A Frame-Based Language in information Retrieval

Marybeth T. Weaver
Robert K. France
Qi-Fan Chen
Edward A. Fox

TR 88-25

A Frame-Based Language in Information Retrieval

Marybeth T. Weaver
Robert K. France
Qi-Fan Chen
Edward A. Fox

Départmcnt of Computer Science
Virginia Polytechnic Instimte and State University
Blacksburg, VA 24061

Abstract

With the advent of the information society, many researchers are turning to artificial
intelligence technigues to provide effective retrieval over large bodies of textual information.
Yer any Al system requires a formalism for encoding its knowledge about the objects of its
knowiedge, the world, and the intelligence that it is designed 1o manifest. In the CODER
System, the mission of which is to provide an environment for eXpeniments in applying Al to
information retrieval, that formalism is provided by a single well defined factual
representation language.

Designed as a flexibie tool for remieval research, the CODER factual representation
language is a hybrid AT language invoiving a System of sirong types for artribute values, a frame
system, and a system of Prolog-ike relational stuctures. Inheritance is enforced throughout,
and the semantics of type subsumption and object marching formaily defined. A collection of

type and object managers called the knowledge administration complex implements this

remieval domain.

The facmal representation language is implemented in Prolog as z set of predicates
accessible to all system modules, Each leve] of knowliedge representarion (elementary
primitves, frames, and relations) has a type manager; the frame and relation levels aiso have
oDject managers. Storage of complete knowiedge objects (statements in the factual
representation language) is Supported by a svstem of external knowledge bases. The paper
discusses the frame construct itself, the implementaton of she knowledge adminismration
complex and external knowledge bases, and the use of the construct in remrieval research. The

paper closes with a discussion of the uality of the language in EXperiments.

[

. This material is based in part upon work supported by the National Secience Foundation under Grant No's.
IST-8418877 and iRI-8703580, by the Virginia Center for Innovative Technology under Grant No's. INF-85-016;
and by AT&T equipment contributions,

1. Introduction.

Information retrieval is a branch of computer and information science that is concerned with
the use of computers to aid in the location of relevant information items. This is often
distinguished from finding facts, data elements, records, or specific answers to questions, as
one might do with a question answering or database management system. Typically, users of
information retrieval systems are provided with groupings of data that hopefully will help them
acquire knowledge appropriate to their needs or desires. While some systems accommodate
collections of documents and make selections at the document level, other systems deal with
“full-text™ by locating patierns or Boolean expressions combining terms (e.g., word parts,
words, or phrases). From a user rather than a system perspectve, though, an information
retrieval system should be a ool that helps people find what they want, at any leve] of derail
desired, regardless of the location, media, structure, subject matter, or size of the collection that
1s being considered.

However, while many humans are able to effectively aid others with their informarion
needs, it is only in Tecent vears that a variety of researchers have begun 1o develop detailed
specificadons and working prototypes of flexible automatic systems that can perform a number
of those services [4]. Most readily available retrieval systems are rather restricted in their
capabilities, are lmited in how much of the information content is actually represented, and
only make use of one or two of the variety of remieval techniques that Belkin and Croft [3] have
described in a recent review of the field. Our arucle, on the other hand, discusses how z
specific system, CODER, uses knowledge representation, retrieval, and “intelligent”
approaches, in part 10 bernter model the behavior of a2 human intermediary.

We feel that this effort is especially important, since as was predicted in [18], the
emergence of CD-ROM based remieval systems provides an opportunity 1o integrate powerful
processors, large capacity memory devices, and advanced remieval methods to handle
information stores that human intermediaries would have a great deal of difficulty working with
directly. In the last several years, optical disc and CD-ROM publishing has certainly grown,
but there are stll few if any intelligent information sysiems 10 provide adequate access [21].

The CODER (Composite Document Expert/extended/effective Retieval) systemn is a testbed
for determining how useful various arificial intelligence (AI) technigues are for increasing the

effectiveness of information storage and retrieval (ISR) systems. The system has three
components, as illustrated in Fig. I: an analysis subsystem for analyzing and storing document
contents, 2 central spine for manipulation and storage of world and domain knowledge, and a
remieval subsystem for matching user queries to relevant documents. This paper focuses on the
formalism, constructs and techniques defined in the spine and used by the analysis ang remrieval
subsystems to maintain knowledge about the CODER system, its docurnents and its users.

1.1. Hypotheses,

The CODER system is designed to address several hypotheses regarding the usefulness of
Al methods in information storage and retrieval systems. Those hypotheses are based on the
 belief that the much needed improvement of information retrieval effectiveness requires a new -
) apprbach to document analysis as well as retrieval. We hypothesize the foliowing:

* Users can perform more effective retrieval when structured knowledge is
employed. The hierarchical organization of documents as well as conceprs such
as names, dates and addresses represent important and useful structured Jorms of
knowledge.

* The knowledge engineering poradi gm can be applied 10 informarion Storage and
rerrieval sysiems. Logic programming is useful in implementing rhis paradigm,
and can be effective in building such sysrems.

* Adistributed expert-based Informatior. system (DEBIS) is the most efficient, and
pernaps the only, way to buiid these systems. The resulting modularity should
aid both implementation of and experimeniation with the sysiem.

Knowledge engineering methods are applied in CODER in connection with the
Tepresentation sysiem described in this paper. Briefly, the representation system SUPPOrTS
remieval as foliows:

1) Frame structres are defined by system administrators using programs found in
the knowledge administration complex located in the spine.

2) For each document, the analysis subsystem analvzes the content ang organizanon
of documents, and stores the results of 115 analysis in frame objects,

3) The remieval subsystem can then fill or partally fill temporary frame objects
during a remieval session with information found in or inferred from user queries.

4) Problem description frames built during the remieval session are matched 1o the
frame objects stored by the analysis subsystem to help narrow the ser of

B

AILATIAC WIDISAS 1] BOISIIA VFTOD cdyg

1 T
Arwndugy
(LN

=

= =

iilieeds Lleadg #0papmotiy 1siepadsy
PROW S, LE R itopiaq Whwog 3T
sy wupioe s PnRpady

1 Cupney

Eﬁuhlld

=

faediry 1 e e e e el L
Buismaig smlvuey 15k

Lot TRETHTTT

opng
uopdpdag
WK 01y

[LETTCRTYY

DT TITTITY
Ivaepiay

T

sungai

=

HRady
Baonng

. 1e0cueyy iy TupE
Hog paiyings UOREIR ‘1O ey

uaywiniig Lianh

bapteuyupy

Fe - e e

YT wWagosd llpaimiuy
AV Ul My AR Wajgond @ TEsEme e .
FIRO sirsn 151e padg
5I5anhat 1asn HORAS desy ssEg HOJRiNI0 4

Ay

LMoLy
ARuanNg

JEATILET PN
uaseag pog, | . BRLGEEG

[LOETT T

WLy

POGYING (wasl ey

WouNsoy

eheg
aleioly ua)

LOREULGY
A1a,
o eeul) elpmmouy
Weuniiog

waisisqng |BAslijay aljds Waysdsqng sishjeuy

documents retrieved in response to a given query.

The knowledge engineering paradigm is also employed to store information about users,
retrieval sessions and lexical constructs. Examples of user frames and lexical COnstructs appear

in later sections.
1.2. Review of related literature.

In every intelligent ISR system, some formalism and corresponding notation with which to
represent knowledge must exist. A variety of different knowledge representarion (KR)
schemes, for example, logical, semantic network, procedural and frame-based schemes have
been studied [11, 41]. Smith and Warner limit their discussion of knowledge representation
schemes to those that are used in ISR sysiems {51]. The CODER system has adopted a
frame-based KR scheme 1o represent document, user and query knowledge. Frame-based
Systems are used to model entities where each entty is defined by a set of atributes called slots.
A complex lattice structure defining the frame hierarchy may be found in such systems. The
standard terminology, methods and goals of generic frame-based systems [17, 29, 40] also
apply to the CODER frame systerm.

