

LINEAR TIME DISTANCE TRANSFORMS FOR QUADTREES

Clifford A. Shaffer

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

Quentin F. Stont

Department of Electrical Engineering
and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122 USA

ABSTRACT

Linear time algorithms are given for computing the chessboard distance transform for both
pointer-based and linear quadtree representations. Comparisons between algorithmic styles for the
two representations are made, Both versions of the algorithm consist of 3 pair of tree traversals.

Keywords and phrases: quadtrees, hierarchical data, structures
QMAT, top-down traversal, neighbored traversal

August 23, 1989

1. INTRODUCTION

The (region) quadtree, shown in Figure 1, is a widely studied data structure for representing
digitized images. An extensjve survey of quadtrees and their use in image processing and graphics
appears in Samet (1989a, 1989b). Unfortunately, the two-dimensional nature of the information
they store makes quadtree usage more stubtle than, say, binary search tree usage, and efficient
algorithms often demand special quadtree techniques. This problem is intensified by the fact
that there are at least three distinct Tepresentations for the quadtree structure reported in the
literature. Each has unique advantages and disadvantages, with the result that each representation
has applications for which it is most sujted. The pointer-based quadtree representation maintains
the explicit tree structure as illustrated by the tree of Figure 1b. The Ineqr quadtree (Gargantin
1982) replaces the tree structure with a sorted linear list containing only the leaf nodes from
the original tree. The sort key is obtained by assigning to each leaf node an address derived by
interleaving the bits of the z and ¥ coordinates of the upper left pixel for the corresponding block
in the image. The resulting records appear in the list in the same order as they would be visited
by a traversal of the pointer-based quadtree, The DF-expression (Kawaguchi and Endo 1980} is a
third quadiree Tepresentation obtained by listing only the values of the nodes (both internal and
leaf) in order as they occur when performing a pre-order traversal of the tree structure,

The pointer-based and linear quadtree Tepresentations are the two most often appeating

in the literature as base representations for describing algorithms, The flavor of the resulting

Pointer-based algorithms are concerned with tree-oriented Operations such as finding the
father or son of a node, or neighbor-finding operations (Samet 1982a, Samet and Shaffer 1985). In

1

comparison, linear quadtree algorithms access the node list by means of list search and insertion
operations. While algorithms for the two representations may appear quite different, algorithms
yielding a particular run time complexity for one representation can usually be converted to an
eqnally efficient algorithm in the other representation (one example of such a conversion appears
in Shaffer and Samet (1987)).

The purpose of this paper is twofold. First, linear time algorithms are provided to solve the
problem of generating the quadtree chesshoard distance transform of Samet (1982b). By providing
such an algorithm, alinear time solution to the computation of the Quadtree Medial Axis Transform
(QMAT) of Samet (1983} is also implied since Samet’s algorithm generates the QMAT from the
distance transform in linear time. While our algorithms are similar to previous ones, they are the
first with linear worst-case times. Second, by presenting algorithms both in terms of pointer-based
and linear quadtree representations, the similarities and differences of the two approaches can bhe
considered.

Section 2 provides further definitions of the data structures and terminology. Section 3
presents the distance transform algorithm in terms of the pointer-based quadtree representation,
Section 4 presents the distance transform algorithm in terms of the linear quadtree representation.
Section 5 presents our conclusions. Finally, PASCATlike pseudo-code for both distance transform

algorithms is provided in the Appendix.

2. DEFINITIONS AND FUNCTIONS

Given a 27 x 27 image array of black or white pixels, its pointer-based quadtree represen-
tation is recursively constructed as follows: the root represents the entire image, and if the entjre
image is white or black then the root is a white or black leaf, respectively, * Otherwise, the

root is a gray (interior) node with pointers to its four children (denoted NW, NE, SW, and SE),

* While we describe all concepts and algorithms in terms of binary images, they are easily extended to mulii-color
images as well.

representing the four 27~1 x 9n—1 subimages in the quadrants. Two nodes are adjacent if and
only if neither is a descendant of the other and if the image squares they represent share an edge
or corner. In Figure 1, b is adjacent to ¢ and to the white pixel. The depth of the root is 0, and,

recursively, the depth of a child of a node pis 1 more than the depth of P.

