-Din and Osterweil as
“software alteration processes,” [GAMS88]. These forms are denoted as “backbone
maintenance,” “spare parts maintenance,” “black box maintenance,” and “copy and adapt.”

Backbone maintenance changes the software without altering its structure. To
accomplish backbone maintenance the code and the effects of the changes must be
understood. Without this understanding, changes can be both difficult and disastrous.

Spare parts maintenance is much like hardware maintenance, in that a new
component 1s substituted for an old one. The new and old software components must have
identical functionality and interfaces. Internal details of the components are not needed to
perform this form of maintenance,

Black box maintenance involves the development of new software which cleanly
interfaces with the old system. Understanding how the old system interacts with the new

components is sufficient.

Copy and adapt maintenance uses existing software components which conform
closely to the needs of a new version. Components must be closely analyzed for side
effects (via non-local variables) to avoid problems.

In addition to the above, “design recovery” is sometimes listed. This however, is
indeed a “process” rather than a maintenance form. Design recovery is a specialized form
of reverse engineering used to capture missing design information from the code.

Another discussion of process-driven maintenance forms comes from Lin and
Gustafson [LINI88]. The forms of maintenance defined in [LINIS8] are characterized in
terms of the number of additions, alteration and deletion made to the software product. The
categories include corrective, adaptive, “retrenchment,” “retrieving,” pretty-printing, and
documentation. Corrective and adaptive are the same as Swanson’s [SWAE76].
Retrenchment is the “commenting-out” of statements, and retrieving the “un-commenting
in” of these statements. The others are self-explanatory. Perfective maintenance is not’
included because they assert that the intent of maintenance is not well represented by
metrics.

Although this classification of maintenance forms is interesting, it does not seem as
informative as the process-driven forms discussed carlier. The characterization of
maintenance with respect to the effect the changes have on the software structure seems

preferable.
2.4. Models of the Maintenance Activities

Earlier discussion of life-cycle models describes them as deficient in their treatment
of maintenance. Other descriptions of the maintenance process are more suitable. In
general, these are models of “software evolution™ rather than pure maintenance. Described
below are the Re-engineering Cycle of Bachman [BACCS8], the process-centered software
life-cycle paradigm [GAMS88], the “maintenance paradigm’” of Wild and Maly [WILC88],
the integrated life-cycle model of Yau [YAUS88], and the Abstraction Refinement Model
[NANRSE9S][KELBIO]. 7 '

~ The Re-engineering Cycle is actually another life-cycle model. It has both forward
engineering and reverse engineering aspects. The forward engineering side is much like
the water-fall model and leads from specification to system operation. The reverse
engineering side allows the “reversal” of forward en gineering, “lifting” the information
from lower levels to higher ones (see Figure 4). The intention of the re-engineering cycle'
is to have tools which support both forward and reverse activities [BACCSS].

Reverse Forward
Level Engineering Engineering

Requirements Businass Analyst

1

Data Analyst
Systems Analyst

¥

Specifications

Programmer
Implementations DBA
. Existing New
Operations Applications o Applications

Figure 4. Re-engineering Cycle.

The process-centered software life-cycle paradigm [GAMSS88] is more complicated
than the others. The basis for the model is “process programming,” through which the
development and maintenance process is integrated with a tailored environment. (We note
that the authors confuse the distinction between methodology and process, and appear to be
referring to process when methodology is more appropriate.) The model implies that the
process should be well-defined and completely constructed prior to the development of the
software. The model has three connected loops: the process static cycle, in which the
process is developed; the product cycle, in which the process executes to act on the
product; and the process/product dynamic cycle, in which either the process or product can
be modified while still executing.

Wild and Maly [WILC88] suggest the “maintenance paradigm based on closure.” By
closure they mean completeness of information relative to a task. Each step in their

10

paradigm is complemented by a closed (complete) set of information. The requisite steps
are understanding, analysis and design, and implementation. In the understanding phase
each participant obtains the understanding necessary to perform the designated task (this
information differs among manager, analyst or programmer). During the analysis and
design phase, the design is optimized to balance the factors contributing to the design. The
implementation phase realizes the design, reusing existing code when possible. Wild and
Maly’s main goal is to define an environment which supports this paradigm, emphasizing
the capture and documentation of design decisions. The combination of the paradigm with
the environment supports explicit representation of the maintenance process.

Explicit representation of the process is an important aspect of the final two models.
Both describe the maintenance process in terms of transformations on descriptions of the
system. In the integrated life-cycle models, graphs are used to represent the system and
graph rewriting dominates the process representation of maintenance [YAUSSS]
[YAUS84]. The Abstraction Refinement Model (ARM) is based on an algebraic structure,
and represents the process by transformations among descriptions [KELB90] [NANRS9].

The integrated life-cycle model is intended to serve as a history of development and
maintenance. It provides a documentation context of the current state of the system. One
advantage of having a particular representation is that it can be used as a reference in
maintenance activities. This model can, however, be described in terms of the ARM which
has better defined properties.

The ARM has two basic objects: system descriptions and design decisions. A
system description is the collection of documentation and code which completely defines
the system. An example is the collection of documentation which makes up the System
Requirements Specification to use the terminology of DoD-STD-2167A [DSSDS5].
Systems descriptions are represented diagrammatically as circles. A design decision is an
alternative for refining a system description. In diagrams design decision alternatives are
represented by lines (as shown in Figure 5), where the lower system description is the
result of the decision or a realization of the upper description. The upper description is an

o AN

System Description Design Decision

abstraction of the lower one.

Figure 5. ARM Representation of System Descriptions and Design Decisions

11

The structure of the ARM is built from these objects. The basic properties can be
stated without getting into excessive details, Two rules characterize the structure:
(1) From any one system description it is possible to have multple design decisions
(Figure 6a),
(2) Any one system description could result from alternative design decisions (Figur
6b). '
The exact structure is called a lattice, which has the consequence that any pair of system

descriptions has a least common abstraction.

6a. Muitiple design decisions from any system description.

6b. System description as the result of many possible design alternatives.

Figure 6. Relationships among Design Decisions and System Description.

