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Optimization problems are typically solved by starting with an initial estimate and proceeding
iteratively to improve it until the optimum is found. The design points along the path from the initial
estimate to the optimum are usuatly of no value. The present work proposes a strategy for tracing a
path of optimum solutions parameterized by the amount of available resources. The paper specifically
treats the optimum design of a structure to maximize its buckling Toad. Equations for the optimum path
are obtamed using Lagrange multipliers, and solved by a homotopy method. The solution path has
several branches due to changes in the active constraint set and transitions from unimodal to bimodal
solutions. The Lagrange multipliers and second-order optimality conditions are used to detect
branching points and to switch to the optimum solution path. The procedure is applied to the design of
a foundation which supports a column for maximum buckling load. Using the total available foundation
stiffness as a homotopy parameter, a set of optimum foundation designs is obtained.

1. Introduction

Optimization problems are typically solved by starting with an initial estimate and proceed-
ing iteratively to improve it until the optimum is found. The design points along the path from
the initial estimate to the optimum are usually of no value. However, this need not be the
case. In many applications, it is of interest to find the family of optima obtained by varying an
input parameter such as the amount of available resources. If one member of the family is
known, it may be possible to use it as a starting point and to follow an optimization path that
goes through the other members of the family.

A first step in tracing a family of optima is the application of sensitivity information to
extrapolate from one member of the family to another. The present paper proposes the use of
the sensitivity information to formulate the path of optima as the trajectory of a differential
equation, a procedure known as a homotopy technique.

The basic theory of globally convergent (convergent from an arbitrary starting point)
homotopy methods was developed in 1976 [1,2]. Since then, the method has been used in a
wide range of scientific and engineering problems. It has been successfully applied to
nonlinear complementarity problems [3], nonlinear two-point boundary value problems [4],
fluid dynamics problems [3, 6], and nonlinear elastica problems [7, 8]. References [9, 10] show
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the application to optimum structural design problems discretized by plane stress finite
elements. Reference [9] shows that an appropriate homotopy method is globally convergent
for an optimum design problem. For nonconvex problems the global convergence may be to
only a local optimum design.

In this paper, the original globally convergent homotopy method is adapted to the design of
an elastic foundation for maximizing the buckling load of a column. This problem has been
solved before [11] for a limited range of resource (i.c., total foundation stiffness). The present
paper shows how the solution process can start from the minimum amount of resources which
is required for a feasible solution to the highest value that may be of interest.

2. Optimization problem

The optimization problem that we consider here is to maximize the lowest buckling load of
a structure for a given amount of resources. The structure is discretized by finite elements.
Expressing the lowest buckling load with Rayleigh’s quotient, the problem is written as

. uKu
max min
v e w'Kou

such that ¢'v — 8 =0 and

(1)

v. . =p.<p  fori=1,..., M,

where v is a vector of design variables with components v,, u is the displacement vector, K and
K, are the stiffness matrix and the geometric stiffness matrix, respectively, ¢ is a positive cost
vector, and @ is the amount of available resources, representing total foundation stiffness. The
M design variables are subject to upper and lower bounds, v, ., and v, ;,, respectively.

A typical optimization method, applied to solve this problem, starts from a given design and
continuously scarches for better designs until it finds an optimum design. The trial designs
along the path are of no value. The proposed method instead proceeds along a path of optimal
designs for increasing amounts of resource 6. The resource @ is varied between the minimum
6., Tequired to satisfy the lower bound constraints and a maximum 6,,,, when all variables are
at their upper bounds.

The path consists of several smooth segments, each segment being characterized by a set [,
of variables which are at their upper or lower bounds. Along each segment, some inequality
constraints can be treated as equality constraints

v.=0 or v,=v

i j min i Jj max

for jel, , (2)

so that these variables can be eliminated from the optimization problem, while the other
variables do not have -to be constrained. The optimization problem along a segment can,
therefore, be written as

t
u Ku

max min — for iZl,, (3)

v 14 I Gu

such that c'v — 8 =0.




