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Abstract. The viscous flow inside an elliptic moving belt is studied using Newton’s method on a
Hermite collocation approximation. The streamlines and especially the vorticity distribution are
found for Reynolds number up to 1000 and aspect ratio up to 5. For low Reynolds numbers vorticity
diffuses from regions of high curvature. For high Reyvnolds numbers there exists a closed boundary
layer and a core of constant vorticity. The core vorticity compares well with the estimation from
the mean square law.

1. Introduction. Fiuid flows with closed streamlines or recirculation occur in many instances,
e.g., in the rear wakes behind bluff bodies, separated flows or inside bubbles and cavities. The
simplest geometry which models recirculating flows is the circular boundary. Prescribed tangential
velocities on the circle cause the interior fluid to rotate. For low Reynolds numbers, Kuwahara and
Imai [1] studied the circular boundary by a perturbation about Stokes flow. They also used finite
difference methods to integrate the equations for Reynolds numbers up to 128. For high Reynolds
number flows, Batchelor [2} showed that the interior of a recirculating flow must be of constant
vorticity. There is also a closed boundary layer surrounding and causing the interior rotation. For
flows with zero pressure gradient along the boundary, Batchelor proved the important relationship
that the mean square velocity along any streamline inside the boundary layer is constant.

High Reynolds number analytic solutions for the boundary layer on a circle (which has zero
pressure gradient) were attempted by Squire [3] and Burggraf [4] using a perturbation about rigid
rotation. Wood [5] noted that such Oseen approximation would not yield Batchelor’s mean square
law.

Wood [5] first considered the moving elliptic belt problem, the flow enclosed by an elliptic belt
moving tangentially with constant speed. Perturbing about the small ellipticity, Wood found that
for high Reynolds numbers the interior (constant) vorticity is inversely proportional to the square
root of the area of the ellipse. Riley [6] and Haddon and Riley {7] studied analytically and by finite
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differences the flow in an elliptic region, but with a very specific nonconstant boundary velocity.
They found the core vorticity is indeed constant for high Reynolds numbers.

The present work considers the moving constant speed elliptic belt problem. We shall study
in detail the flow and especially the vorticity distribution as ellipticity and Reynolds number
are varied. For high Reynolds numbers the value of the core vorticity will be compared to the
theoretical work of Wood [5] and an alternate estimate derived from the methods of Wood {5] and

Mills [8].

2. Formulation. The two-dimensional steady Navier-Stokes equations are

1
'U,"u.,frf -|— mu;r = _;p:t," + 14 (u;:xr ‘+' u’ylyr) 3 (1)
1
w'vy 4 00}, = -—;p;, + v (Vg + Vyryt) s (2)
'Ua;.! + 'U;; = 0. (3)

Here «', v' are velocity components in the Cartesian z' , y' directions, p is the density, p’ is the
pressure, and v is the kinematic viscosity. The boundary conditions are that on the ellipse
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the velocity is tangent with a constant magnitude of U, and that the velocities are bounded inside

the ellipse. We normalize all velocities by U, all lengths by b, the pressure by pU? and drop primes.
Define a stream function by

U= ’lpy, v = —-’(bx. (4)
The governing equations in the interior Q of the ellipse become
V4¢ =R (¢yvz¢m e 'lp:cvz"»by) 3 (5)

where V7 is the Laplacian operator and R is the Reynolds number Ub/v. The boundary conditions
become, on the ellipse

z? + )\23;2 =A%, (6)
"rbf: + 'Qb; =1, (8)

where the aspect ratio A = a/b > 1. The eccentricity of the ellipse is /1 — A—2.

3. Numerical method. We apply a Newton-like iteration to Equation (5). It is well-known that
if Newton’s method converges to the root of a nonlinear equation, it does so rapidly. However, a.
good initial guess is usually needed for convergence to occur. For this problem, good initial guesses
are available. For low Reynolds number (R = 1) we use as initial guess

O(z,) = [2? + 327 - 3] /2- _ 2
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If Q is the unit disk (i.e., A = 1), then %% exactly solves Equations {5-8). For a general ellipse
(A # 1), ¥(® does not satisfy (8), but it does represent a smooth mapping of the known solution
on the unit circle to an ellipse. A good initial guess, coupled with the fact that the size of the
nonlinear term is relatively small when R is small, allows us to achieve rapid convergence for B = 1,
Solutions for higher Reynolds number on a given ellipse are then computed by using as initial gness
a solution for a slightly smaller R on the same ellipse.