Given nodes p and g, neither of which is a descendant of the other, we say that pis N
(equivalently E, S, W) of ¢ if some pixel in p’s image square is due north (south, east, west) of
some pixel in ¢’s image square, and that p is NW (NE, SW, SE) of ¢ if pis not N nor E (not
N nor W, not S nor W, not S nor E) of ¢ and some pixel in p’s image square is in the northeast
(northwest, southwest, southeast) quadrant of some pixel in ¢’s square. Direction will mean one
of N,E,S, W, NW, NE, SW, or SE. Notice that if neither p nor ¢ is a descendant of the other, then
there is a direction ' such that pisC'of gand ¢ is —C of p, where —C is the direction opposite

of C. In Figure 1, a is N of b, bis'S of a, and the white pixel is also S of a.

Throughout we use the phrase the ¢ neighbor of p, where p is a node and C'is a direction.
K p’s C edge or corner is on the border of the image then there is no such neighbor. Otherwise, the
neighbor is the node (possibly gray} of greatest depth less than or equal to p’s which is adjacent to
p in the indicated direction. In Figure 1, a is the N neighbor of b, and b’s parent is the § neighbor
of a. Neighbor means a ¢ neighbor for some direction C'. Notice that if ¢ is a neighbor of p, then
depth(q) < depth(p) and ¢ represents a square at least as large as the square P represents, It is
important to keep in mind that neighbor is not a symmetric relation, in that p can be a neighbor
of g while q is not a neighbor of p.

Most linear quadtree representations assume some sorted list implementation is used that
allows for efficient key search and dynamic record insertion and deletion (for example, a B-tree is
often used for disk-based implementations). Our algorithm accesses the node list only by means of
an ordered visit to each node of the tree, combined with reconstruction of the identical node list in
reverse order. Thus, the only list operations that need be supported are some form of “next node”

3

operation, and an operation that inserts a new node at the head of a list of output nodes.*

3. POINTER-BASED DISTANCE TRANSFORM ALGORITHM

The Chessboard or I, distance between two points @ and b can be defined as max(|ag — by,
|ay — byl). Samet (1982b) studied the problem of assigning to each black node the smallest distance
to a white node, where the distance from a black node b to a white node w, denoted d(b, w),
is the I, distance from the center point of the image square b represents to the nearest edge or
corner of the image square w represents. The /,, distance transform problem (also called the
chessboard distance transform problem) is to determine di(b) = min{d(b, w): w a white node } for
each black node 4. (If b is the root node, then di(b) is defined to be infinite.) Figure 2 shows the
distances for the image in Figure 1.

Our pointer-hased quadtree algorithm is based on “top-down quadtree traversals” as de-
scribed in Samet (1985). Top-down quadtree algorithms also appear in Jackins and Tanimoto
(1983), Rosenfeld et al, (1982), and Samet and Webber (1984). There are many such traversals,
depending on the relative order in which nodes are to be visited. For example, one can visit all
children after their parent {(a postorder traversal), or before (a preorder traversal). For our purposes
the parent/children ordering is immaterial since no work 1s ever performed at interior nodes, but
the relative order in which different children are visited is important. In general, a stack is used to
store a path to the root (either explicitly, or implicitly through recursion), where if an interior node
is being visited then it causes its children to be visited, while if a leaf is being visited then some
action is performed and the leaf is removed from the stack. “Top-down quadtree traversals” are
distinguished from top-down tree traversals such as preorder traversal by the property that a call

to a node p also passes pointers to p’s eight or fewer neighbors. Notice that if ¢ is a child of p, then

* An alternative, though unusual, implementation for the lnear quadtree suitable for use in this algorithm could be

created with simple stack aperations. Nodes would be POP’ed off an input list, precessed, and PUSH’ed onto an output list,
thus reversing the node arder.

s neighbors, 2) one of p’s children, 3) or a child of one
of p’s neighbors. Using this fact, ¢’s neighbors can be determined in constant time if p’s neighbors
are known, and hence the overhead for an entire traversa] can be performed in linear time, Since
the distingnishing feature of “top-down quadtree traversals”, compared to standard top-down tree
traversals applied to quadtrees, is the fact that each node is accompanied by its neighborhood, in
the rest of the paper they will be called neighbored traversals.