3. Stationary equations along a segment and the homotopy method

3.1. Stationary conditions

It is common practice to normalize the displacement vector 1, such that the denominator of

Rayleigh’s quotient is unity and to treat this as an equality constraint. Then, using Lagrange
multipliers 7 and M, the augmented function P* jg formed:

P =u'Ku - nu'Kgu-1) - ple'v - 6y, (4)

The following stationary conditions are obtained by taking the first derivative of P* with
respect to v, u, n, and #, and setting it equal to zero.

e 0K _ taKG _ — .
u aviu M u pe, =0 forigZy, (5)

(i) Stability conditions:

Ku—nK u=0. (6)
(1} Normalization constraint:

1-u'K. u=0. (7)

(iv) Total resource constraint:

Flx,0,dy=0, (9)
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where 8 is a positive real number, F,x,and d are N-dimensional vectors, and N is the number
of degrees of freedom. Note that F is viewed as a function of x (the design vector), 8 (the

resource parameter), and d (the parameter vector, usually a random imperfection; see, ..,
[9]). The theoretical basis for globally convergent homotopy algorithms is the following fact

from differential geometry [1].
THEOREM 3.1. Suppose that the N % (2N + 1) Jacobian matrix of F has full rank on
FH(0)={(x, 6,d) | F(x,6,d)=0,0,<8<6,}.

Then for almost all N-vectors d (i.e., except those in a set of Lebesgue measure zero), the
N % (N + 1) Jacobian matrix of

F(x, 0) = F(x, 6, d)
also has full rank on
F10)={(x, 8) | F(x,0)=0,0,<0<86}.

Alternatively, if d were picked at random, it is virtually always true that the Jacobian matrix has
full rank on the solution set of

F(x, ) =0, (10)

According to the theory in [1], this full rank of the Jacobian matrix implies that the zero set
of equations (10) contains a smooth curve I'in (N + 1)-dimensional (x, 8) space, which has no
bifurcations and is disjoint from other zeros of (10). The curve I can be parameterized by the

arc length s as
x = x(s), 0 = 6(s) . (11)

Taking the derivative of (10) with respect to arc length, the noniinear system of equations 8
transformed to a sct of ordinary differential equations

dx
[F (x(s), 663, Fo). 66| g | =0 (12)
&
and
dx
ds | )
= 1
a6 ’ =

ds.
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where F~x and I::ﬂ denote the partial derivatives of F with Tespect to x and 6, respectively, With
the initial conditions at s=0,

M0 =x, 60)=9,, (14)

trajectory gives the path of optimal solutions x. This technique differs significantly from
standard continuation, imbedding, or incrementa] methods in that the resource parameter, 0,
is a dependent variable which can both increase and decrease along the path I Also, no
attempt 1s made to invert the Jacobian matrix F, so that limit points pose no special difficulty.
It differs from initial value or parameter differentiation methods also, since arc length s, rather

Riks—Wempner [12, 13] and Crisfield [14] methods, but the supporting mathematical theory
and implementation details are very different, and the emphasis is on ordinary differential
equation techniques rather than a Newton-type iteration.

The homotopy method as described in [1-10] is intended to solve a single nonlinear system

¢ =1. The d vector, viewed ag an artificial perturbation of the problem, plays a crucial role. In
the version of the method employed here, 8e(8,,6,), each point along I" has physical
significance, and d is fixed at zero (no perturbation). Because d is not random, the claimed
properties for I" hold only in subintervais (6,,8,) of [0, ®). Detecting and dealing with these
subinterval transition points is the essence of the modification of the homotopy method used
in the present paper.

There are several approaches to tracking the curve I which along with theoretica)
background can be found in [15]. A software package, HOMPACK, which mplements several
different homotopy algorithms, is under development at Sandia National Laboratories,
General Motors Research Laboratories, Virginia Polytechnic Institute and State University,
and the University of Michigan. One of the HOMPACK subroutines, FIxpnE, is used in the
current work.