To derive Newton’s method for a nonlinear PDE such as Equation (5), we follow Rice and

Boisvert {9], and consider the nonlinear operator
Fw) = Viw ~ B(w, Viw, — w, Viw,). (10)
Expanding F about some known function »(®), and keeping only the first two terms, we obtain
F(w) = F(w®) + F'(w®)(w - ), (11)

where F” is the Frechet derivative of F. F'(w(®) is an operator that depends on w(® and in (11)
is applied to the function (w — w(®). Setting the right side of Equation (11) to zero, we obtain the
following iteration for approximately solving F(w) = 0: start with an initial guess w(® for w, and
fori =0, 1, 2, ..., until some termination criterion is satisfied, solve

Ff(w(f))w(iﬂ) = F'(w()e) - Fuw(h

for w(**1). The key observation is that w( is known and F'(w(®) is a linear elliptic operator.
Thus, at each Newton step we must solve a linear problem for the next approximation w(i+3),

For the operator F defined by Equation (10), the Frechet derivative F” (w) is found by con-
sidering

Flw46)=Vw+6) ~ R[(w+68),Vi(w+6), - (w+ ) VEi{w + 6),], (12}

where & is a small perturbation of w. If we keep only terms that are constant or linear in § , We
obtain

FPlw+68) ~ Viw ~ B(w,Viw, — w,Viw,) + V4§
= R(w,V?6z + Vw06, ~ w, V28, — V?w,6,)
= F(w) + F'(w)§, (13)

from which we conclude
Flwyw = V4w - R (wgf)\'ﬂ we + Vi w, — IV, — v2eld ’wx) . (14)

~ After a similar linearization of the boundary condition (8), we obtain the following linear
fourth order PDE to be solved at each iteration of Newton’s method:

Vi = R (Ve + V08, - OV, - vy )
= —R (42000 - gV} (15)
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subject to the boundary conditions
Y =0, (16}
20004 + 200, = 1+ (409)” + (w{). (17)
In order to solve Equations (15-17) we rewrite (15) as a system of two second order equations
V36— R (4062 + 0%, ~ ¥4, - 6w.) = -k (#269 — pD(), (18)
V24— ¢ = 0, (19)

where ¢ is the vorticity. We solve the coupled system (18) and (19) simultaneously. It is also
convenient to transform the problem to a more natural but nonorthogonal coordinate system, in
independent variables (r,#), where

r=+(z/A)P +y, 0=tan"(\y/z), z=Arcosé, y = rsin 6. (20}
By symmetry, we may assume 9(7, ) = (7,6 + 7). Thus, we only need to solve the transformed
problem on the rectangle 2 = [0, 1]% [0, 7). The boundary conditions imposed on 9} are as follows:
Right side (r = 1): boundary conditions (16) and (17), transformed to the (r,6) coordinate
system. '
Left side (r = 0): 9(0,6) must be a constant, since this side corresponds to a single point (the
origin in the (z,y) coordinate system).
Bottom and top sides (§ = 0, 7): periodic boundary conditions (i.e., Y(r,0) = (r, 7).

We discretize Equations (15-17) (transformed to (r,0) coordinates) using collocation with
Hermite bicubic basis functions. Collocation is a flexible and general method that has been found
to perform well on problems with difficult boundary conditions (see Dyksen, et al. (10, 11]). With
this choice of basis functions, collocation is fourth order accurate on smooth problems (see Percell
and Wheeler [12], and Prenter and Russell {13]). The boundary conditions on the right, top and
bottom sides are handled easily by collocation. Special treatment is needed for the left side. It
is straightforward to enforce the condition that 1 be constant along r = 0. In addition, one
must enforce Equations (18) and (19) on the left side. Since the coefficients of the transformed
PDE are undefined for » = 0, we impose the original PDE in Cartesian coordinates at the origin.
Second-order finite difference approximations are used. The resulting equations (one for each of
Equations (18) and ( 19)) may be included in the linear system produced by collocation since certain
unknowns in that system correspond exactly to unknown function values at grid points near r = (.