During the past decade, 2 variety of frame-based languages have been developed. Such
languages have included KANDOR [43, 44], KRL (Knowiedge Representation Language)
[42], KI-ONE [12], and the langnages in the CYC [36], KEE (Knowiedge Engineering
Environment) [42], and TOPIC [27] systems. Several of the frame language developers have
worked on more than one of the aforementioned languages, and commonalities among the
languages are apparent, o

Many of the concepts in the CODER knowledge administration complex have roots in the
Erypion, KRL and KL-ONE representation schemes. For example, Krypton's separation of
tW0 representation languages, a terminological one called Thox and an assertional one termed
Abox [9, 45] are paralicled by CODER's segregation of Type Managers and Object Managers
for processing frame definitions and instantations respectively. The taxonomic sructure of
frarnes and strict inheritance found in KL-ONE and Krypton also exist in CODER.,

Most of the frame Tepresentation languages have been developed using some version of
LISP, although frame-based lan guages written in Prolog, like CODER, are beginnin € 1o appear
[32, 35]. Rowe [49], in his'introductory text on artificial intelligence, covers many key issues
regarding the utlity, implementation, and operation of Prolog frame systems for abstracting
collections of facts. One notable difference among the frame-based languages is their treatment

of default values [42}; CODER's treatment of defaults is discussed in §5.2.

One hypothesis that CODER is being used to test, "Users can perform more effective
retrieval when structured knowledge is employed,” is also a premise of The Information Lens
[39], a prototype intelligent information sharing system.

A rich set of structured message types (or frames) can form the basis for an intelligent
information sharing system. For example, meeting announcements can be structured as

1

templates that include fields for "date,™ "time, "place,” "organizer," and "topic," as well ag
any additional unsiructured information,

Based on studies of information sharing in organizations, the Information Lens group has
explored how to use cognitive, social and economic information to filter the information that
individual users really want to see. Asin the CODER design, the researchers have concluded
that a frame inheritance lattice simpiifies analysis and remrieval of messages. The automatic
analysis of document types in the CODER system has much in common with the manua]
document description in this study. |

TOPIC [27] and ARGON [43, 44] are two knowledge-based text retrieval systems that use
frame representarion schemes. Like CODER, they have incorporated concepts from earlier
frame systems; moreover, the :epresentational structures of the frame lan guages used carry
over into the ISR systems and influence their éppearance and functioning. The frame system
found in CODER is also evident in the capabilines of the system, such as the nser modelling
functions and the user entry of structured knowiedge into frame slots. The TOPIC system,
however, focuses on documens analysis, using semantc parsing to map text onto frame
representation structures, CODER uses its representation language for both analysis and
retrieval,

CODER Version 1 is made up of about two dozen different moduies, each of which may
reside on a different host computer. Modules communicate by passing messages to a
blackboard strucmure. This stucture certainly places the CODER svstemn in the caregory of
diswibuted experr-based information sysiems (DEBIS). Many of the other DERIS svstems,
such as CANSEARCH and IR are, like CODER, based on a group of cooperating experts
centered aronnd a blackboard/scheduler.

The CANSEARCH system [46], also a Prolog-based document rerrieval systemn, retrieves
documenss related to cancer therapy from the MEDLINE database. The system acts as a front
end but performs no actual searches. Instead, it provides a menu driven interface for narrowing
and selecting MeSH querv terms which are then formarted into 2 query to be processed by the
host computer at the National Library of Medicine. CANSEARCH achieves irs objective of

eliminating the user's need to know query formulation specifics: however, its limited scope
allows it to ignore some of the more advanced features of a retrieval system, such as user
modelling, natura! language processing, term expansion or advanced search strategies.

The distributed PR system developed by Croft and Thompson [14, 53, 54] most closely
resembles the retrieval portion of the CODER system. User models, system state ransitions,
assignment of uncertainty values to rules and on-line help/explanation exist in both systems.
Application of some of the research by Belkin, Brooks, Borgman and Daniels (2,5,6,7,8,
15] regarding the functions of an intelligent information retrieval System, user modelling, and
adapting to different users can be found in both systems. A user model builder, an interface
manager, a search strategy module and a browsing expert perform paralle] functions in the two
systems.

Where CODER uses a Prolog frame representation system for representing documents and
domain knowledge, I3R, written in Common Lisp, uses a relational database to Tepresent
documents. Knowledge intensive processing is resmicied to the retrieval end, where concept
frames, created primarily from the system's interaction with the user, contain recognition rules
to infer domain knowledge [14].

RUBRIC [55, 561, a2 commercial system based on production rules and written in
Common Lisp, uses a manualty built rule base 10 assist query constructon and searching.
RUBRIC is like CODER in its object-oriented approach to EXpETL Systems, its use of relevance
values in the range [0,1] rather than in the ser {0,1], and the availability of on-line help at any
point in the retrieval process.

The MICROARRAS system [52}, a full text retrieval system under development at the
University of North Carolina, focuses on databases distributed over different hosts and
well-defined use interfaces to support intelligent dialogues. Correspondingly, the CODER
system uses TCP/IP protocols 10 handle databases and modules which exist on different host
compuzers. A more similar system is the communications protocol used by the Utah Text
Remieval Project [30, 31]. The UTRP make nse of & high-level protocol to support modules
such as vser interfaces and search engines residing on (possibly) different hosts. Like CODER,
it boasts “tailorability, extensibility, distributability, portability and insmumentability.” Unlike
CODER, the UTRP focuses on backend processors and networks rather than on Al methods,

2. CODER.

The CODER system is a community of inferential and procedural modules that function
concurrently to achieve intelligent information retrieval. These modules include domain
specialists, which apply domain knowledge 1o the many tasks involved in information retrieval,
and external knowledge bases, that maintain large amounts of factual knowledge describing the
system's domain, as well as communication. control, and support modules. The system is
perhaps best understood as two separate subsystems sharing a central spine of common
resources and knowledge. On one hand, the analysis subsystem is responsible for cataloging
new documents; on the other, the remrieval subsystem is responsible for retrieving documents or
portions of documents that satisfy a given user's informarion need. _

The CODER spine is made up of the central knowledge bases of the system and a set of
type managers that support the knowiedge representation structures used throughout the system
for representation of facts in the problem world. The knowledge bases include the lexicon,
holding the system's knowledge about individual words, the user model base, holding
knowiedge about users and classes of users, and the document database, holding knowledge
about individual documents. ' ,

Any ongoing session is moderated Dy an active blackboard. A blackboard isa
repository for communication between experts, usually divided into a number of subject posting
areas. CODER blackboards are considered active because each is managed by a srrategis:,
which carries out the main planning and control operations for the session. The strategist
initiates the participation of each specialist in the a system task using a knowledge-based model
of the specialist's area of competence. _

The analysis subsvstem inciudes 2 specialized user interface that allows for easy document
eny, analysis, and storage. During an analysis session, the SYStem accepts Input docnments of
Various types, arranges for storage of the text itself, and consmucts a set of interprerations
describing document stuctare and content. Each interpretation is represented by a set of facts

-(ground instances of logical propositions) that can be stored in the document knowledge base.

The retrieval subsystem uses these facts, along with knowledge about words stored in the
lexicon and a specialized fact base of knowledge about users, to march documents or portions of
docaments 10 a user's informarion need. The uvser interface for the remieval subsystem is
designed 10 be adaptable to different styles of query presentation, including Boolean, vector, or
p-norm queries and natural langnage descriptions of information needs. User behavior is

monitored by a problem description specialist, and the resulting feedback can be appiied to
sharpen the retrieval. The entire session is coordinated by a strategist whose local knowledge
base coniains a model of the search process relating user models and search approaches 1o
stages of query refinement,

Communication among modules is restricted to 2 message primitive called ask, modeled o
Prolog call. The UNIXT™ socket construct provides a means by which even modules that
service many clients (on one or many machines) can appear to be Serving a single inpur stream.
The entire CODER system, thus, is 2 set of concurrent modules, executing on one or several
machines, and connected together usin g the socket construct and the TCP/IP protocol. Some of
these modules are procedural, some rule-based, and some coupled tightly to large databases, but
all use a common interface paradigm, and all use a unified representation of the knowledge thar
the system applies 10 the task of information storage and Tetrieval,

The language used in communicating among these module 15 called the CODER factual
représcntation language (FRL). Besides providing a lingua franca for communication among
the specialists, the FRL serves two important functions, First, it provides a language and a set
of provably tractable operatons on that language that can be used in storing factual knowledge.