4. Switching from one segment to the next

There are four types of events which end a segment and start a new one:

Type 1: a bound constraint becoming active (i.e., being satisfied as an equality);

Type 2: a bound constraint becoming inactive:

Type 3: transition from a ummodal solution to a bimodaj solution;

Type 4: transition from a bimodal solution to a unimodal solution.

To switch from one segment to the next, we first need to locate the transition point. At a
transition point there are a number of solution paths which satisfy the stationary equations,
and we need to choose the optimum path,
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4.1. Locating the transition points

Transition points are located by checking the bound constraints and the optimality
conditions.
The bound constraints

=P, =P

Vo SV, S0, fori=1o000M (15)
are checked to detect a transition point of Type 1.

Optimality of the solution is checked by the Kuhn-Tucker conditions and the second-order
conditions discussed below. The solution satisfies the Kuhn-Tucker conditions when all
Lagrange multipliers are nonnegative. 50 a transition of Type 2 is detected by checking the
positivity of the Lagrange multipliers associated with the bound constraints. These multipliers
are obtained by adding the bound constraints to the formultion (3) and replacing the

augmented function P* by

P* = u'Ku —q[u'Kgu — 1] — pfc'v — 6] - > L L 1l > AU = Vs -

= i€,

(16)
Taking the first derivative of P* with respect to v, gives
K aK
ut%;u—nut avéu——,u,(;i+/‘m—)lﬁ:(] foriel,. (17)

t 1

Since A, is 0 for v # v, ,;, and Ay, is 0 for v, # v, ,,, for the above equations, A;; and A,; are
given by

oK Ok
=y =yt gt —2 . =u.
Ay u aviu nu a1, u+pe;, foruv,=v, ..,
i (18)
A —u[a—lgu— utg&}-u— C for v, =v
2f avi TJ‘ E)U- ru’i i i max *

A Type-2 transition is detected by a Lagrange multiplier becoming nonpositive. Similar
equations for the bimodal case are given in Appendix A.

The bimodal formulation replaces n by 7, and n,, which are the Lagrange multipliers for
the normalization constraints on the two buckling modes. When one of them becomes
negative, the corresponding mode should be removed for the optimum design, so that we have
a transition of Type 4 from bimodal to unimodal design.

For a transition of Type 3, we need to check if there is another buckling mode associated
with a lower buckling load. This can be accomplished by checking the second-order optimality
conditions for the buckling mode variables u given by

F[VIP*]r>0 for every r such that V,i'r =0, (19)

where
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) ﬁP*J {ak}
2 ] — = —_— = t —
[V2 P [ausauf . V.h ) h=u'K.u-1.

Alternatively we can solve the buckling problem (6) for the current design and check
whether the buckling load obtained from the stationary conditions is truly the lowest one. The
transition of Type 3 is detected by checking if

P#p,, (20)

where p is the buckiing load obtained from the stationary conditions while Py is the first
buckling load obtained by solving the stability conditions (6) for the given structure,

4.2. Choosing an oplimum path

are obtained by using the Lagrange multipliers of the previous path and the sensitivity
calculation on the buckling load. The procedure is explained separately for each type of
transition.

A Type-1 transition occurs when one of design variables, v;, hits the upper or lower bound.
Then v, is set at v, max OF U; r;, And treated as a constant value, The number of design variabies
is reduced by one.

At a Type-2 transition, one of the Lagrange multipliers for the bound constraints, A, and
Ay is found to be negative. The bound constraint corresponding to the negative A,; and A, is
set to be inactive and the number of design variables is increased by one.

At a transition from a unimodal solution to a bimodal solution (a Type-3 transition), the
formulation requires two buckling modes, #, and u,, for the solution of the upcoming bimodal
path. These modes can be obtained by solving the stability conditions (6) of the previous
unimodal formulation, since the stability conditions give two buckiing modes at the bimodal
transition point.