Throughout, & » B, and W will denote the total number of nodes, the number of black
nodes, and the number of white nodes, respectively, in the quadtree. Time is always the worst-case
time measured as a function of . Since B+ W < N < (4/3)« (B+ W), N = OB +W).

Samet did not analyze the worst-case time of his algorithm, but it is easy to show that
itis®N+B+H), where H is the height of the quadtree. Samet (1985) states that the time
of his algorithm “cannot be lowered by use of the top-down method since its computation time
is not dominated by the cost of neighbor finding”. While this is true for average time under his
assumption concerning the expected distribution of black nodes, the top-down method can he used
to reduce the worst case time complexity. The algorithm described in this section is similar to
Samet’s, but requires only linear time in the worst case.

For a black node b, radius(b) denotes the oo radius of &' square, i.e., radius(b) is half of
the length of a side of the square. Two properties abont chessboard distances will be used later to

prove the linear upper bound for our algorithm.

d(p,w) < d(q, w)-{—radius(p)-f—radjus(q) (see Figure 3), and since di(p}) < d(p, w) and di(q) = d(q,w),

this gives the result,

For our pointer-based quadtree distance transform, each black node » has a field D (indi-
cated as p.D in PASCAJ notation) which is initially o0, and which equals di(p) at the end of the
algorithm. The value of p-D never increases, and at any time during the algorithm, if p.D < 0o

then there is a white node w such that p.D = d(p, w).

The pointer-based algorithm consists of two neighbored traversals, named NW_to_SE and
SE_to_.NW, which can be performed in either order, These are Just mirror images of each other,
interchanging the roles of North and South, and of Fast and West, so only the NW_to_SE traversal
will be explained. In this traversal, when a node p is visited, all of the nodes in the N W, N, and
W directions have already been visited. This is insured by visiting the children of each node in the
order NW, NE, SW, and SE. If p is white, then for each black neighbor ¢ in the E, SW, S, and SE
directions, ¢.D is set equal to radius(g). If pis gray then its children are visited, Finally, if p is
black, first p.D is set equal to radius(p) if any of its neighbors in the NW, N, NE, or W directions
are white. Then for each black neighbor ¢ in the E, SW, S, and SE, directions, ¢.D is set equal to

the minimum of ¢.D and p.D + radius(p) + radius(g).

Algorithm 1, named POINTER_TRANSFORM, encodes the procedure described above,

Theorem: The I, distance transform algorithm described above is correct and always finishes in

time linear in the number of nodes of the quadiree.

Proof: The time is linear because each neighbored traversal uses linear time. For any black node
p, either p is the root and initialization sets p.D = 00, or else there is some néa;rest white node
w. This white node is in some direction C of p, and by Lemmas 1 and 2 below, at the end of the
appropriate traversal p.D = dt(p). Since p.D is never less than di(p), the distances are all correctly

determined. QED.

Lemma 1: For each black node p, if a nearest white node is N or W of p then p.D = di(p} at the

6

end of the NW_to_SE traversal, and if it is S or E of pthen p.D = di(p) at the end of the SE_to.NW

traversal.