As such, it is the language used-exclusively by the blackboards and exrernal lmoWicdge bases,
Second, the FRL provides an underpinning for the more powerful sorts of inference performed
by the specialists: classification, rule-based imterpretation, and spreading acrivation in the
current version.

Statements in the FRL are finite, grounded relations over Jframes and elemeniary data items,
where relations correspond roughly to logical predicates taking relations, frames, and data items
s arguments, frames are structured descriptions with named atributes filled by frames and data
irems, and elementary data irems are the usna primitves such as integers, aioms and so forth,
A statement in the facrpal representation ianguage, a facr, is always a predicadon that telis
something about an object. The three lan guage constructs make possible 2 wide variety of
Tepresentation styles within the context of 2 single language. Of the three, frames have proven
most useful in the informartion remieval domain, We argue that information remieval system
users think about conmexts rather than words, and that frames let ns describe contexts. Whereas
1t is impossible to tes: general hypotheses regarding the need for “conceptual information
remrieval,” our theery is falsifiable and so should lead to experimental findings of interest. The
rernainder of this paper deals with the definition of frames within CODER, the Implementation
of the principal modules thar mantpulate them, and their pse in information remieval,

3. Frames.

3.1. Frame systems.

In the years since Minsky's classic definition [40], the term ‘frame’ has been used to cover
2 wide variety of artficial intelligence structures. All of these structures have shared with
Minsky's initial vision a feeling of concreteness: a frame differs from, for instance, a property
list in that one cannot (usually) add arbirary data to a frame. On the other hand, frames tend 1o
be less rigid than, for instance, relational tuples: not all slots in a frame, 10 use the familiar
terminology, need always be filled. Beyond this, most frame systems produce objects with a
great surface similarity. Frame objects tend to look to the static observer like sets of
atribute-value pairs. This surface similarity, however, conceals 2 horde of differences.

Syntactically, frames are tightly bound clusters of atribute-value pairs, called slots. Each

slot has a name and either one or a list of vaiues. Usually, each cluster has some sort of unique

identifier, often in the form of a filler to'a required s16f. This ¢lustering 1s what distin guishes a
frame-based representarion system from a network, and what allows frame systems to capmure
the notion of “context™ that we believe is crucial for effective informaton retrieval, While frame

- Systems can include links, those links are seen as part of the smrucrured object(s) they connect,
rather than as first-class entities in their own night. On the other hand, frames are different from
the structured objects found in third generation languages such as Pascal and C in that they are
typically dynamic: the number and composition of slots in 2 frame object can change over the
object’s lifetime in much more radical ways than a Pascal record.

The e power of a frame language, and the main arez of divergence among frame
Sysiems, comes not in the syntax of the constucts, but in the semantics, At any given mornent,
an individual frame nay appear to be a simple set of slots, Underlving that staric object,
though, is & frame system that both constrains and enriches what slors, and what slot fillers, are
possible. Most frame systems, for inswance, provide some facility for inheritance, where frames
can inherit both slots and slot fillers from other frames designated as their parentis. Frame
Systems also rend 1o provide both conswaints on certain slots (for instance, that the slot can have
al most one value, or that the value must be within a cerain range) and defauit valnes for slot
fillers. Finally, many frame systems provide for arached Pprocedures — ‘demon’ processes that
can compute, to take a common example, a filler for a given siot when it is accessed if the slot

10

does not already have a filler.

Inevitably, this semantic power requires 2 commensurate amount of machine POWET 1o
implement. Brachman and Levesque, in their ground-breaking study of subsumption in frame
systems?, have shown that 2 syntactically simple frame system, coupled with inheritance and a
perspicuous set of slot constraints, is provably computationally intractable. There are certain
questions that can be asked about the objects in that system - reasonable questions such as
whether it is possible that two frames describe the same real world object — that can oniy be
answered in polynomial time if P = NP. Brachman and Levesque's result is even more
sobering when one realizes that they studied neither defaults nor attached procedures. Both of
these features raise semantic and computational difficulties. particularly in the context of
inheritance. The interaction of defaults and inheritance has been fruitfully examined — although
not resolved — by Fahlman, Touretzky and others [16, 57], and shown to involve both subtle
paradoxes and non-trivial processing. Attached procedures also have computational cost. If a
reasonably powerful language is used to represent them, establishing equivaience of rwo frames
with attached procedures will be an uncomputable problem.

. 3.2.. Frames in CODER.

In designing the frame component of the CODER FRIL, we have chosen to exercise
discretion. Starting from the bare syntactic consmuct of a set of filled slots (Fig. 2), we have
added only features that could be implemented cleanty and could run in real time. Procedures
for filling slots automarically have been de-tached from the frams system proper and located in
those specialists responsible for the construction of new frame objects. A faciliry is provided
Yor specifying default values for slots, but thess valnes are only inherited by chiid frame rypes if
there is no conflict among pareats (see §5.2). Finally, a swong typing system is defined znd
enforced throughout the facmal representation language.

Snohg typing of frames has two major effects. First, it provides consistent and intuitive
semanucs for inheritance in terms of type subsumption. Second, it makes possible a clean
distinction between frame rypes and frame objects. This distinction between an abstract
category of smructured objects and the individual objects that manifest it has had significant
pragmatc benefits in system engineering and programmer raining.

2. Brachman and Levesgue's study has been published in at least three versions. The original stady [10] discusses
frames in most depth. Later versions have been expanded 1o cover the range of knowiedge representztion
formalisms. The most recent version {37] appeared in 1987,

frame_ = [frame_type_name, [{[slot_name, slot_filier_rype] }* 1]

slof_filler_type :i= frame_|
| elemenuary_data_type
I hist_of slot_filler_type

frame_object:= [frame rype_name, object_id, [{ [slot_name, slot_filler_type] 3* 1]

sior_filler_obj ::= frame_type
| elementary_data_type
b [{ slot_filler_type }*]

Fig. 3: CODER frame syntax. Terminals are shown in
outline script; commas between list elements are not
mentioned, but should be assumed.

subsumes(ancesior_frame, descendant_frame)
slot_list(ancestor_frame, anc_list) A
slot_list(descendant_frame, desc_list} A
(x) (x € anc_list>
(3y) (v € desc_list » nzme(x) = name(y) » subsumes(tvpe(x), rypey)) I

Fig. 4: Semantics of frame type subsumption.

mewch{fremel, freme?) o
slot_lisy{framel, listi) A
slot_list(frame2, 1isi2) A
{(x) (x € Listl has_value{framel, x, v) >
(iy) (v € 1512 A name(x) = name(y) A hes_value(freme2, y, w) A match(v, w)).

marich(edsl, edi2) >
edi] = edi?.

Fig. 5: Semantics of frame maiching.

11

One of the difficulties in engineering a knowledge-based system is the variety of
knowledge that must be built into it. CODER, for instance, includes knowledge about
docurnents, about words in the English language, and about the users of the system. But it also
includes knowledge about the “real world” that the documents and words reflect: knowledge
about bibliographic entities, for example, or about the affiliation of computer network users. It
includes knowledge that crosses categories, such as how many times a given word is used in
the document collection or has been used in a retrieval request by a particular user. Finally, it
includes knowledge about its knowledge: how to tell whether a given mail message is a2 seminar
announcement; where to look for the part of speech of a given word sense. This variety of
types of knowledge, much more than the sheer bulk of knowledge required for production-scaie
operaton, can slow implementation. It both increases the complexity of an aiready compiex
systern and lengthens the learning curve for new programmers, especiaily those with no
previous experience in knowledge engineering.