At a transition from a bimodal to a unimodal solution (a Type-4 transition), two buckling
modes are given from the bimodal solution. One of the Lagrange multipliers for the
normalization constraints, 7, is known to be negative from the previous transition check, so
the buckling mode corresponding to the positive 7 is chosen.

Some of the above transitions can occur simultaneously. Special treatment is required in

requires at least one design variable v, for a unimodal case and two design variables for a
bimodal case. At a Type-1 transition, the number of design variables is reduced by one, and at
a Type-3 transition the bimodal formulation requires one more design variable in case the
previous unimodal path has only one design variable. So some Type-1 or Type-3 transitions
occur simultaneously with a Type-2 transition which allows an additional design variable. In
that case, the Lagrange multipliers Ay; and A,,, which are used at a Type-2 transition to
determine a new design variable, are not available. We then rely on the sensitivity information
of p with respect to v. For a unimodal case, the location of the new design variable v, is
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determined where dp/d# is maximized. For a bimodal case, we need to find a combination of i
and j which maximizes the value of the bimodal buckling load for a small increment of the
total available resource. Considering the bound constraints in the formulation, the new design
variables are determined by

dp 8p, dv,  dp, dvf
— — + —_———
9, de ’ (1)
such that
dp, dv, 9p, dv; _ ap, dv, ap, dy;

bv, 40~ av, 8  ov, do oy, df

du.

&20 forv.=v, .
de H i min ?
%EO for v, =wv,

de I i max ?
dov.

1 —_—
_@;O for v, = v; i 5
dv,

i —
@50 for v, = v

where p, and p, are the buckling loads corresponding to the buckling modes u, and u,,
respectively.

After we obtain the design variables v and the buckling modes u, we need the Lagrange
multipliers w, 1, and v at the transition point to complete the set of starting values for the next
solution path. These are obtained by solving the stationary conditions for the given u and v.
For example, in the unimodal case, 7 is obtained from the stability conditions (6) and u is
obtained by solving one of the optimality conditions (5}.

5. Example problem

The example used to demonstrate the proposed procedure is a simply supported column on
an elastic foundation taken from [11].

The design problem is to find the optimum distribution of the foundation to maximize the
lowest buckling load. The design variable is the foundation stiffness. The column is modeled
by sixteen beam finite elements and the foundation stiffness for each element is assumed to be
constant. The geometry of the column and the foundation is shown in Fig. 1. Because of the
symmetry of the problem, the foundation distribution is assumed to be symmetric, so there are

cight design variables, K;, . . ., K. The constraint of the total foundation stiffness is given by
8 .
1 2 K=K, (22)
i=1

where K is the total foundation stiffness used as the homotopy parameter.
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Fig. 1. Geometry of column and foundation.

The upper and lower bound constraints are given by
Kn<=K, =<K fori=1,...,8, (23)

where K, is the lower bound and K.« is the upper bound of the foundation stiffness. The
buckling load P and the foundation stiffness parameters are expressed in nondimensional form
as

— PL2 . K.EL4 k _ ]{min[‘4 k _ KmﬂxL4
B NT TR mh B Kew T T
K,L*
kT: E] ’ (24)

where E7 is the bending stiffness of the column. The lower bound K i is set at 0 and the upper
bound k_,. is set at 20,000. The procedure starts with a uniform column without any
foundation material (the total nondimensional foundation stiffness k1 is zero) and optimum
designs are obtained for values of ki up to 20,000.

Figure 2 shows the buckling loads corresponding to optimum designs obtained for 0 < kp=
20,000. This curve has 18 transition points and consists of 19 solution paths denoted by the
letters A-S. The circles on the curve indicate the transition points and the dots are the
solutions traced along the optimum path. The solutions on the first path A and the last path S
are unimodal and the other solutions are bimodal. This is due to the fact that the starting point

column element at which the foundation is placed when we increase k.. Since Lagrange
multipliers A,; and A,, are not available at this point, it is treated the same as if a Type-1
transition occurs simultaneously with a Type-2 transition. For this example, a foundation is
initially placed at the midspan where dp/ dk. is maximum.