Proof: Let w be a nearest white node to P, where w is C of pfor C ¢ {N,E, 5, W}. Thereis
a pixel on the C border of P’s image square such that some pixel of w’s image square is C' of the
border pixel. Between w’s image square and this border pixel there are only black pixels, since w
is a nearest white. Therefore there s a sequence of black nodes ¢y, ..., q; (9% = p), where the ¢
border of ¢;’s image square touches w’s image square, ¢;,1 is a —C neighbor of ¢; for 1 < i < k-1,

and

dt(gip1) = d(giz1,w) = d(g;, w) + radius(g;) + radius{g;y1) forl<i<k—1.

(See Figure 4a). Property 1 insures that i 1s larger than ¢;_; for i > 1. All of these claims
are straightforward, except perhaps the fact that %it1 is a —C neighbor of ¢, since this requires
that depth(g;¢1) < depth{g;). To see that this is true, notice that if it is false then d(giy1, w) >
radius(g;q) + 2*radjus(qi) > S*Iadjus(qz-ﬂ). Since d{gi11) < 3*radjus(qi+1) is always true, this
would imply that w is not the closest white to ¢;11, and hence not to p.

During the visit to ¢, in the appropriate traversal, ¢y.0 is set equal to radius(g). This is
because either w is a neighbor of ¢; and the visit to g1 sets q1.D or qr isa —C' neighbor of w and
the visit to w (which preceeded the visit to q) set ¢;.D. During the remainder of the traversal,
g: is visited before ¢; 11, and the visit to g; results in ¢;41.D being set equal to d(g;11, w). When

t=k—1, this sets p.D = d(p, w) = di(p). QED.

Lemma 2: For each black node P, if a nearest white node is NW or NE of p, then p.D = di(p) at
the end of the NW_to_SE traversal, while if it is SE or SW of p, then p.D = di(p) at the end of the
SE_to_ NW traversal.

Proof: The proof is quite similar to that of the previous lemma. If a nearest white is, say, NE

of p, then there is a sequence of black SqUATES §1,...,¢x = p, and an integer §, 1 < j < k—1, such

7

that: ¢ is adjacent to w; each ¢;4q is a SW neighbor of ¢; for 7 < i < k—1; either each git1 is a S

neighbor of ¢; for 1 < § <7 ~1, or each i+1 15 a W neighbor of gifor1<i<j- 1; and
di(git1) = d(gip1,w) = d(g;, w)+ radius(g;)} + radius(g;4) for1 <i<k-1.

{See Figure 4b.) Once again, during the visit to g1 in the NW_to_SE traversal, ¢;.D = radius(g,),
and during the visit to ¢; the value of ¢;.,.D is set to the correct value. QED,

It might appear that there is a problem in that when a leal node that is a SE son of its
parent is visited during the NW_to_SE taraversal, its NE neighbor has not yet been visited and thus
does not contain the correct distance transform valye. However, once again, Property 1 insures
that ¢; is larger than ¢i—1. The result is that no node %, < i< kisaSE son. Likewise for NW

sons during the SE_to_N'W traversal.

4. LINEAR QUADTREE DISTANCE TRANSFORM ALGORITHM

This section presents a linear time two-pass chessboard distance transform algorithm for
linear quadtrees. The two passes of this algorithm serve the same functions as the two traversals of
the pointer implementation, visiting the leaf nodes in the same order, but accomplish their goals
in a slightly different fashion. The first pass calculates the distance transform for each node N
with respect to those nodes that precede N in the node list (i-e., N’s value after the first pass will
be the distance to the nearest WHITE node preceding N). This is accomplished by examining
the distance transform values of those blocks adjacent to N that have been processed already. N
is then output to a temporary node list with its value set to the (partially calculated) distance
transform. The nodes are output so that the result of the first pass will be a node list in reverse
order from the input node list. The second pass calculates the distance transform for each node
N with respect to those nodes that now precede N in the node list (i.e., those nodes that, in the
original input tree, came after N)- This insures that cach node examines all of its neighbors to

8

deduce the correct distance transform value. The algorithm requires exactly two list searches and
two list insertions for each node, with all searches performed in order and ali insertions performed

in the reverse of the input order (i-e., insertions to the head of the node list).