A modified version of the module HERMITE COLLOCATION (see Houstis, et al. [14]) is used
to solve for ¥:(+1) and ¢(i+1) at each step of the Newton iteration. This software is available as
part of the ELLPACK system described in Rice and Boisvert [9]. For the results reported below,
the finest grid used has 33 grid lines in the r direction and 17 in the # direction. The resulting
discrete system has 4162 equations and unknowns. The grid spacing is uniform in 6. A modest
amount of grid refinement in = is needed in order to get convergence and to accurately resolve the
boundary layer along » = 1 for large R. For example, for A = 3, 4 and 5, grid lines are placed at

r=0,.05, .10, ..., .80, .817, .833, .85, 867, .883, .90, .91, .92, ..., .99, 1.
For each ellipse, solutions are obtained for Reynolds number
R=1,5, 10, 25, 50, 75, 100, 150, 200, 250, 300, 400, ..., 1000.

The Newton iteration is stopped when the maximum relative change in ¢ at the grid points falls
below 10~7. Convergence typically occurred in less than 5 Newton iterations. The computations
were done in double precision on a Sequent Symmetry S81 with 10 processors and Weitek 1167
floating point coprocessors, using the fortran compiler.
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4. Results. Results are obtained for A = 1 to 5 (elliptic eccentricity 0 to 0.9798). The Reynolds
number is varied from 1 to 1000. Typical streamlines are shown in F igs. (1, 2) for two different
aspect ratios A. The increase in Reynolds number does not alter the streamlines much. Since the
boundary speed is always positive, one single recirculation cell will be observed for all A and R,

The vorticity picture is quite different. Fig, (3) shows the constant vorticity lines for the 2:1
ellipse. At low Reynolds numbers vorticity js concentrated at the vertices of the major axis. As
Reynolds number is increased, vorticity changes become confined in a thin layer near the boundary.
Note also that vorticity is not symmetrical with respect to the axes z, y. This is clearly shown
for the larger Reynolds numbers where convection is important. Since the belt is moving in a
clockwise sense, vorticity is transported downstream. The detailed vorticity structure is shown in
Fig. (4) for R = 100 and Fig. (5) for B = 1000. Fig. (6) shows the long ellipse with A = 5. The
detailed structures for R = 100 and B = 1000 are shown in Figs. (7, 8).

In order to investigate the constancy of vorticity at high Reynolds numbers, we plotted ¢ =
V¢ along radial lines from the origin for B = 1600. For the 2:1 ellipse F ig. (9) clearly shows
vorticity is constant for much of the interior. The boundary layer near r = 1 is evident. The
vorticity distribution on the elliptic boundary (or shear stress) is not constant, however {(Fig.
(10)). It is doubly periodic with maximums near § = 20° and 200°. The minimums are near
§ = 110° and 290°. Negative shear stress here does mot mean separation since the boundary
velocity is not zero, Similar results for A = 5 (Figs. (11, 12)) show ellipticity does not affect the
constancy of the interior vorticity. However, the shear on the boundary is less smooth.

If the interior vorticity is constant for high Reynolds numbers, it can be Tepresented by its
value at the origin. Fig. (13) shows this value rises to a plateau when Reynolds number is increased
to about 100, then a very slow, almost imperceptible, increase from R = 100 to 1000. The interior
vorticity is almost independent of R at high Reynolds numbers.

5. Comparison with theory at high Reynolds numbers. The boundary layer equation in
von Mises form is
A + u62u2 (21)
ds  ds "yt
Here s is the arc length along the boundary and V(s) is the interior velocity evaluated at the

boundary. Following Wood [5] and Mills [8], Eq. (21) is linearized to

out vt o
os  ds TV G

(22)

where U/ is the comstant oot mean squared value of the boundary velocity U(s). Integrating
Eq. (22) along any closed streamline in the boundary layer yields

9242
—{M—Eds = 0. (23)

One further integration gives the mean squared law
fg u® ds = constant = j{ V2 ds. (24}

On the boundary v = I/ and thus

j{UQ ds = }gvﬁ ds. | (25)
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Table 1.