The frame consmuct itself is an important tool for cutting through this complexity. Even a
programmer new to the fine distinction between representing knowledge about the world and
representing the world itself can quickly become comfortable with the notion of a frame as a
description of an entity or simation in the world. This metaphor can help the new knowledge
engineer understand how a single world object can be represented by several (even inconsistent)
statenents in the representation language. A given document may simulaneously satisfy two
descriptions; may be at once an email_message and a seminar. A given lexeme may be
described as both a noun and a verb without inconsistency: each description is only relevant in
certain situations, but both are descriptions of the same object. Adding to this basic concept the
distinction berween a frame type and a frame object plays on the metaphor. A frame type, the
frgument runs, is a descripton of a caregory of objects in the world; a frame object, a
description of an individual object.

Actually, a frame type is & category of descriptons, and a frame object is an individual
description. More formally, a frame type can be seen as the ideal generated by a set of
consistent frame objects.3 Thus, the slot list of the email_message type is the union of all
features appropriate to a description of an email message, and the default values are those which

3. The CODER frame semantics, as has been mentoned elsewhere 126}, is based on the demain theory originated
by Scett [50]. The conception of types as ideals within this model is due 1o MacGueen, Plotiin and Sethi [38].
As 1t happens, we do mot need the full power of the ideal construcl o deseribe {rames without procedural
attachments, but the constracr gives an exceplionally clean semanties to the notion of a least upper bound over
a domain of recursively defined objects.

12

are appropriate across the category. Frame types are established ar the level of the enrire
system, as an administrative decision of the system implementers, and cannot be changed
dynamically during system operation. They provide the framework around which the systems
knowledge takes form: if you will, the categories of the System's perception. _

Frame objects, by contrast, are constantly. created, manipulated, and either stored or freed
during system operation. A user frame is created at the login of each new user, and its slots
filled as information about the user becomes available to the system. Document description
frames are produced by the analysis subsystem and stored in the document knowledge base,
where they are later matched against frames that describe the objects of a user's search, As each
frame object is created, it is given a type. The type determines what slots the object may have,
what default values may exist, and what type of object may fill each slot. As more information
1s accumulated about the entity being modelled, more slots can be filled and the frame object can
become 2 more complete description. Slot values can also be changed, and slots can even be
removed when it is desired to represent the situation where the system has no knowledge (not
even, perhaps, the default assumption) about that feature of the description.

3.3. Frame operations.

Frame objects are generally parrial descriptions of entities. It is possible, in parncular, for
nothing to be known about an entity except that it belongs to a certain rype —in which case it is
represented by the frame with no slots. Frame types, on the other hand, are exhausrive catalo gs
of particular categories. Different relations, therefore, hold among frame types than among
frame objects. ‘

- Frame types are related by the classical relation of rype subsumption (see [26] and Fig. 3).
One frame type is said to subsume another justin case all of its slots are either included in the
swonger frame type's slot list, or are generalizations of slots in the swonger frame's slor list.
Specifically, frame 1ype a is said to subsume frame type b if every slot of type a corresponds 1o
a slot of type b with the same name and either the same or a songer type. The frame type with
no slots subsumes zll frame Types, and two frame types are equivalent if and only if each
subsumes the other. New frame types are added to the subsumprion hierarchy in one (or 2
combinadon) of two ways: either by consmrainin g a slotin an existing frame 10 2 SITORgEr rype,
or by adding new slots. Special cases of this process include adding a frame identical to its
parent and adding a frame with two or more parents. This last case succeeds only if the siot
lists of the two parents are consistent: Le., if any siot that appears on both Iists appears with
either the same type or two types one of which is subsumed by the other.

13

All frame types thus fall into a single inheritance hierarchy defined by the relation of frame
subsumption and having the frame with no slots as bottorn. Frame types inherit the siots of
their parents, although they may be restricted as described above. There 18 no provision made
for deleting a parental slot from a child type, as this leads to well-known problems of
classification. Nor is there provision within the context of frame type definition for expressing
relations among slots or relations other than subsumption among frame types. Instead, this
knowledge is maintained in the specizlists responsible for frame creation, where it can be used
as appropriate in the classification of entities. This allows the system 1o provide a fast and
computationally sound method of managing the frame types themselves, while maintaining
metaknowledge about use of the types in an inference environment suitable 1o its application. In
particular, this allows the system to maintain knowledge relating frame types (or entiries
represented as frame instances) on the basis of their Similariry to each other, something that is
not possible in classical frame-based systems.

The corresponding relation to subsumption for frame objects is marching (see Fig. 4). A
frame object X is said to match a frame object Y if every filled siot of X matches a filied slot of
Y, where elementary objects are said to match if and only if they are egual. (Matching is an
asymmermic relation: a less specific description matches a more specific descripton, but not vice
~ versa.) Note, however, that maiching frame objects do not need to be instances of subsuming
frame types. In particular, frame objects with no slots filled always match, no matter from
where in the subsumption hierarchy their types were drawn. What can be said abowt the
corresponding frame types is that they have a greatest lower bound (GLEB: this is assured by the
method of construction of the hierarchy) and that the frame objects march ar the GLR: in other
words, that a description based on the GLB Type 1s guaranteed comparible with the descriptions
represented by the rwo frame objects.

In a later secdon, we will show how the two relations of frame subsumption and frame
marching work rogether 1o help remieve knowledge strucrures that, whije semantcally related,
are not overtly similar, First, thongh, we will discuss some of the structures that occur
naturally within the domain of informaton remieval, and how CODER frames are used to model
them.

3.4. Summary.

Despire its cautious design, the CODER frame system has certain significant advantages.
First, it was designed as an mntegral part of a broader representation language inciuding a well
defined set of elemenrary data types and 2 system of relational predicates. On the one hand, this

i4

allows the semantics of frames to be kept simple. There is a clean distinction, for instance,
between an embedded frame, representing a structured part of z larger description, and a relared
frame, representing a description that is related as a matter of fact to a separate object. On the
other hand, frames can be specialized. In CODER, frames represent a certain type of
knowledge: structured, descriptive knowledge about a single entity. Atmibutes of entities are
represented by elementary data; relatonships among entiies by relations,

Having thus lirnited the definition and purpose of frames, we have been able to deal with
them at a high level of abstraction. This is reflected in the weatment of inheritance and defaults,
where we have been able to give what we feel is 2 particularly clear and problem free semantics,
It is also evident in the operational specification of the frame system. Uniformity across the
various languages, modules, and hardware of CODER is enforced by requiring all frames
operations to make use of a single set of functions, detailed in §5 of this paper.

A CODER frame is thus an abstract data type, the operations of which are logically
spectfied in terms of the type hierarchy, the filled siots of frame objects, and the corresponding
abstract operations on elementary data types. The most interesting of these operations are
subsumption and matching.

Frame subsumptién 1s not greatly used in CODER proper. The subsumption hierarchy
represents the systems knowledge about types of (descriptions of) entities, rather than the
entiies themnselves. That knowledge is useful for classification of entitges; that is, for
determining the best category under which to describe a given entity in a given context. Thus,
the problem description builder navigates the address hierarchy in determining the best
description for an address supplied by a user as part of a search request. CODER Version 1,
however, does relartively little classification, and the frame type sysiem is most used by the
frame object system. '

Frame objects, on the other hand, are used throughout the svsiem, as is the operation of
frame object marching. ‘Matching has proved useful in retrieval, as it provides a precise,
implementable Gefinidon of the vague cdﬁcspt of “marching descriptions.” We discuss how it is
used in frame remieval in §6, and provide some validaton of its usefulness in §7. First,
though, we turn to a discussion of the usefulness of frames as a representanon tool for the

domain,

15

4. Frames for the Retrieval Domain.

Frames are used in describing objects from all aspects of the system's knowledge
environment. Users of the system are modelled by frames that describe their status,
background, and level of experience: their preferred type of query and document display, and a
history of their previous remieval sessions. The internal structure of documents is caprured in
frames with slots for the information natural to their type. For instance, a seminar frame has
slots automatically filled by the analysis portion of CODER for the title of the seminar, the
person giving the talk, and where and when the seminar will take place. Much of this
information, including descriptions of individuals and times, is also strucrured as frames,
Again, frames are used in the CODER lexicon to describe individual senses of words, whiie
relations describe conceptual links between words. The definition and manipulation of such
frames will be discussed in this section.