The descriptive context of a system is a sequence of system descriptions connected
by design decisions (also called a path). For a path to be a context two requirements must
be met:

(1) only one decision can be made at each system description, and
(2) at each system description only decisions consistent with the System Requirements
Specification should be made.
(The execution of a decision is represented by an arrow followin ¢ a design decision as
shown in Figure 7.) The descriptive context of a system is a possible path from the System
Requirements Specification to the current realization of the system. Therefore, the second

- requirement ensures the correctness of the system realization.

Figure 7. A Path through the ARM Structure

Requirements Identification
and
Formalization

Design, Transformation
and
Realization

Figure 8. ARM Characterization of Development

The ARM characterizes development as the construction of the descriptive context of
the system (see Figure 8). Development begins with a phase of requirements identification
and formalization, for which the goal is to construct an initial system requirement
specification (SRS). This is achieved in several ways, including taking the “intersection”
of loosely defined specifications (shown in Figure 8 as two arrows merging into one
system description). Once the initial specification has been found, the design,

transformation, and realization phase begins. The goal of this phase is the realization of the
systemn in executable form. A necessary byproduct of this process is the descriptive
context.

For maintenance the system realization serves as the starting point and the context as
the source of information. The existence of a complete context is dependent on the
methodology and process used in development. An incomplc.te context could result from:

(1) deficiencies in the development methodology, or
(2) inability of personnel to execute the development process following the
methodology (lack of training, inadequate tools).
Frequently, design decisions are not recorded, so repetition of the decision process might
be made during maintenance. ' '

The ARM characterization of maintenance (Figure 9) has two phases: an analysis
phase and a transformational phase. The analysis phase produces a strategy for a
modification using the following steps:

(1) problem identification,

(2) determination of an objective,

(3) the evaluation of alternative solutions to reach the objective, and

(4) the selection of the solution. ‘

In the transformational phase the selected solution is implemented by first reverse
engineering to a common abstraction of the existing system and the desired realization. The
strategy from the analysis phase should assist in the identification of this abstraction.

13

14

@ Least Common Abstraction
v Minimal Path
==== Alternative Path

Figure 9. ARM Characterization of Maintenance

It is not always the case that the least common abstraction is in the context or even
that the context is available. In the first case the least common context element (the least
common abstraction in the context) can be used. From this point the realization can be
found utilizing the solution from the analysis phase. If the context does not exist, the
common abstraction and context must be constructed so that subsequent maintenance
activities have a known reference.

Notice that reverse engineering contracts the original context to allow more
alternatives. The context associated with the least common abstraction is that which
permits the least number of alternatives to reach a set of realizations that include the target
and the source. Working from the least common abstraction may be efficient (the minimum
number of realizations), but locating the LCA could be quite difficult.

Once a common abstraction is achieved, forward engineering begins from that point.
Forward engineering uses the strategy outlined in the analysis phase to find the desired
realization. Reconstruction of the context is again a byproduct which benefits future
maintenance.

The models considered in this section provide a description of the maintenance
process. Particularly important is the ARM, which describes the dependence of

15

maintenance on development and the maintenance process itself. This model is important

in our discussion of the factors affecting a maintenance methodology.
3. Methodologies

Fundamental to the research presented in this report is a common understanding of
what constitutes a“methodology”. Although widely used, the term“methodology™ connotes
a variety of similar, yet distinct, meanings. Because methodologies permeate many
scientific disciplines, definitions abound, largely influenced by specific application
domains. Software engineering is no exception;“methodologies™ address various phases of
the development process: needs analysis, requirements specification, system design, and
program design. Although methodologies are based on a common underlying tenet, 1.e.
providing a systematic approach to attaining a desired goal, each is indelibly marked by
individual elements tailored for application dependent end-products.

3.1 What Constitutes a Methodology

To describe the term “methodology”, a distinction must be made between it and the
term “method.” In [FREP77], Peter Freeman provides an excellent discussion of concepts
associated with both terms. Several of his major points are paraphrased and extended
below. Simply stated, a method describes the means of accomplishing a given task, e.g.,
writing a statement of requirements. In general, a method specifies three elements:

+ what decisions are to be made,
+ how to make them, and
» in what order they are to be made.

In contrast with the limited scope of a method, a methodology is a collection of
complementary methods, and a set of rules for applying them. More specifically, a
methodology

« organizes and structures the tasks comprising the effort to achieve a global objective,
establishing the relationships among tasks,

+ defines methods for accomplishing individual tasks (within the framework of the
global objective), and

+ prescribes an order in which certain classes of decisions are made, and ways of
making those decisions that lead to the overall desired objective.

16

As methodologies are applied in specific domains, the associated collection of methods and
procedural guidelines change accordingly. In general, software development
methodologies should be guided by accepted software engineering principles that, when
applied to the defined process, achieve a desired goal.

3.2. Software Development Methodology

The development of large, complex software systems is considered a project activity,
involving several analysts and programmers and at least one manager. What then is the
role of a methodology in this setting and how does it relate to objectives, principles and
attributes? Figure 10 assists in providing an answer to this question.

In general terms, an objective is “something aimed at or striven for.” More specific
to the software development context, an objective pertains to a project desirable --
characteristic that can be judged as achicved by observation at the project level (perhaps
only at project completion). Achievement of a software engineering objective exacts a price
-- often in terms of other objectives. That is, tradeoffs among objectives are frequently
encountered. For examphle, greater adaptability may be achieved by taking steps that reduce
reliability.

A software engineering principle describes an aspect of how the process of software
development should be done. The process of software development, if it is to achieve the
stipulated objectives, must be governed by these*“rules of right conduct.” While the
discovery of these rules may be incomplete at this time, a number of guiding principles
have been established in the growing bedy of software engineering literature.

Antributes are the intangible characteristics of the product: the software produced by
project personnel following the principles set forth by the methodology. Attributes can'be
exhibited by each unit of code and documentation although their intangible nature makes it
difficult to establish their presence. Unlike objectives, which pertain only to the toral
project activity, attributes may be observed in one unit of the product and absent in another.