Comparison of vorticity at origin with analytical predictions.

Numerical ¢(0,0) Analytical Analytical

A at R = 1000 Eq. (29) Wood [5]
1.0 2.000 2.000 2.000
1.1 1.907 1.909 1.907
1.3 1.755 1.770 1.754
1.5 1.641 1.668 1.633
1.7 1.554 1.593 1.534
2.0 1.462 1.510 1.414
3.0 1.297 1371 1.155
4.0 1.237 1.314 1.600
5.0 1.209 1.285 0.894

For the present problem U/ = 1. The inviscid rotational flow of the core is

o

Y=t

(xz + A2y2 - )\2),

where ¢g is the constant core vorticity. Thus

2
VP = () + () = i (o £ X7).

In terms of our (r,#) coordinates, on r = 1

ds = /(dz)? + (dy)? = /X2 sin? @ + cos? 6 db.

Eq. (25) becomes

_ N /L
¢°‘(A+A)\/;’

L= j£ (A2 sin® 8 + cos? ) dp,

where

I = j( (2 sin? 6 + cos? 6) ap.

(26)

(27)

(28)

(29)

(30)

(31) |

For given A, ¢ can be evaluated by numerical gquadrature. The results are shown in Table 1.
We see that our approximate formula Eq. (29) is within 6% of the numerical values. In contrast,
Wood’s [5] (area)”1/? rule greatly underestimates the interior vorticity, especially for the higher

aspect ratios.

6. Conclusions. Using a combination of Newton’s method and Hermite collocation we calculated
completely the flow due to a moving elliptic belt. Streamline and vorticity plots were obtained
for the first time. Results for Reynolds number larger than 1000 can be obtained, although with
minimal gain in information. Also turbulence may set in for larger Reynolds numbers.
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We find that for low Reynolds numbers vorticity diffuses from regions of high curvature of
the boundary. As Reynolds number is increased, convection causes the vorticity to spread in a
continuous layer near the boundary. The interior vorticity becomes constant and independent of
the Reynolds number. For our problem; such a state occurs for R larger than about 100. Even
though a pressure gradient exists along the boundary, we find the mean square law still holds even
for ellipses with high aspect ratios.

We emphasize that it is very difficult to discern the character of the flow by studying the
streamlines alone. For example, there seems to be little change in streamlines for B = 1 or
£ = 1000 (Fig. (1)), but the vorticity picture is entirely different (Figs. (3a), (3d)). We also note
the fallacy of modelling high Reynolds number recirculating flows with a concentrated vortex (e.z.,
Bryson [15]). Although the streamlines are closed, there is no evidence vorticity is concentrated
In the interior. We find the interior vorticity is evenly spread, and its magnitude is quite low
compared to boundary vorticity.
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Figure Captions

Figure 1. Streamlines for A = 2, top R = 1, bottom R = 1000, Avp = 0.05.

Figure 2. Streamlines for A = 5, top R = 1, bottom R = 1000, A+ = 0.05.

Figure 3. Constant vorticity lines for A = 2. (a) R = 1, (b) R = 10, (¢) B = 100, (d) R = 1000.
Ad = 0.5,

Figure 4. Constant vorticity lines for A = 2, detail for R = 100, A¢ = 0.5,

Figure 5. Constant vorticity lines for A = 2, detail for R = 1000, A¢ = 1.0.

Figure 6. Constant vorticity lines for A = 5. (a) R = 1, (b) R =10, (¢) R = 100, (d) R = 1000.
Ad = 1.0.

Figure 7. Constant vorticity lines for A = 5, detail for R = 100, A¢ = 1.0.

Figure 8. Constant vorticity lines for A = 5, detail for B = 1000, A¢ = 1.0.

Figure 9. Vorticity distribution along a ray, A = 2, R = 1000.

Figure 10. Vorticity distribution along the boundary, A = 2, R = 1000.

Figure 11. Vorticity distribution along a ray, A = 5, R = 1000.

Figure 12. Vorticity distribution along the boundary, A = 5, R = 1000,

Figure 13. Vorticity at origin as a function of Reynolds number. (a) A = 2, (b) A = 5.
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