The primary difference between this algorithm and the one presented in Section 3 is that
in the linear quadtree, neighbor information is not passed down to leaf nodes from the internal
nodes. Instead, information about each node’s previously visited neighbors is stored in an active
border table (Samet and Tamminen 1985). Since the node list is processed in order, the border of
the region of the corresponding image consisting of the blocks that have already been processed
has the shape of a staircase, For example, consider Figare 5 where the blocks have been assigned
labels matching their order in the input list. The heavy line represents the state of the active border
after processing block 6. The broken line along the southery and eastern border of block 7 shows
the change in the active border after processing block 7. The active border of a 27 x o image
consists of sets of horizontal and vertical segments such that the tota] length of each of these sets
is 2" pixel widths. Thus, a complete description of the neighboring nodes along the active border

can be maintained using two tables each containing 2” records.

The distance transform algorithm must visit corner-adjacent neighbors as well as side-
adjacent neighbors. It is therefore ntecessary to maintain, in addition to two edge tables, a table
containing the value at each potential node corner (referred to as a verter in Samet and Tamminen
(1985)). This allows the algorithm to retrieve efficiently the distance transform for a node’s NW
neighbor in cases where neither edge table retains a record corresponding to the NW neighbor’s
value (e.g., in Figure 5 node 1 is the NW neighbor of node 13). Since a vertex may fall anywhere
within a range from 0 to 27 along the length of each axis (with the vertices at 0 being identical),
the vertex table must be of size 9 - 2% + 1. A line segment with equation X =Y 4 ¢ will intersect
the active border only once; therefore, the vertex table can be organized to store the record for the
vertex at (X, Y) in location ¢ = 2" + X _ v (2" is added to yield a range from 0 to 2. 27),

9

Algorithm 2, named LINEAR_TRANSFORM, encodes the procedure described in this sec-
tion. As with Algorithm 1, a tree consisting of a single hlack leaf would have a distance transform
value of co. Arguments very similar to those used in Theorem 1 of the previous section can be used
to demonstrate the correctness of the algorithm.

Since procedure DOPASS js executed twice for each node of the tree, the algorithm is O(N)
il the sum of the calls to DOPASS are also O(X). Assuming that REVERSE_ORDER_INSERT
(which inserts a node at the head of the node list) operates in constant time, the only point that

must be considered is the cost of the two while loops. Each iteration of these loops represents

the smaller node (say N') has no other neighbor along their common side other than A. Thus, the
total number of side-adjacent pairs that must be examined is O(nN), yielding a total cost for each

traversal of O(N).

5. CONCLUSIONS

Two linear time algorithms have been presented to calculate the chesshoard distance trans-

form for quadtrees. Algorithms have been presented for both the pointer-based and linear quadtree

are in terms of list operations.

10

A further difference between the two algorithms is that the linear quadtree algorithm is
purely iterative, while the pointer-based quadtree algorithm is recursive (or stack-driven). The
linear quadree algorithm requires a “next node” operation to Support a visit to each leaf node in
order, and construction of an output tree where the value for each leaf is provided in reverse order.
The pointer quadree algorithm requires a stack and an operation to access children.

As mentioned previously, the choice between a pointer-based or linear quadtree represen-
tation is usually determined by whether the application is disk or RAM based. Thus it does not
make sense to declare that one or the other of these representations is “better” since the application
often determines which is appropriate. Instead, these algorithms are complimentary in that they
provide a means whereby the distance transform may be computed in linear time in whichever

representation is selected.

6. REFERENCES

GARGANTINT, 1. (1982) An effective way to represent quadtrees, Communications of the ACM 25,
12(December), 905-910. _

JACKINS, C.L., and TANIMOTO, S.1.. (1983) Quad-trees, oct-trees, and k-trees - a generalized
approach to recursive decomposition of Euclidean space, IEEE Transactions on Pattern
Analysis and Machine Intelligence 5, 5(September), 533-539.