3.3. The Objectives, Principles, Attributes (OPA) Framework

Influenced by Fritz Bauer's original definition of software engineering [BAUF72]
and reflecting the above description of software engineering objectives, principles and
attributes, a rationale for linking objectives, principles and attributes is founded on the
philosophical argument that:

The raison d'etre of any software development methodology is the achievement of one or

more objectives through a process governed by defined principles. In turn, adherence to a

17

process governed by those principles should result in a product (programs and
documentation) that possesses attributes considered desirable and beneficial.

OBJECTIVES

Maintainability
Correctness
Reusability
Testability
Reliability
Portability
Adaptability

OBJECTIVES
wO O O

PROJECT

PRINCIPLES PRINCIPLES
Hierarchical Decomposition
Functional Decomposition
Information Hiding
Stepwise Refinement
Structured Programming
Life-Cycle Verification
Concurrent Documentation

PROCESS

PRODUCT

ATTRIBUTES éé -
DOCUMENTATION (+) PROGRAMS
Reduced Coupling
Enhanced Cohesion .
Reduced Complexity A &
Well-Defined Interfaces Properties Properties
Readability -
Ease of Change ATTRIBUTES
Traceability

Visibility of Behavior
Early Error Detection

Figure 10. Linkages among Software Engineering Objectives, Principles and Attributes

This philosophy, exemplified by Figure 10, is tempered by practical concerns:

18

» While a set of software engineering objectives can be identified, this set might not be
complete, and additions and modifications should be permitted. ‘

+ Objectives can be given different emphasis within a methodology or in applications
of a methodology.

+ Auributes of a large software product might be evident in one component yet missing

in another.

A broad review of software engineering literature [BERG81, CLEP84, GAFJ81,
JACMYTS5, LISB72, PARD76, PARD72, SCOL78, WARJ76] leads to the identification of
seven objectives commonly recognized in numerous methodologies:

» Maintainability -- the ease with which corrections can be made to respond to
recognized inadequacies,

= Correctness -- strict adherence to specified requirements,

+ Reusability -- the use of developed software in other applications,

« Testability -- the ability to evaluate conformance with requirements,

+ Reliability -- the error-free performance of software over time, .

+ Portability - the ease in transferring software from one host system to another, and

* Adaptability -- the ease with which software can accommaodate to change.

The authors note that several of these definitions, as well as others presented in this
section, are abridged; they are primarily intended to reflect a working definition based on
general literature usage.

Achievement of these objectives comes through the application of principles
supported (encouraged, enforced) by a methodology. The principles enumerated below are
extracted from the references cited above as mandatory in the creative process producing

high quality programs and documentation.

+ Abstraction -- defining each program segment at a given level of refinement.
- Hierarchical Decomposition -- components defined in a top-down manner.
- Functional Decomposition -- components partitioned along functional
boundaries.
+ Information Hiding -- insulating the internal details of component behavior.
+ Stepwise Refinement -- utilizing a convergent design.
+ Structured Programming -- using a restricted set of control constructs.

19

» Concurrent Documentation -- creation and management of supporting documents
(system specifications, user manual, etc.) throughout the life cycle.
+ Life Cycle Verification -- verification of requirements throughout the design,

development, and maintenance phases of the life cycle.

The enunciation of objectives should be the first step in the definition of a software
development methodology. Closely following is the statement of principles that, employed
correctly, lead to the attainment of those objectives. The important correspondence
between objectives and principles is shown in Figure 11,

Adaptability Concurrent Docunentation
Functional Decomposition
Correctness
Hierarchical Decomposition
Maintainability
Information Hiding
Portability
Life Cycle Verification
Reliability
Reusability Stepwise Refinement
Testability Structured Programming

Figure 11. Linking Objectives to Principles

Employment of well-recognized principles should result in software products
possessing attributes considered to be desirable and beneficial. A short definition of those
attributes is given below.

20

Cohesion -- the binding of statements within a software component.

Coupling -- the interdependence among software components.

Complexity -- an abstract measure of work associated with a software component
relative to hurpan understanding and/or machine execution.

Well-defined Interfaces -- the definitional clarity and completeness of a shared
boundary between a pair of components (hardware or software).

Readability -- the difficulty in understanding a software component (related to
complexity).

Ease of Change -- the ease with which software accommodates enhancements or
extensions,

Traceability -- the ease in retracing the complete history of a software componcnt
from its current status to its design inception.

Visibility of Behavior -- the provision of a review process for error checking.
specification and design prior to implementation.

The relationships among attributes and principles are denoted in Figufe 12.

21

Concurrent Cohesion
Documentation
Complexity
Functional
Decomposition
Coupling
Hierarchical Early Error Detection
Decomposition

Information Hiding Ease of Change
Readability
Life Cycle
Verification
Traceability
Stepwise
Refinement Visibility of Behavior
Structured Well-Defined Interface
Programming

Figure 12. Linking Principles to Attributes

The software development process, illustrated in Figure 10, depicts a natural
relationship that links objectives to principles and principles to attributes. That is, one
achieves the objectives of a software development methodology by applying fundamental
principles which, in turn, induce particular code and documentation atribuzes. From a
more detailed perspective, Figures 11 and 12 define the precise set of linkages relating
objectives to principles and principles to attributes.

3.4. Appilication of the OPA Framework 1o Maintenance
Methodcelogies

The OPA framework described above provides significant insights into what one-
might expect in and from a maintenance methodology. Comments on such expectations
and related concerns are provided below:

22

ey

2)

(3)

(4)

The objectives of a particular methodology are, to a large extent, reflective of
requirements imposed by a set of system specifications. Within the maintenance
framework, for example, a requirement to provide access to development
documentation commensurate with the maintenance form underlies an objective of
realizing desired changes in an efficient and effective manner. Identifying _
requirements and recognizing their role within a methodological framework is crucial
because one must be able to assess the impact of constraining or sacrificing a
particular requirement. The significance of this statement becomes even more evident
when one considers that a single requirement often impacts several objectives.