4.1. User modelling frames.

The information rewrieval nser base is gradually shifting from a group of trained
intermediaries to 2 mass andience of users having diverse aptitudes, computer skills and needs,
Intelligent information remieval systems should support and adapt to a broad range of users,
from novice to sophisticated. If this is to be accomplished without Jogin g effectuveness, the
Tetrieval system must perform many of the functions of a human search intermediary. One of
the primary functions performed is that of modelling the user.

The aim of the user modelling module of CODER is to identify relevant aspects of the
user's short and long term goals, background, experience and knowledge. To accomplish its
aim, the module uses the knowledge adminismaton complex 10 build frames and reladons for
individual users of the system. From information coliected during previous sessions as well as
from user-supplied Tesponses 10 menus and prompts, the user modelling expert buiids frames
for each user. Slot values in the frames determine the user Stereotype 1o be posted to the
blackboard; that type, as well as other information about the user, may assist CODER modules
in determining acton sequences and modes of interaction with the user,

Following research by Danels [15], we have defined frames for describing users of the
Sysiem. Frame types for storage of information about each different session in which a user ig
engaged have also been defined. Each user is described in seven nested frames. All frames are
either slots in the primary user frame, that is they are part of the user frame, or they are slots in

i6

other frames which are part of the user frame. The user frame contains slots for user
ldentification, user type, and statistics on frequency of use. Other slots are filled by the
following embedded frames:

environment: The user's preferred session environment includes the usual type of
query, as well as a preferred document orderin g and document
quantty. These preferences are inferred by reviewing up to ten of
the last user sessions, and wei ghting the preferred environment
selected during the current and previous sessions more heavily.

info: General information includes the user's status, background, and
native language.
knowledge: The vser's level of experience with computers and information

retrieval systems.

loginfo: This frame has slots for cumulative statistics as well as historical
data. The history is represented by a list of frames containing
averages and totals for each time the user has used the System.

The user modelling frames and their slots are displayed in Figure 3. Figure 6 shows a
portion of the frame constructed for one of the authors. The frame was captured by a screen
dump during a CODER session while the author was browsing his own description. Being abie
10 examine the system's knowledge about oneself is a feature of the CODER interface,

Each time a user logs on 1o CODER, the user modelling module accesses the local Prolog
database, via the knowledge adminismration functons, 10 determine whether the user is known
or unknown. If the useris known, existing information in the user and session frames is used
to classify the user as novice, average or expert. Information is explicitly sought from
e - Unknown users so that new frames can be created. At the end of each retrieval session, user
- frames are updated and a new history frame for the session is created.

4.2. Lexical frames,

One key application of intelligence 1o ISR is in so-called concepmual remrieval. A conceprual
retrieval system would be capable of weating words as Iinguistic or conceprual entinies, rather
than as atomic items in a list or vector. CODER has been developed under the hypothesis that
such lexjcal understanding will improve retrieval, perhaps as much as or more than the
grammatical understanding of document text. In order to test this hypothesis, it has been
necessary to assemble a large base of syntactic and semantic knowledge about words. This

"SOWIRI] POPPAUID SNOLIEA puR

dois™ Ay

ssaupnjasn

&

UOI IR SEIUS
PE LTS

IVAR FUSN

leA2 Iosn

)OS BUIMOLS ‘Ol J2sn O[],

F §

Fursopra~aop
Aib™oop
M uoissIs

Lnnb

NOISSas

ANOHZ

SSHHAAY "1V

SSHUAAY IVIS0d

o)
Lionby
diopren
Fpno
soomoy -
BT
s8abian
Xipssav
ydidae Laggumpo
OANIDO 1SERAKRO
joaqmouy
015
$12850
dwoopasn
B TAONY
b L
auod
Ssappe el [[snpjalpuy
wud.._u_.ei_w_ sod Bpuad
Iy Buupisy
TVHITATANE Play onpa
oardap

HWVYN

NV

OJdNI

o

G 81

[~

uoysprand qleon

adlib

Kepdap~ads)y

£ib7oap

JNANOATAN

orundoq

sipapmouy

WWUOIATD

asnJo~ bayy

adfaosn

ajuy

priasn

HHSN

!
i k

i Userid is foxe

i User ldentification: foxe

| Slot *info* is a frame:

] Education: doctoral

! Field of education: es

i English as native language: y

! Gender (m=male, f=femaled: m

i Slot *knowledge* is g frame:

: Ever used o computer: y

! Used other IS&R systems: Y

| Number of times used other IS&R sustems: 30
' Taken information Retrijeval courses: y
' Know Booiean logic: y

| User classification: average

| Freguency of sustem use; 2

i

li

i

|

1

i

3

1

H

f

1

H

H

Piease press TRB to continue.

Fig. 6: Browsing one's own decription. A user frame is
p o
pretty-printed during 2 CODER retrieval session.

17

lexical knowledge base, or ‘lexicon,’ is used by both the analysis and retrieval subsystems.
The analysis subsystem currently uses it when recognizing proper nouns; the retrieval
subsystem to support browsing during query construction. Both ends of CODER use it for
morphological analysis. A related term specialist has been written that draws on the semanric
knowiledge in the lexicon to expand queries, and z natural language user interface is under
development. Despite all this, the possibilities of the lexicon can be said to have hardiy been
touched.

The lexicon development effort began concurrently with the implementation of CODER.
Extensive processing of a typesetters' tape of the Collins English Dictionary [28] obtained from
the Oxford Text Archive?, produced several sets of Prolog relations [59]. These relations are
currently being refined in an attempt to elaborate the microstructure of the dictionary. In
addition, a joint project has been undertaken by VPI&SU and the Ilinois Institure of
Technology 1o supplement this information with semantc structures parsed from the definition
text of the CED and other machine-readable dictionaries [24]. The resulting semantc network
will be used both for remeval and namral language understanding,

A necessary precursor to all these project was a representation scheme that would caprure
the structure of a dictionary. Dicrionaries, like many reference works, are composed of
structured entries arranged in what is for all intents a random-access file. A typical enry from
the CED is shown in Figure 7. Clearly, the structure of the eniry is hierarchical, with
sub-senses occurring within senses, which are grouped by part of speech, which are themseives
grouped into homonyms. Information attaches.at each level of this hierarchy. Definitions attach
at the sense or sub-sense level; derivational variants attach at the part of speech level: variant
spellings, at the homonym level. Semantic registers, style markings, and compare references
may attach at any level. Information attaching at a high level in the hierarchy, however, is
inherited by the levels beneath it.

This smucture is czprured in CODER by a paricular sort of frame cailed a
ferm_descriptor. The frame includes slots for the lemma (the disdinguished form of the word

4. The Oxford Text Archive, 2 division of Oxford Universiry Computing Services, is an archive of mzchine
readable works availzble on tape, The Archive incisdes works of literamure and fiction, as well of reference
wozks of all kinds. Most ere in the form of typesetters' tapes, but some have besn tznsizted into more
perspicucus formats. Both the original typesetters' tape of the CED and the Prolog facts produced a: Virginia

Tech can be purchased from the Archive if the needed permission is obiained. The izpes are disributed for

(a)

chase? . 1.Lenerpress printing. arectangular steel or
cast-iron frame into which metal type and blocks making up a
page are locked for printing or plate-maling. 2. the part of a
cannon or mounted gun enclosing the bore. 3. a groove or
channel, esp. one that is cut in a wall to take a pipe, cable,
erc. ~vb. (1r.} Also: chamfer. to cut a groove, furrow, or
flute in (2 surface, column, erc.),

(b)

sense] sense 2 sense 3 sense 1
NI S
noun block verb block
N/
entry 1 entry 2
N
chase

(c)

[term_descriptor [

[iemma string],

lenmy mteger],
[p_o_s integer],
fsense mieger],

[sub_sense meger] 1]

A dictionary entry. (a) The €ntry as in appears in the CED.
(b) The internal structure of the eniry. (c) The frame
type used to describe that structure.