The unimodal solution becomes bimodal at the transition point AB from path A to path B
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Fig. 2. Buckling load versus the total foundation stiffness.

(this is a Type-3 transition). This requires one more design variable because the previous
unimodal path has only one design variable (a Type-2 transition occurs at the same time). At
transition points BC, CD, DE, and EF, one of the foundation stiffnesses becomes zero (the
lower bound) and another foundation stiffness becomes nonzero. Each of these points is a
simultancous transition of Types 1 and 2 in the bimodal solution, requiring the solution of
(21). At transition points FG, GH, 1J, JK, MN, OP, and QR, new variables become nonzero.
These are Type-2 transitions where the lower bound constraint becomes inactive. At transition
points HI, KL, LM, NO, and PQ, one of the foundation stiffnesses hits the lower or upper
bound. These are Type-1 transitions. The last transition (RS) is a Type-4 transition at which
the bimodal solution becomes unimodal.

Most of the computational effort of tracing the optima is associated with the evaluation of
the Jacobian matrix. The curve of Fig. 2 required about 200 integration steps to trace, each
requiring 1 to 3 (mostly 1) Jacobian evaluations. The Jacobian was evaluated numerically,
using forward finite differences.

6. Concluding remarks

A typical optimization method starts from a given design and continuously searches for
better designs until it finds an optimum design. The trial designs along the path are of no
value. In this paper, a strategy for tracing a path of optimum solutions parameterized by an
amount of available resources was discussed. Equations for the optimum path were obtained
using Lagrange multipliers, and were solved by a homotopy method.
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Fig. 3 (cont.). Optimum foundation designs.
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Fig. 3 (cont.). Optimum foundation designs.

The solution path has several branches due to changes in the active constraint set and
transition from unimodal to bimodal solutions. The Lagrange multipliers and the second-order
optimality conditions were used to detect branching points and to switch to the optimum
solution path.

The procedure was applied to the design of a foundation which supports a column for
maximum buckling load. The total available foundation was used as a homotopy parameter.

stiffness (from zero to the upper bound).

Appendix A. Bimodal formulation

To seek the solutions with double ecigenvectors, the problem is to be formulated assuming
bimodality of solutions, or cquality of the two lowest eigenvalues, P, and P,. They are
expressed in terms of the Rayleigh quotient

u; K,

P =
t
u, K. u,

i

fori=1,2,

where u; are the corresponding eigenvectors.
Treating the bimodality condition as an equality constraint, P, — P, =0, the augmented
function P* is formed

2
P* = Ku, — vl Ku, - ,Ku, ]~ 21 Nl i K gu; — 1= plcv - 9].

The stationary conditions are obtained by taking the first derivatives of P* with respect to
Vi» U, ¥, my, m,, and p and setting them to zero. Thus we obtain:

(i) Optimality conditions:

K oK . 0K, 0K, ,
(1—y)u; a‘viul + yu, Bauz-nlul —aaf—ul ~ U, W”z‘#cr‘zo for i1, .
(i) Stability conditions:
(- v)Ku, —n,Kgu, =0, yKu, —n,K,u, =0,

(iii) Bimodality constraint:

t t .
U Ky — 1 Ku, =)
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(iv) Normalization constraints:
t — t —
1—u, Ksu, =0, 1—u,Kqu, =0.
(v) Total resource constraint:
6—cv=0.

The Lagrange multipliers for the bound constraints, A, and A,;, are required for the
transition check. These are obtained by adding the bound constraints to the augmented
function P* and taking the first derivatives of P* with respect to v,. They are given by '

9K,

H, + e,
avi 2 )LL:

K oK oK
Ap=—(1- ?)utl ET i) — ’Y”;_ 30, “, + 7’71”; av('} iy +"?zut2
forv,=v

oK oK aKg dKg
’\25:(1—’)’)”; ey u1+'}’“t2%"_ Mz—muﬁ au. u1—ﬂzu; av. Uy — HC;
forv,=v

i max -
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