Recognizing the impact of requirements on methodological objectives is not, in and of
itself, sufficient to define or guide a maintenance activity, Because maintenance tasks
within the time-critical embedded systems domain can have wide-spread impact, a
well-defined, systematic approach to performing maintenance activities is essential.
Moreover, that approach must recognize, encourage and support the achievement of
system-wide objectives through the enunciation of complementary methods and
techniques.

Intrinsic to a maintenance methodology, and providing the driving force behind many
of the maintenance activities, is a complementary set of principles that work together
in achieving the objectives emphasized by that methodology. For example, the
principles of Scope Delineation and Varied Abstraction (discussed in Section 4) -
support the identification of source components requiring maintenance, while the
principle of Change Propagation (also discussed in Section 4) is used to ensure
maintainability in the resulting (or target) components.

Finally, the OPA framework provides a basis for arguing the importance of a
well-defined, systematic approach to performing software maintenance and of the
crucial role of principles in supporting the maintenance process. One should
recognize, however, the significance of principles in the shaping of the maintenance
envircnment. The effective utilization of methodological principles often require the
use of tools with specific capabilities. A study of such principles should yield
requirements for tool capabilities, and subsequently, assist in the identification and
selection of tools appropriate for the maintenance environment.

23

4. Factors Influencing a Maintenance Methodology

The previous sections of this report have centered on understanding the perceptions
of maintenance derived from published works. Additionally, we have examined
methodologies primarily within the context of software development. Using this material
as a backdrop enables us to confront the challenge of defining a maintenance methodology.
The immediate goal is to identify a set of requirements for such a methodology.

These requirements are driven by a number of influencers. The influencers are
formed from within and beyond the maintenance phase: development activities, software
environments, problems specific to maintenance, process models and the OPA framework.
All affect the maintenance process and the execution of maintenance activities.

4.1. The Development Influencers

In the Abstraction Refinement Model characterization of development and
maintenance, the descriptive context is the interface between the two. This contextis a
complete documentation of the system which serves as both a definition of the system and a
record of its creation. We contend that the single most significant influence on maintenance
(cost and effort) is the quality of the development process; the second is the quality of
development documentation. |

That development documentation is a primary influencer should not be surprising.
Documentation consists of descriptions of the product and the process through which it is
developed. Recognition of this fact can be seen in the work of Yau [YAUS84], where a
major part of research on methodologies is focused on representing the context.

Development influencers are found in both the structure and content of the
documentation. The structure of documentation can facilitate information search and
comprehension. The content 1s important stmply because in the absence of the needed
information comes the requirement that it must be constructed or rediscovered.

The influence of development through documentation suggests that a maintenance
methodology should take advantage of existing development documentation and also seek
to overcome deficiencies in that documentation. Subsequently, a methodology must
provide two mechanisms: (1) means to access documentation and (2) means for the
reconstruction of unavailable or incomplete documentation. (Note that these requirements

are not unique to development.)

24

4.2. The Tool and Environment Influencers

The influencers in tools and environments are interesting in that they can be viewed
as “bottom-up” influencers. This “interest” stems from the fact that a top-down influence
of methodology on tools is more typical than the reverse.

Two reasons exist for considering the (“bottom up”) tool influencers. The first is
that published research emphasizes tools and environments as opposed to methodologies.
The second is that the existence and design of tools may reflect a number of underlying
principles that admit extraction and generalization in the definition of a methodology.

The tools applicable to maintenance are many and varied. Rather than attempting an
exhaustive listin g, we resort to a description. This classification originates in the General
Services Administration as a partial list of the types of tools available [ROMDS6]. Figure

13 shows the adapted classification with definitions of the major categories.
(1) Information gathering - these tools are used in the capture of information needed for
maintenance,

Version comparison

Data file comparison

Code analyzers
Data fiow tracers
Control flow tracers
Change analysis tools

Browsers with ‘
Structure outliners: procedural , control, data, I/O [SCHNS7, p.306],
Presentation of delocalized information [SCHNS7, p.305], and
Capability of selective abstraction [FLEN88,p.57] [CANGS6].

(2) Reorganization and modification tools - tools which are used to reorganize, restructure,
modify or franslate software.

Reformatters
Restructurers

Data standardization 10018
Syntax-directed editors
Translators

(3) Documentation database construction 100ls - tools used in the building and modification of a
database of captured information as part of the documentation of the system.

Documentation aids
Re-documentation tools
Cross-referencing tools

(4) Verification tools - these tools are used to verify the correctness of the documentation
(including programs).

Test data manipulation (capture) tools

Test coverage momnitors
Quality assurance tools for documentation and programs.

Figure 13. Maintenance Tool Classification

25

The influence of tools on a maintenance methodology is primarily through
“principles” (as in the OPA). Underlying these tools are principles which might be
candidates for the methodology. The classification shown in Figure 13 is used to organize

potential principles in terms of the identified tools.
4.2.1 Information Gathering Tools

Under the umbrella of “information gathering tools™ are three types: comparators,
code analyzers, and browsers. Each serves a separate role in terms of information
gathering. The first two capture or create new information while the latter expands the
presentation of information.

A principle underlying the use of comparators is the identification of changes from
one version of a data file or document to the next. These tools provide an after-the-fact
means of studying the change. Although the stated principle is sound, supporting tools are
somewhat lacking.

Code analysis tools are used to capture information about the static characters and
dynamic behavior of software. Included are simulators, which: allow data- or control-flow
tracing, and utilities that determine the effect of a proposed change. These tools are based
on a principle of understanding both the software and the potential effects of any changes.

The third form of information gathering tools is, oddly enough, presentation tools.
These tools are called browsers, and allow the presentation of documentation in a number
of formats. Particularly important is the possibility of information selection (possible
delocalized) and the level of abstraction for presentation. A principle underlying such -
browsing tools asserts the need for a view of the system that is both selective and from the
right perspective for the task at hand.

4.2.2 Reorganization and Meodification Tools

Like the information gathering tools, the reorganization and modification tools can be
allocated into three classes. These include reorganization utilities, editors, and translators.
The relationship of the first two to maintenance methodology principles are more apparent
than for translators.