18

that heads the entry), the homograph or entry number, the part of speech biock number, and so
forth (again, see Figure 7). This frame is unusual in that the slots are interdependent: the
sense siot, for instance, can only be filled if both the entry slot and the p_o_s slot are aiso
filled. It is also somewhat unusual in its use: it describes a point in a conceptual structure,
rather than an entity in the world. While a user frame fully describes a user of the systern, a
term_descriptor frame does not fully describe an entry in the dictionary. Rather, it describes
a place in the entry where certain atributes may attach.

The actual information contained in & dictionary entry is represented in the lexicon by a set
of FRL relations, captured in the sets of Prolog facts mentioned above, Each fact begins with a
erm descriptor identifying its context and continues with the information that attaches there.
For instance, the part of speech of the first block of the second homograph of “chase” is
captured by a ¢_POS fact. In order to minimize storage, we make use of the slot dependencies
noted zbove and represent term_descriptors in the Prolog fact bases by an ordered list, where
the first component is always the value of the lemma stot, the second (if it exists) the value of
the entry slot, and so forth, Thus the part of speech fact mentioned is stored as:

c_POS([Mchase", 2, 1], n).

For the moment, this representation best SUits our storage capabilites (see 8§6.2.3). If it proves
desirable in the future to include further information, such as the explicit part of speech, into the
descripror itself, it will only be necessary to define a daughter frame with an addizional slots 1o
hold the information desired.

4.3. Document frames,

If documents are not 10 b= iTeated as flat lists of words, some account must be civen of
their internal smrucrure, The STucmire varies among different types of documesnis: the
components and organizaton of journal article, for instance, are quite different than those of a
reference work. Document structure has been the concern of 2 number of researchers over the
last decade. We have chosern to take as our model the cvoiving SGML siandard [1],
supplemented with the work of the Electronjc Manuscript Project [34]. Each type of document
known 10 the system is represented by unique frame type, ali of which occurin a subsumpton
hierarchy with the slotless doc_type at the bottom. More than one type, however, may be
used to describe a document, 25 a document may answer to more than one descripton.

As an example, consider the document description frames created by the Version 1 analysis

19

subsystem. All of the documents in the current collection, drawn from the A/List Digest, are
examples of a subclass of electronic mail messages characterized by being collected into a digest
and re-distributed. As such they are each represented by a frame of type digest_message.
The digest_message type is a subtype of the email_message type, which is itself a subtype
of the base doc_type (see Figure 8). It contains all the slots needed to describe an elecoonic
mail message, including the sender, the date sent, the subject header, and so forth, but it is a
stronger type in also having slots for forwardin g information and an additional header, added by
the digest moderator.

The analysis subsystem is also capable of recognizing certain “soft types” of document as
well, most notably the seminar announcement type. For each of these, it builds 2 seminar
frame that includes, in knowledge structures comprehensible to the system, all of the
information that can be derived from the announcement without fully parsing the text. The.
Seminar type angd the digest_message type are common descendants of doc_type. But
they are incommensurable, as neither type subsumes the other. This is a refiection of their
siatns as conceptual objects. Each frame type represents a description from z different
perspective. In the one, a document is viewed in the context of how it was created and
distributed; in the other, the context of what it was intended to communicate. By representing
these two sorts of descriprions as different frames, the Contexts are kept separate. And by
representing them as frames — that is, as tightly bound, structured objects — attribures that
belong to each context are kept together.

CODER frames are thus an apt tool for document description in that they caprure well the
relationships of subsumption among document types and alternate contexts among document
descriptons. They also aliow for many of the other relationships that can exist among
Gocuments, such as embedding.” A cardinal feamre of document smucture is that one document
may be embedded within another, as when & bibliography is included in a journal aricle. This
Teamure is easily represented usin g a freme-valhied slot. Full Tecursion, where a sior may have
the seme type as its parent frame, is also possible, and serves to model the case where an entire
document is embedded within another. Stll other relationships may be represented by FRL
relatons.

4.4, World knowledge frames,

As in any sort of text understanding, a certain amount of world knowledge is required in
analyzing documents and queries. This is true in CODER even in Version 1, where in depth

digest_message

s

email_message seminar

VZ

doc_type

Fig. 8: Subsumption hierarchy of
implemented document types.

20

linguistic parsing is not undertaken. Knowledge of what constitutes a name or address, of what
text conventions are used to delineate a title, or of how to decompose an electronic mail address
all come into play in the recognition and analysis of “soft” document types. Conversely,
anatysis of documents results in much factual knowledge about the world, as well as knowledge
about the documents themselves. Authors are connected with works and their descriptions,
resulung in bibliographic knowledge. Individuals are connected with institutions, résulting ina
knowledge base of affiliations. And explicit dates and times establish evenss in the world, such
as the presenting of a paper or the creation of a document. All this information is potentially of
use to information retrieval, but only if it can be stored in a formalism that the system can
mamnpulate,

The vse of frames in representing smuctured text jtems is straightforward. A person's
name is represented by a name frame with slots for first name, last name, title, and so forth.
Dates and times are similarly represented. The place frame type shows by its composition irs
genesis in describing the location of lectures and seminars: its slots include room, floor,
building, and hall. Proper treatment of postal addresses has required an endre subsumption
hierarchy of address frame types, including educational and non-educational institution
addresses and U.S. and non-U.S. addresses. When these smuctured text items occur in blocks
within the text, though, it is possible to build more complex knowledge frames.

An individual person, for example, has more quaiities than his or her name. In recognition
of this, the CODER individual frame has slots for name, phyvsical and electronic majl
addresses, phone number and affiliation. A document written by a person allows the analysis
subsystem to fill some of these slots; 2 document about the person allows it to fill others. We
hope in Version 2 to build 2 separate knowledge base of these frames, and relations Iinking
them to publicadons and institutions. Such a knowledge base would conwibure to resolving
ambiguous references to individuals. Ir would also provide an underpinning for merging pardal
descriptons of individnals into more detailed descripdons. In Version 1, no atempt is made 1o
identify new frames of type individual with consistent descriptions, and all such frames are
stored in the document knowledge base as part of document descriptions. Nonetheless, the
information is available in a form that the system can manipulate. Thus it is possible, as
described in §6.2.2, 1o march document frames with a given author's name, even when the
name has been given incomplerely. In additon, it is possible to display information about all
such matching individuals to the user, so that the user can choose among them.

The treatment of time in the FRL ig somewhat less satisfactory. On the one hand, with
dates and times represented as frames it is possible 1o use frame matching to find all dates with a

21

given year, or times with a given hour and minute. On the other hand, the CODER frame
system provides no easy way to match a range of values, making it awkward to retrieve any
date before a given date, or all times berween two points. Section 6.2.2 mentions how we are
attemnpting to overcome this difficulty, which has thus far atisen only in the context of time.

5. The Representation System.

As an Al system, CODER requires an appropriate method for representing knowledge. As
an ISR system, it has a specific domain of entities that it must be able 1o model. These endties
include words, names, and other lexical items, documents and their components, and users of
the system. The mechanisms for Tepresenting these entities and their atrributes must includs
facilities for naming and describing entities, for relaring these names and descriptions to each
other, and for interpredng them in context. A Tepresentation system must also provide inference
within the knowledge itself and reasoning about the knowledge. In CODER, all these facilities
are drawn together in the knowledge administration complex.