KAWAGUCHI, E. and ENDO, T. (1980) On a method of binary picture representation and its
application to data compression, IEEE Transactions on Pattern Analysis and Machine
Intelligence 2, 1(January), 27-35.

ROSENFELD, A., SAMET, H., SHAFFER, C., and WEBBER, R.E. (1982) Application of hierar-
chical data structures to geographic information systems, University of Maryland, Computer
Science TR-1197, June.

SAMET, H. (1982a) Neighbor finding techniques for images represented by quadtrees, Computer
Graphics and Image Processing 18, 1{J anuary), 37-57.

SAMET, H. (1982b) Distance transform for images represented by quadtrees, IEEE Transactions
on Pattern Analysis and Machine Intelligence 4, 3(May), 298-303.

SAMET, H. (1983) A quadtree media] axis transform, Communications of the ACM 26, 9(Septem-
ber}, 680-693.

SAMET, H. (1985) A top-down quadtree traversal algotithm, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 7, 1{January), 94-98.

SAMET, H. (1989a) Design and Analysis of Spatial Datg Structures: Quadirees, Octrees, and Other
Hierarchical Methods, Addison-Wesley, Reading, MA, 1989,

SAMET, H. (1989b) Applications of Spatial Data Structures: Computer Graphics, Image Process-
ing, and GIS, Addison-Wesley, Reading, MA, 1989.

11

6(November), 717-720.

SAMET II., and TAMMINEN, M. (1985) Computing geometric properties of images represented
by linear quadtrees, IEEE Transgctions on Pattern Analysis and Machine Intelligence 7,
2(March), 229-240.

SAMET H., and WEBBER, R.E. (1984) On encoding boundaries with quadtrees, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 6, 3(May), 365-369.

SHAFFER, C.A., and SAMET, 1. (1987} Optimal Quadtree Construction Algorithms, Computer
Vision, Graphics, and Image Processing 87, 3(March), 402-419.

7. APPENDIX

The algorithms presented in this appendix are written in PASCAL with the extension of the
for <variable> in <set> construct. This construct iterates <variable> over each ftem in <set>,
In addition, the [ollowing operations are assumed to be predefined.

GRAY, WHITE, and BLACK are boolean operations which are true iff the node value is
gray (i.e., an internal node), white, or black, respectively.

SON(node, quad) returns the son of node node in quadrant guad. SONI is identical to SON
except that if node is a leaf node, then node is returned instead of its son.

QUAD(side, side) returns the quadrant bounded by the two sides; e.g., QUAD(N, W) =
NW,

OPQUAD(qua,d) and OPSIDE(side) return the opposite quadrant and side, respectively;
e.g., OPQUAD(NW) = SE; OPSIDE(N) = §.

CSIDE(side) and CCSIDE(side) return the side clockwise and counter-clockwise to side,
respectively; e.g., CSIDE(N) = E. _

SIDEl(quad) and SIDE2(quad) return the first and second sides adjacent to quad, respec-
tively; e.g., SIDEI(NW) = N, SIDE2(NW) = W.

Functions WIDTH, RADIUS, X_OF, Y_OF, and VALUE return 2 node’s width, a node’s
radius, z and y coordinates of a node’s upper left corner, and a node’s value, repectively.

type
direction = (N, E, 5, W, NW, NE, SW, SE);
neighbors = array [direction] of TNODE;
corder = array [1..4] of direction;

end;

{ Compute and return the distance transform for pointer-based quadtree intree. It is assumed that
all .D components of black nodes are initially infinite. }
procedure POINTER_TRAN SFORM(intree : QUADTREE);
var
¢ : direction;
narray : neighbors;
childorder - corder;
begin
foriin (N, S, E, W, NW, NE, W, SE) do narrayfi] := nil;
childorder[1]:=NW; childorder(2):=NE;
childorder(3]:=SW; childorder[4]:=SE;