Reorganization tools are meant to increase the ease of understanding documentation
and programs. Tools in this class include reformatters (or pretty-printers) and restructurers
(that transform a program to an equivalent form with “nicer” structure). Also included are
data standardization tools, for example an alias elimination tool. The underlying principle
promoting this class of tools is to improve the “readability” of documentation.

o

O

Despite the typical view of editors as text editors, advanced forms are more useful.
These editors might take advantage of the software structure or other properties to help in
effecting less disruptive changes. A type of editor which fits this mold is the syntax-
directed editor. Incorporation of features such as those outlined for browsers might be
quite useful. The underlying principle here is that “each change should be implemented in a
manner consistent with the existing software and level of abstraction.”

Documentation database construction tools are aimed at the capture of information in
“document” form, and also the construction of linkages among the “documents.” Also
important are re-documentation tools that allow the addition of information missing from
development or created during maintenance. The incremental addition of information is a
crucial function of such tools, since often the information collected is incomplete
[WILC8S8]. “Collect all relevant information into a structured form, even if the information
is incomplete,” is a principle which requires such tools.

Verification tools are directed at the process. The focus is on the verification of the
system with respect to the initial specification. The underlying principle supported by these
tools is that quality assurance should be applied to increase certainty of correctness in the
developed system.

Methodology principles establish the requirements for tools. In this section we have
“Inverted” the relationship, i.e., examined tools in the attempt to extract the underlying
principles. This tact is necessary since far more is written about tools than about
maintenance methodologies.

4.3. Specific Maintenance Considerations

In addition to the “information” influencers in development, and the “principle”
influencers among tools, the “task” influencer of maintenance is also evident. A
maintenance methodology must be concerned with the composition and execution of the
maintenance tasks. The ARM characterization of maintenance decomposes the process into
analysis and transformational phases and an identification and ordering of tasks within each
Phase should be provided by a methodology. The separation of tasks fits naturally into the
framework of the ARM. This division serves as our primary guideline for discussion.

Each maintenance task has an origin. A user encounters a problem, or desires new
capabilities, and submits a request that the software be modified. The challenge of
maintenance is to accomplish the requested modification without the introduction of new
problems. The analysis phase is concerned with identifying the source of the request and
designing the modification to meet the request. The transformational phase then executes

27

the modification to achieve the desired target. As recognized by Yau [YAUS84], a
maintenance methodology must provide guidance for such tasks,

4.3.1. Analysis Phase

Within the analysis phase the goal is to identify the problem, the source of the
problem and a strategy for solution. The strategy is then employed in the transformational
phase to realize the solution. The methodology should address the problems associated
with both phases.

The identification of the cause for software maintenance (the “problem”) is the first
task at hand. Generally, a software trouble report (or change request) provides a vague
indication of the problem. Depending upon the form of maintenance required,
identification of the “problem™ may require a great deal of analysis or very little work at all.
Once the problem has been located and identified, a solution strategy must be formed.

The solution strategy serves as a guide for the modification “engineering” to be made
in the next phase. The nature of the problem affects the way in which a solution can be
formed. A problem of corrective maintenance requires a differert solution style from that
of a problem of adaptive maintenance. In the first, changes must be made within the code;
whereas the second dictates changes throu gh the addition of new components external to
the existing system. Obviously, the form of maintenance greaily influences the solution
strategy, and the methodology must accommodate that fact. In addition, the impact of any
change must be analyzed and accounted for in the solution strategy.

4.3.2. Transformational Phase _

Supplied with an understanding of the problem and a solution strategy, the
transformational phase embodies the solution realization. A methodology must define the
methods by which the solution can be obtained. Such methods may include techniques for
making changes within code or for developing new components. Some aspects of the
methodology can be lifted directly from a development methodology; whereas others are
modifications of these or are unique to maintenance.

A bigger challenge in making changes is ensuring that the changes do not introduce
further problems in the software. Prevention of new problems is the reason for analyzing
the effect of a change in the analysis phase; however, the changes made must follow the
intent of the solution strategy. The use of quality assurance techniques is necessary both
prior to and after the change, as well as for assistance in the design and execution of the
code change activity.

28

4.4. Maintenance Requirements from the OPA Perspective

The OPA provides a framework in which the requirements can be expressed. The
elements used are methodology objectives, the principles by which the objectives can be
achieved, and the attributes of the resultant system (indicatin g success in achieving the
stated objectives). The specification of objectives and principles provides a means by -
which the methodology can be loosely defined.

The objectives and attributes for a maintenance methodology correspond closely to
those for development. One new objective can be stated as. “realizing desired changes in an
efficient and effective manner.” This states the basic objective of maintenance, which the
methodology must prbmote. As a consequence of this basic objective, a number of new
principles emerge.

The previous sections advance the contention that maintenance introduces some
unique concerns. While the objectives of development might prove sufficient for
maintenance, the principles certainly do not. Four new principles are identified as requisite
for realizing the basic objective of maintenance.

The first principle relates to the knowledge and understanding required before
beginning a task.

Scope Delineation - The initiation of every task should be the identification of bounding
(document) components.

This principle is aimed at the problem of finding the information needed for a task,
ignoring irrelevant information, and limiting the scope of the work to be done. The
“scope” of a task is the range of documentation needed (“vertical™), and the
identification of software components affected by the specific task (“horizontal™).
The browsing tools mentioned earlier suggest this principle:

(1) support presentation of delocalized plans [SCTINS7, p. 3051,

(2) partial access to multiple levels of documentation [FLENS8], and

(3) enable the hiding of unneeded information [FLENSS, p.57].
Wild and Maly [WIL.C88, p.81) add to this the argument that the “separation of
relevant and irrelevant facts needs to be supported [by tools}.”

The second principle is called the principle of varied abstraction:

Varied Abstraction - Representations that support multiple levels of abstraction and the
transitions among them should be utilized in the maintenance process.
This principle states that only representations which can express different levels of
documentation (specification) and the logical connections between them (design
decisions) should be employed for maintenance documentation. Wild and Maly

29

[WILCSS, p.81] support this principle by the statement: “There is a need to know
design decisions and possible design alternatives.” The concern here is with the
knowledge needed for maintenance. Additionally, the importance of supporting
transitions among levels, which is useful in development, becomes of paramount
importance in maintenance.