The knowledge administration (KA) complex requires 2 system to support the creation and
manipulation of the three levels of knowledge representation in the FRL: simple elementary dara
Dpes, structared Jrames, and propositional relations.

Each Jevel of knowledge representation has a Type manager, the frame and relaton levels
also have object managers. The type managers provide the ability 1o identify, test, and
manipuiate EDT, frame and relation definitions. The object managers support the creadon and
*ve-> T mnanipulaton of objects, that is, the instantiation and use of data. The type and object managers
are used by the system administrators and by the CODER communiry of EXPETTs respectvely,
The system adminismators are designated knowledge enginsers who set out the broad outlines
of the domain-modsl. All four of the authors have worked at this task durin g the
implementation of Version 1. We feel that this is about the maximum practical number of
acminisators. The CODER community of experts uses the knowledge administration
predicates to define and represent facral knowledge, and to determine relations, such as
subsumption or matching, among both objects and types.

22

5.1. Organization of the knowledge administration complex.

Type and object files for each of the three types of knowledge, EDTs, frames and relations,
are maintained by the knowledge administration compiex. Programs for the creation and
manipulation of types and objects are also part of the KA complex.

The knowledge administration type manager, knowadm, acts as g Prolog resource
manager. That is, other inferential modules may ask the knowadm module for information
about EDT, frame and relation types. In additon, the user interface may query knowadm for
the natural language information. For instance, when the user constructs frames as part of a
query, the interface asks knowadm for names with which to prompt the user for slor data and
for a tutorial display if the user requests explanation of the slot. This data is stored in an
ancillary file of facts containing a natural langnage description of each slot defined for a frame
type and the prompt and tutorial file associated with the slot. These descriptions must be input
by the systemn administrator when new frame types are defined. Programs zlso exist 1o print or
display frame definitions and objects.

Although not all of the functions provided by the knowledge administraton complex are
used in Version 1, representations of ennities, classes of endties and the relatonships between
them can be defined and stored using the KA type and object managers. The rype and object
programs are the largest of the CODER remeval subsystem inferential modules. The files
containing the type definitions and object data are relatively small and are consuited as local fact
bases by this version of CODER. However, incorporaton of the NU-Proleg version of
MU-Prolog will support the miner modifications required to establish the KA files as external
databases supported by special Prolog extensions. _

A facility for modifying type definitions does not exist. Due to the complex taxonomies
which may be created by EDT and frame Iype structures and the inherent difficulry associated
with suck modifications, maintenance 10 type definitions can be applied_ by the svstem
adminisrator only by means of editor software such as vi. It is hoped tha: the swucmre of
frames 10 represent documents and document fields will be swable enough that lack of a
maintenance facility will not stifle the systemn's capabilities.

5.2, The type managers.

All three KA type Managers are coniained in a single Prolog program. To simplify entry of
type definitions, the program supplies the system administrator with a menu-driven interface.
The main menu is shown in Figure 9. For each of the first three options, the sysiem

23

administrator is prompted to supply the data required to create the Prolog facts which represent
type definitions. The information stored for each type definition is described in Appendix A,
Option 4, Save Updates, provides a checkpoint facility as a safety measure and is
recommended when large numbers of type definitions are entered during one session. Ii creates
2 Prolog save state and explains how to re-enter the session at the point where updates were
saved. The final option, Terminate Processing, appends the new type definitions to thejr

respectve type files.

Please enter function desired:

New Elementary Data Type
ew Frame

New Relation

Save Updates

Terminate Processing

(e JNR UL 3 RN

Fig. 9: The knowledge administration complex main menu.

5.2.1. Frame type manager.

The CODER frame type manager supports all functions required for the construction of
frame definitions. New frame Types are specified either by describing their constituent slots, by
specifying parent types from which they inherit fearures, or by a combination of the two. By
specifving each new frame 1ype as a subclass of more general frame types, frames may be
ordered imo 1axonomies. Frame types may have more than one parent as well as more than one
child, and thus a complex latdce framework may result. Predicates for navigation of frame
texonomies and for idendfying subcliasses of frame types are included in the frame type
manager.

Default values are passed from parent frame slot lists when slots are inherited. However,
inherited default values for child frame types may be modified; therefore, an inherited slot may
have all of the parent characteristics except the defanlt value, Default values are optional for

slots which are EDTs. For a slot which has 2 frame or relation type, the idensifier of a frame or

24

relation object is stored as the slot value; therefore, default values are not permitted for such
slots.

Since single frame type may have more than one parent frame, slots from parent frames
are merged according to the elass and #ype for the slot. The followin g heuristics are applied.

* Ifthe slot name, class and type are unique, the slot is inherited.
* Duplicate siot names with the same class and same type are inherited once.

« Duplicate slot names having different classes (EDT, frame, or relation) are not
allowed. An error message is provided to the system administrator if this occurs.

* Duplicate slot names with the same class but a different Type are inherited only if
a subsumption relationship can be established, in which case the stronger frame
type is used. If a subsumption relanonship cannot be established, then an error
message 1s generated.

5.3. The object managers,

The CODER object managers support the creation and maintenance of frame or relation
objects; that is, data is assigned to slots or arguments of instantiatons of previously defined
frames or relations. To create an object, the frame or reladon rype must be specified so that
appropriate slots may be filled or Droper relanion arguments may be specified. In addition, a
unigue identifier is assigned to the object being created. Either the object manager or the module
requesting creation of & new object may assign the obiect identifier.

The object manager program has been written so that any module which needs to build or
maintain frames or relations may do so in its jocal Prolog fact base. Then, objects may be
stored in appropriate EKBs such as the user model base, or objects such as sructured names
and addresses in queries may be created locally for use luting ene remieval session only. The
object manager program issues asks 10 the LYPe manager program 1o validate objects entered as
siot values or reladon arguments. Unlike the Type manager, the object manager does not have
its own socket and is not inciuded in the CODER configuraton. Rather, moduies requiring
irame or relation objects conswls the object manager code. A full description of the frame object
manager is included in Appendix A.

25

6. Knowledge Base Implementation.

Storage and retrieval of frames in CODER occurs in the general context of storage and
retrieval of facts. A statement in the CODER FRL is not complete unless it is a reiation over
either frames and/or elementary data: unless, that is, it is predicating some fact of some
description, name, or data value. At the current time, however, no general fact base constuct
has been implemented. For the purposes of 1esting and demonstration, temporary knowiedge
bases have been built for each large pool of frames. These knowledge bases can only handle
small numbers of frames (in the thousands rather than the hundreds of thousands) and are
generally dependent on the structure of the particular frames stored in them, We will briefly
examine each of them in §6.2. Section 6.1 first describes the general-purpose construct,
currently in the testing phase.

6.1. The External Knowledge Base.

The external kmowledge base is 2 specialized inferential module, External knowledge bases
provide mechanisms for transparent storage, indexing, and retrieval of large numbers of facts
about individual entities in the CODER problem universe (whence the nickname "fact bases"”).
By providing these mechanisms, they shield the remainder of the system from problems of
indexing and database support. Individual specialists in the CODER commurity are freed to

maintain only general knowledge in their particular area of expertise in their local rule bases,

relying on the various fact bases of the system 1o hide the “gramitous complexity” of the

problem universe. By the same token, the EKBs are freed from the more complex forms of
inference required for if-then rules, quantified statements, or knowledge about knowledge.
This distinction is akin to that berween necessary and accidental knowledge: the experts
maintain derived knowledge about the gznerzl namre of the world; the fact bases store
knowledge about the pardeular composition of the world at the moment.

The facts that the external knowledge bases manage are ground instances of the CODER
logical relation data type. This data type has been designed to paralle! the syntax of proposidons
in the Prolog language, so CODER facts can be mapped directly to Prolog facts. Specifically,
each fact can expressed as a Prolog propesiton that includes no variables. The proposition may
have other propositions nested within it arpiwarily deeply, but evenmally the tee formed by
such propositions will terminate in objects of the other two CODER data types: frames and
elementary data objects.