12

TRAVERSE(root, narray, childorder); { NW_to.SE traversal }
childorder[1]:=S¥E; childorder[2]:=SW:
childorder[3]:=NE; childorder(4]:=NW;
TRAVERSE(root, narray, childorder); { SE_to_NW traversal }

end;

{ Perform a neighbored traversal, visiting the children in the order specified by childorder, }
procedure TRAVERSE(node : INODE; narray : neighbors; childorder - corder);
var
d,ehild : direction;
crarray : neighhors;
begin
if WHITE(node) then begin
for d in (SIDEl(cIﬁIdorder[4]), childorder[3], SIDEQ(chjldorder[4]), childorder[4]) do
if BLACK(narray[d]) then
nerray{d]l.D = RADIUS(narmy[d]);
end
else if BLACK(node) then begin
for d in (OPQUAD(cthdorder[4}), SIDEI(cthdorder[Q]), childorder[3],
SIDE?(childorder[:}])) do
if WHITE(na'rray[d]) then
nodel.D := RADIUS(node)
for d in (SIDEl(chiIdorder[4]), childorder[3], SIDE2(cIﬁIdorder[4}), childorder[4]) do
if BLACK(narmy[d}) then
narray{d]l.D := min(narray{d)].D, nodeT.D+RADIUS(node)+RADIUS(narray(d]));
end '
else begin { GRAY node code derived from Samet{1985) }
for i:=1 to 4 do begin
child:= childorder{s);
cnarraylehild] := SONI(narmy[child], QUAD(OPSIDE(child), CSIDE(chz'ld)));
cnarray[QUAD(child, CSIDE(child))] = SONI(narray[QUAD(child, CSIDE(child))],
QUAD(OPSIDE(child), CCSIDE(child)));
enarray[CSIDE(child)] <= SONI(narmy[CSIDE(child)], QUAD(child, CCSIDE(child)));
cnarray[QUAD(OPSIDE(chz'ld), CSIDE(child))] = SONI(na’f*my[CSIDE(child)],
QUAD(OPSIDE(chz'ld), CCIDE(child)));
cnarray[OPSIDE(child)} = SON(node, QUAD(OPSIDE(child), CSIDE(child)));
cnarmy[QUAD(OPSIDE(chz'Zd), CCSIDE(child))] =
SON(node, QUAD(OPSIDE(chéld), CCSIDE(child)));
cnarmy[CCSIDE(child)] t==
SON(node, QUAD(child, CCSIDE(child)));
enarraylQUAD(child, CCSIDE(child))] :=
SONI(narmy[child], QUAD(OPSIDE(Child), CCSIDE(child)));
TRAVERSE(SON (node,child), cnarray, childorder)
end
end;

Algorithm 1. Pointer-based quadiree chessboard distance transform algorithm

13

type
EDGE = record
length : integer; { length of edge segment described }
posit : integer; { coordinate of edge segment in other dimension }
D : real { value of edge segment, i.e., the distance transform valne along that segment }
end;
var
n : integer; { assume initialized as depth of the quadtree; i.e., width of quadtree = 2n}
z_edge, y_edge : array [0..2"] of EDGE;
vert : array [0..2 ¥ 2] of integer; { Vertex array }

reason for this is that dt(node) = radius(node) + radius(neighbor) + di(neighbor) }
function LINEAR_TRANSFORM(intree * QUADTREE) : QUADTREE;
var
temp, outtree : QUADTREE;
nd : TNODE;
begin
y-edge0).length := z_edgel0].length = 2™ { initialize }
y-edge[0].D := T.edge[0].D := veri{2"] 1= co;
y-edgel0].posit := z_edge[0].posit := 0;
foreach nd in intree do { first pass }
DOPASS(temp, VALUE(nd), X_OF(nd), Y.OF(nd), WIDTH(nd), true);
y-edge[0].length = z-edgel0].length = 2n. { re-initialize }
y-edge[0].D := z_edge[0].D := vert[2™] ;= co;
y-edgel0].posit := z-edge[0].posit := (
foreach nd in temp do { second pass }
DOPASS(outtree, nd, X OF(nd), Y_OF(nd), WIDTH(nd), false);
LINEAR_.TRANSFORM := outiree
end;