A statement by Yau [YAUSSS, p. 1129] suggests the followin g principle.

Common Representation - Environmental integration should be achieved through the use of
4 common representation (wide-spectrum language).

Subordinate to the principle of varied abstraction, the principle of common
representation recognizes the impact of representation on the tools used to support a
methodology. The discussion of browsing tools above also indicates the role of
Tepresentation as well as abstraction with respect to tools. Tools for information
hiding and presentation of delocalized plans could benefit from both common
representation and abstraction,

The varied abstraction principle has two important aspects: use of multiple
abstraction levels and the transitions among the levels. Movement among the levels
of documentation used in development and maintenance must be facilitated. The
principle also has important implications in terns of environments.

The third principle is also related to documentation:

Change Propagation - Recognition of the need to propagate specification changes through
multiple levels of abstraction (i.e., throughout the maintenance
document set).

This principle is based on the acknowledged need for consistency of documentation
at various levels (i.e. code to design, etc. [ANTPR7]). It recognizes that changes
made at any level can have influence over documentation at higher or lower (or -
both) levels of abstraction. These chan ges must be propagated to the affected levels
to ensure consistency. Adherence to this principle ensures the proper evolution of
the maintenance set of documents (see [NANRSI).

Also affected by the Change Propagation principle is the problem of re-
documentation. One interpretation requires the regeneration of missing
documentation which is a recognized need throughout the literature:

“Preserve the knowledge gained in doing maintenance tasks
even if this knowledge is incomplete”™ [WILCS8, p.811.

Reverse Engineering enables extraction of organizational and
operational rules from software [BACCS8,p.49].

Re-documentation tools should allow for incremental
documentation of the system [FLENSS, p.56].

Automatic documentation should be integrated with other re-
documentation tools [FLENSS, p.57].

Both change propagation in existing documents, and re-documentation are
attempting to ensure that the documentation is consistent throughout and accurately
Tepresents the current system. In a sense, Change Propagation is an extension of
the Concurrent Documentation principle in software development.

The final principle emphasizes the measurement of product quality:

Quantification with Abstraction Resolution - Quantification of the product quality should be
a constant goal: the potential for quantification is inversely related to
the level of abstraction.

The importance of measuring product quality is widely recognized, and supported
by the OPA framework. Also recognized is the need for quantified measurement of
the “entropy” induced by maintenance [CANGS86,p.320], and analysis of changes
and the induced side effects [SCHN87,p.305]. The principle supports the
application of quality assurance (metric based)tools discussed above.,

4.5. The Abstraction Refinement Model Emphasis

- Consideration of the ARM provides no added maintenance requirements beyond
those already stated. However, the requirements can be stated more clearly or carefully
using the descriptive qualities of the ARM, The model crystallizes our perspective of
maintenance and maintenance methodolo gies.

The descriptive context of a System is an important aspect of the ARM. Context
construction during development represents the documentation associated with the system
creation, The maintenance methodology must modify the context to implement software
modification, but these modifications should be made in a disciplined manner to preserve
the qualities of the context.

The ARM characterizes modifications as forward and reverse engineering activities,
A maintenance methodology should define such methods, guiding and controlling the use
of methods and techniques. Methods for forward engineering naturally resemble those:
used in development (some adaptation may be required, however). Forward engineering in
maintenance involves making direct changes within the existing software system where the
freedom of development does not exist. Reverse engineering ranges from documentation
searches to re-documentation, so methods are both casy and hard to define. Recognition of
the limiting and confining characteristics of maintenance is important to defining a
methodology.

Another aspect of the ARM tha affects the maintenance methodology requirements is
the notion of common abstraction. Common abstractions play two roles in the ARM. One
Is as a starting point for forward engineering to implement the modification. The second is
as a marker point from which the context must be rebuilt. Considering the concerns
expressed earlier, both roles are important to the methodology. The methodology should
include methods which assist in the identification of a common abstracton,

The three points mentioned above are perhaps the most important influencers of the
ARM on a maintenance methodology. The context represents the system documentation, a
major influencer throughout the system life. Forward and reverse engineering are the basic
activities applied in maintenance, and methods for them are certainly important. Common
abstractions are intrinsic to the maintenance process and the means for identifying them are
quite important,

5. Requirements for a Software Maintenance Methodology

The requirements for a software maintenance methodology are stated below. These
are derived from the principles enunciated in Section 4.4. Each requirement is stated with a
description and reference to the governing principles and relevant literature (if not touched
upon in the description of the principles).

(1) Access to development documentation commensurate with maintenance forms.
Principles: Varied Abstraction, Change Propagation.
Purpose: A mechanism for accessing development documentation is the first need,
but, secondly, this access should be guided by the form of maintenance. The need
for accessing specific levels of documentation for particular maintenance forms is
described by the Abstraction Refinement Model [NANRS9].

(2) Provide for decisions which maximize product availability (consider system
availability).
Principles: Varied Abstraction
Purpose: This requirement relates to the global objective of the maintenance process
being both effective and efficient. The methodology should seek to ensure that
quality is not sacrificed but changes are accomplished efficiently.

(3) Each medification activity should include the Jollowing sub-activities:
(a} Identify source and target (order is source dependent).
(b) Define and effect transformation process,
(c) Record source, process, and target.

31

L

[28]

(4

&)

(6)

(7

{d) Test:

(1) Identify original test specifications

(2) Modify original test specifications for targer.

(3) Revise test procedures and apply them.
Principles: Varied Abstraction, Scope Delineation.
FPurpose: The major steps in making a modification are prescribed. Actually making
the modification requires the identification of the source of the maintenance, the target
of the maintenance (a solution) and the means for achieving that target.
Complementing these activities is the recording of the source, target and the process
(including design decisions) to ensure compatibility of the documentation with the
programs. Finally, testing is required to ensure that the target was achieved and that

it is correct.

Promote the identification of alternatives, the evaluation of alternatives (risk
assessment), and support documentation of both.

Principles: Varied Abstraction.

Purpose: The maintenance (and development) activities involve the consideration of a
number of alternatives. The recordin g of these alternatives and their evaluation
provide a justification of the selected change strategy that may be useful for Iater
maintenance.

Recognize and resolve potential interference among concurrent maintenance activities.
Principles: Scope Delineation.

Purpose: Maintenance activities might require changes which interfere or interact in
some way. Recognizing and handling this interference helps ensure that
combinations of modifications will have a positive result. Otherwise, these
modifications might combine to form an undesired change.

Require and facilitate auditing of the maintenance process (metrics, and
methodology).

Principles: Quantification with Abstraction Refinement.

Purpose: Auditing of the maintenance process evaluates the success of the process in
terms of the product quality. The methodology should support auditing to guarantee
the correctness of the process and the quality of the product.

Support (enforce) uniformity in maintenance processlactivity (procedures,
documentation).

Principles: Change Propagation.

Purpose: Providing for uniformity in the maintenance process means that the
procedures used in the maintenance process are the same. The impact of uniformity
in the process is uniformity in documentation. Uniformity in documentation
increases the maintainability of the systemn by helping understanding.

(8) Enable prioritization and coordination of maintenance Jorms and activities. (Interface
with Configuration Management.)
Principles: Change Propagation.
Purpose: Various maintenance forms attach not only a practical order, but also a
theoretical order to tasks. The practical order captures the necessity for certain
modifications being made first, The theoretical order implies that certain tasks should
be performed first for efficiency and effectiveness. The methodology needs to
recognize the ordering in the decision-making process.

(9) Enforce recording of source, process, target, test docmem‘atz‘on, decision
alternatives, evaluation, and Jinal decision.
Principles: Scope Delineation, Change Propagation. _ _
Purpose: To provide for the documentation necessary for future maintenance.

(10) Enable, promote and enforce the quantification of the process and product quality.
Principles: Quantification with Abstraction Resolution.
Purpose: Metrics can Play a major role in the auditin g process if provided proper
support.

6. Summary and Conclusions

Software maintenance has suffered from inattention, the improper analogies with
hardware, and negative connotations associated with the term “maintenance.” The Jife-

cycle models acknowledge the maintenance phase, but do little else to describe the attendant

activities or relate them to development activites. In the attempt to derive requirements for
an “ideal” methodology, we have reviewed the treatments of maintenance in the software
engineering research Hiterature, considered the several definitions, and noted the
categorization of maintenance forms, Of primary interest are the models of the maintenance
process that depict the development/maintenance relationship.

The objectives, principles, atrributes (OPA) characterization of software development
methodologies is seen as applicable to maintenance. The fundamental maintenance
objective - effective and efficient change - leads to the statement of four maintenance-related

34

principles: scope delineation, varied abstraction (with common representation), change

propagation, and quantification with abstraction resolutions.

The culmination of the research in Subtask 1 is the statement of requirements in

Section 5. Each requirement is described in terms of its purpose and the underlying

principle(s). Using this frame of reference, the AEGIS maintenance process can be

examined and refined to conform with application domain needs and management

constraints.

7. References

[ANTP87] Antonini, P, Benedusi, P., Cantone, G., and Cinitile, A. “Maintenance and
Reverse Engineering: Low-Level Desi gn Documents Production and
Improvement,” in Proceedings of the Conference on Software Maintenance -
1987, IEEE Computer Society Press, 1987, 91-100.

[ARAGS35] Arango, G., Baxter, L, and Freeman, P. “Maintenance and Porting of
Software by Design Recovery,” in Proceedings of the Conference on
Software Maintenance - 1983 » IEEE Computer Society Press, 1985, 42-49.

[BACCS8] Bachman, C., “A CASE for Reverse Engineerin g,” Datamation 34, 13 (July
1, 1988) 49-56.

[BAUF72] Bauer, F.L., “Software Engineering,” Information Processing, North
Holland Publishing Company, 1972.

[BERGS1] Bergland, G.D., “A Guided Tour of Program Design Methodologies,”
Computer, Vol. 14, No. 10, October 1981, pp. 13-36.

[BOEB76] Boehm, B.W., “Software Engineering,” IEEE Transactions on Computers
€-25, 12 (December 1976) 1226-1241,

[BOERS6] Boehm, B.W., “A Spiral Mode! of Software Development and
Enhancement,” ACM Software Engineering Notes 11, 4 (August 1986) 14-
24,

[CANGS6) Cantone, G., A. Cimitile, P, Maresca, “A New Methodological Proposal for
Maintenance,” Microprocessing and Microprogramming 18, (1986) 319-332.

[CLEP§4) Clements, P. C. “Function Specifications for the A-7E Function Driver
Module,” NRL Memorandum Report 4658, Naval Research Laboratory,
Washington, D. C., November 1984,

[DSSD§3)] DoD-STD-2167A, Defense System Software Development, United States
Department of Defense, June 4, 1985.

[FLENS8] Fletton, N.T. and M. Munro, “Redocumenting Software Systems Using
Hypertext Technology,” in Proceedin gs of the Conference on Software
Maintenance - 1988, IEEE Computer Society Press, 1988, 54-59.

(FREP77] Freeman, P_“The Nature of Design,” A Tutorial on Software Design

Techniques, Second edition, IEEE Computer Society Press, 1977, pp. 29-36.

[GAFJI81]

[GAMSS8S]

[GIDR84]

[JACM?75]

[KELBY0)]

[LINI8S]

[LISB72]

[NANRSY]

[PARD72]

{PARD76]

[PETLS7]
[RIDMSS]
[ROMDS]

[SCHNS7]

[SCOL78]

[SWAE76]

[WARJ76]

35

Gaffeney, J. E.,“Metrics in Software Quality Assurance,” Proceedings of the
National ACM Conference, November 1981, pp. 126-130.

Gamalel-Din, S.A. and L J. Osterweil, “New Perspectives on Software
Maintenance Processes,” in Proceedings of the Conference on Software
Maintenance - 1988, IEEE Computer Society Press, 1988, 14-22.