{ Calculate the distance transform value with respect to the preceding nodes of 3, node with value
trval, upper left corner (Fz, fy), and width width. The node with its resulting distance transform
value will be inserted into linear quadtree ouz with its position modified so that the resulting file
Is in reverse order from the input file. firstp is “true’ iff this js the first pass. }

procedure DOPASS(out : QUADTREE; nd: INODE; fz, Sy, width . integer; firstp boolean);

var
oldval, curr, outval, newz, newy, oldcurr ; integer;

begin
if WHITE(nd) then trval ;= else if firstp then trval = oo else trval .= ndf.D;
if trval <> 0 then begin { non-white node - process distance transform }

curr = fy; { first do west (east) edge }

while curr < fy 4 widih do begin
trval := min(troal, widih /2 + y-edgelcurr].D); { check each neighbor }
oldcury :~ CUTT] CUTT = curr 4 y-edge[curr].length

end; { now oldcurr points to last segment of edge }

vert{2™ + fr — (fy + width)] ;= y-edgefoldcurr]. D; { NW of curr’s § neighbor }

14

{ Check SW corner, If haven’t seen SW (NE) neighbor, don’t update. }

if y-edgelfyl.length > width then curr = fy; else curr = Jy + width;

if y-edgelcurr].posit = fr then { We have visited the corner neighbor }
trval := min(trval, width 2 + y-edge[curr].D);

curr := fr; { now do north (south) edge }

while curr < fo + width do begin
troal i= min(troal, width /2 + r-edgelcurr].D); { check each neighbor }
oldeurr := curr; curr += curr + z_edge[curr].length

end; { now oldeurr points to last segment of edge }

vert[2™ + fr 4+ width — fy] == z_edgeloldcury]. D; { NW of curr’s E neighbor }

{ now check NE (SW) corner }

if z_edge] z)length > width then cupp -— fz; else eurr .= fr 4 width;

if z_edge[curr].posit = fy then trval := min(trval, width/2 + z_edgefcurr].D)

{ Finally, do NW (SE) corner }
troal = min(trval, width/2 + vert[2™ + fr — Fi))
end; { now, ¢rval is set to be the distance transform value for the node }
{ insert node into output tree (in reverse) }
newz = 2" — (fr + width); newy := 27 _ (fy + width);
REVERSE_ORDER_INSERT(out, newz, newy, width, VALUE(nd), trval);
{ update tables }
if trval <> 0 then { if black node, then add radius }
trval := irval + width/2; { store transform + width in table }
if z-edgelfr)length > width then begin { just updating part of segment }
z_edgelfr + width).length ;= z_edgelfx].length — width;
z_eagelfr + width].D = z_edge(fz).D;
z-edgelf + width).posit := x_edge[fr].posit
end;
z_edgelfz].length = width; z_edge(fz].D = trval;
z_edge[fz).posit = z-edge[fr].posit 4 width,
if y_edgelfyl.length > width then begin
y-edge[fy + width).length = y-edge[fy].length — width;
y-edge[fy + width].D 1= y-edge[fy].D;
y-edge(fy + width).posit := y-edge{fy].posit
end;
y-edgelfy].length := width; y_edge[fy].D := troal;
y-edge[fyl.posit :=~ y-edge[fy).posit + width;
vert[2® + fr — fyl == trval
end;

Algorithm 2. Linear quadtree chessboard distance transform algorithm

¥

15

(a)

Figure 1. A4 x 4 image and its quadtree.

0.5]0.5

0.5

Figure 2. Distance to nearest white node for the black nodes of Figure 1.

Figure 3. The triangle inequality applied to chessboard distances.

a

Figure 4. Paths from node p to the nearest white node w.

11

Figure 5. The active border of a quadtree block
decomposition after processing node 6.

Dashed lines show the active border
after processing node 7.