Giddings, R.V., “Accommodatin g Uncertainty in Software Design,” CACM
27,5 (May 1984) 428-343.

Jackson, M., Principles of Program Design, London: Academic Press, 1975.

Keller, B.J., An Algebraic Model of Software Evolution, Master’s Thesis,
Department of Computer Science, Virginia Tech, (to be completed) Spring,
1990.

Lin, I-H. and D. A, Gustafson, “Classifying Software Maintenance,” in
Proceedings of the Conference on Software Maintenance - 1988,” IEEE
Computer Society Press, 1988, 241-248.

Liskov, B.,“A Design Methodology for Reliable Systems,” AFIPS
Conference Proceedings, Vol. 41, Part 1, 1972, pp. 191-199,

Nance,R. E.,B. . Keller, and D. Boldery, “Documentation Production
Under Next Generation Technologies,” Technical Report SRC-89-001,
Systems Research Center, Virginia Tech, 15 February 1989,

Pamnas, D.,“On the Criteria to be Used in Decomposing'Systems into
Modules,” Communications of the ACM, Vol. 15, No. 5, May 1972, Pp.
330-336.

Parnas, D.,“On the Design and Development of Program Families,” IEEE
Transactions on Software Engineering, Vol. SE-2, No. 1, March 1976, pp.
1-9.

Peters, L., Advanced Structured Analysis and Design, Prentice- Hall, 1987.
Ridgway, M., “Curriculum Shortfall,” Datamation, 15, December 1988, 77.

Roman, D., “Classifying Maintenance Tools,” Computer Decisions, 18 (June
30, 1986) 35,40-41,68-71.

Schneidewind, N. F., “The State of Software Maintenance,” JEEE
Transactions on Software Engineering SE-13, 3, (March 1987) 303-310,

Scott, L.,“An Engineering Methodology for Presentin g Software Functional
Architecture,” Proceedings of the Third International Conference on Software
Engineering, NY, 1978, pp.222-229,

Swanson, E.B., “The Dimensions of Maintenance,” Proceedings of the
Second International Conference on Software Engineering, 1976, 492-497

Warnier, J., Logical Construction of Programs, 3rd edition, trans. B,
Flanagan, NY: Van Nostrand Reinhold, 1976.

36

[WILC83)]

[YAUSS84]

[YAUSSS]

[ZELM79]

Wild, C. and X. Maly, “Towards a Software Maintenance Support
Environment,” in Proceedings of the Conference on Software Maintenance -
1988, IEEE Computer Society Press, 1988, 80-85.

Yau, §.S., Methodology for Software Maintenance, Final Technical Report
RADC-’I“R83-262, NTIS AD-A143-763/ 1, February 1984,

Yau, S., R. Nicholl, 7. Tsai, and S. Lin, “An Integrated Life-Cycle Mode]
for Software Maintenance,” JEEE T, ransactions on Software Engineerz‘ng 14,
8, (Aug 1988) 1128-1144.

Zelkowitz, M.V., A.C. Shaw, and J.D, Gannon, Principles of Software
Engineering and Design, Prentice-Hall, Englewood Cliffs, New Jersey,
979,

Unclassified

SECURITY (oAb sl ion OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Ta. Rﬁigﬂsssﬁgg‘(CLASSIFICATION

1b. RESTRICTIVE MARKINGS

4]

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY GF REPORT

2b. DECLASSIF!CATION/DOWNGRADWG SCHEDULE

Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
Systems Research Center SRC20-001

5. MONITORING QORGANIZATION REPQRT NUMBER(S)

6b. OFFICE SYMBOL

Ba. NAME OF PERFORMING ORGANIZATION
(if applicable)

Systems Research Center

7a. NAME OF MONITORING ORGANIZATION

Naval Surface Warfare Center

BC ADDRESS (City, State, and <ZiP Code)
320 Femoyer Hall
Virginia Tech
Blackshurg, Virginia 24061-0251

75. ADDRESS (City, State, and ZIP Code)
Dahlgren, Virginia 22448-5000

8b. QFFICE SYMBOL

Ba. NAME OF FUNDING!SPONSORJNG
(If applicabie}

QRGANIZATION
Navaf

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

urface Warfare Center
8c ADDRESS {City, State, and ZIP Code}
Dahlgren, Virginia 22448-5000

10. SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

PROGRAM PROJECT
NO. NO.

ELEMENT NO.

ACCESSION NO.

1. TITLE (include Security Classification)}

Requirements for a Software Maintenance Methodology,

Interim Report: Subtask 1

12. PERSONAL AUTHOR(S)
Ri,

chard E. Nance, James D. Arthur, and Renjamin J. Keller

Bl U SRR, S,

13b. TIME COVERED

53ETYPE OF REPORT
terim FrOM 16 Aug 89 7515 Dec 89

14. DATE OF REPQAT (Year, Maonth, Day)

15. PAGE COUNT
199G January 18 36

AP

16. SUPPLEMENTARY NOTATION

COSATI CODES
GROUP SUB-GROUP

17,
FIELD

18, SUBJECT TERMS (Continue on reverse if necessary and identify by block numberj

o et i mar it R msmrar e

relationship between the

Abstraction Refinement Mode

earlier design and requiremnents documents to a

assessment,

19. ABSTRACT (Continue on reverse (f necessary and identify by block number)

. Software mantenangc, although widely recognized as the most costly period in the life of 2 system,
15 given only passing consideration in life-cycle models. An

extensive literature review shows the

development and maintenance phases to be ignored to a large extent. The

1 (ARM) describes the dependency of software maintenance on the quality
of development documentation and depicts the adaptive and perfective maintenance forms as relying on

: _ greater degree than corrective and preventive maintenance,
The ARM is effective in laying the foqndatlons for a software maintenance methodology,

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

I UNCLASSIFIEDAUNLMITED [J SAME AS RpT. [oTic users

21, ABSTR%&_%E&T& CLASSIFICATION

223. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. GFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS FAGE

Unclassitied