Facts are added to an External Knowledge Base as single statements, but may be retrieved

26

in either of two ways. The Knowiedge Base may be queried with a skeletal fact, that is, a fact
containing one or more variables, and will return the set of all facts in the Knowledge Base that
match the skeleton. Alternatively, the Knowledge Base may be queried with an object (either a
term, a frame, or a relation) and will return the set of all facts involving that object. In addition,
a Knowledge Base may be queried about the number of facts that march an object or a skeletal
fact. This information enables the calling module, with minimal communication overhead, to
adapt its query to produce 2 retrieval set of the desired size,

As facts are entered into an EKB, they are broken down according to FRL syntax and
stored in three sets of files, one for each level of the language. A relations file keeps track of
which relations (functor/arity pairs) are used in the fact. A frames file keeps wack of any frame
types and slot names used. And a set of EDT files record the ground values that occur within
the facts.> Swuctural connections within facts are recorded in a set of intermediate files.

Remieval from an EXB uses a combination of three modes, one for each level of the
language syntax. Retrieval in EDT mode uses classical B-tree techniques 1o determine the set of
facts that include (at some leve] of nestng) a particular elementary daa value. Frame mode nses

¢ frame type (if specified) and slot names of 2 skeleral frame 1o establish a set of facts that may
include marching frames. This set is then constrained by recursive calls to the frame moae
rerrieval module for embedded frames and by EDT mode retrieval for elementary siot values.
The candidate matching frames in any facts that remain are then tested for smucrural equivalence
10 the incoming frame, using the rules for maiching described in §3.3. Relation mode works
similarly, except that all three modes are used in the constraining phrase, as both embedded
relations and frames may occur as relation arguments, and that the rules for structural
equivalence are simpier,

Wrinen entirely in C, tha eneral-purpose EXB is being optimized for quick remieval on
very large collections of facts. The only limitation on the number of facts, framss, or
¢lementary data value that can be stored is the length of a C long integer (231 under VAX
Ulrix™), The major lmiration on speed is the retrieval time of the B-mees used 1o SIOTE STing
data, including frame types, relation names, and slot names. Members of the CODER team are
currenily examining whether perfect hashin £ [33] can be applied effectively 1o this problem. A
full specification of EKB functionality is given in Appendix B.

5. In the curren: implementation, there is only a single EDT file, 2nd all elementary data are weated as strings,
This simplification is sound, sinee the intermocdule communication. routines guarantes thal atoms and integers
are always wanscribed unmiquely before the EXB receives themn. Efficiency would clearly be increased by Tealing
Integers as imtegers, however, and we expect o do this in the next version,

27

6.2. Current implementations.

In order that system testing and development could proceed while the general EKB module
was developed, specialized modules were constructed for each reservoir of factual knowledge in
the system. This section reviews the three modules constructed and the inference methods nsed
in each. Each module reveals certain features of the utility of frames as descriptions and as
contexts. Further, since these temporary modules were written largely in Prolog, each module
reveals details of knowledge base implementation in that language,

6.2.1 The user model base.

The user model base (UMB) is unique in the CODER system in that only a single specialist
makes use of it. The facts in the UMB are created by the user modelling specialist and used
(often in later sessions) by that same specialist. Thus the simplest method for approximating
the UMB was to maintain knowledge about users locally in the user modelling specialist.

The knowledge used by the user modelling specialist is fairly sparse. A single user frame
is created for each user of the system. This frame has several levels of embedded frames (see
§4.1), inclnding history for an unlimited number of sessions, but the amount of knowiedge per
user is still relatively small. More importantly, the pool of users currently using the system is
small enough that all such frames can be represented by Prolog clanses in a single local
database. As descriptions of system users evolve and change, clauses are asserted and delered
directly into the user specialist's database by the knowledge adminisration routines. At the end
of each retrieval session, this database is saved as 2 file of Prolog clauses, which is then
consulted at the next retrieval session. _

For a small set of facts, this method of knowledge storage is optimal. The knowledge
administration code is required in the user specialist in any case, as the module must match
frames to determine user identiry and preferences. Thus the only additional overhead is the

crual _stoz-'agc of the framne clauses themselves, Marching for remieval is provided through the
frames_matching and equal _Jrames predicates for frames, and through Prolog clause
unificaton for relanons. Thus, as long as the internal structure of the facrs being soughr is
known in advance, the more sophisticated marching abilities of the EKBs are not needed,
Fortunately, given the stucture of the user frame, this is mue. The decomposition of the user
frame was therefore coded directly into the user modelling specialist using unification and the
knowledge administration predicates as primitives. We estimate that this implementation will
prove adeguate untl the user count exceeds three figures, although consult time becomes
noticeable with more than 20 users.

B AR C L B

28

6.2.2. The document knowledge base.

Lacking a single storage module adequate for the quantity of document knowledge
produced by the analysis subsystem, CODER Version 1.1 makes use of two specialized
components, one inferential and one procedural. The procedural rerm vecror manager is a
classical document/term ISR system. Using components adapted from the SMART system
[13], it matches <document number, term number, weight> ruples produced by the analysis
subsystem against either vector, Boolean, or p-norm structures of <term number, weight>
tuples produced by the retrieval system. All of these structures are represented by nested lists in
CODER proper, although both Boolean and p-normm structures counld be better represented by
either frame cor relarional objects. The document structure base, on the other hand, collects the
document descriptions produced by the analysis subsystem, and as such is based on frame
TepTesentanons.

In contrast to the user model base, the document structure base contains several different
sorts of frames. Moreover, these frames can be nested in reladvely arbimrary ways, making it
difficult to hard-code the structural navigation routines. Finally, it was desired 1o provide a
method of retrieving frames with a siot value in 2 range of possibilities, for instance in order 1o
rewieve documents within a range of dares, Therefore, rather than relying directly on the
knowledge administration code, a different matching algorithm was used. -

The frames produced by the analysis subsystem were written out in a file of Prolog clauses
using the same knowledge administration routines as in the user model base. Thay were then
translated procedurally into a semantically equivalent, but syntactically different form deemed
more effectively retrieved by the Prolog database. Around this database, two nested shells were
built. The inner shell remieves frames whose slots sarisfy certain conditons. The outer shell
takes a frame descripdon Som the remeval subsystem, breaks it into calls to the inner shell, and
Tansiates any frames satsiving the appropriate consiTaints back into stendard FRL for remum 1o
the rerieval subsyster.

The inner shell searches for frames satisfying conditions in disjunctive or conjunctve form.

Each search functon accepts a st of unit constrainzs, but the former interprets the list as [F; or
Foor Fy...or F;] while the later interprets it as [F; and F, and F5 .. and F.]. Each unit
constraint F; specifies a set of constraints for a single frame object: either a frame type or a

(range of) slot vaine(s). For ¢xample, the constraint

29

[date, [year, eq, 1987], [month, before, 61]

restricts the frames retrieved to be date objects with 'vear' set as 1987 and ‘month’ set in the
range [1, 5]. The constraints supported by the module are set inclusion (used for finding words
or phrases in a list of terms) and the normal mathematical relatons (equal to, greater than, less
than, and so forth) for integer valued slots. As coded in MU-Prolog, the module uses a simple
recursive predicate to break down the query into unit constraints as well as a set of search
predicates, one for of each type of unit constraint, to find candidate frames, Since the
constraints apply only to elementary data, no nesting of frames is possible.

The outer shell takes frame objects representing the user's description of a desired
document, and breaks it into smalier frames whose slots contain only elementary values. It then
translates these into calls to the inner shell, combines the results, and chains backward through
siot clauses in the local Prolog database to establish which documents include the frames found.
Ranges of acceptable values are received as a frame with slots for the two endpoints.

Much improvement can be made on the current version of the module. Most importantly, it
shouid directly support queries about nested frame souctures, and make use of the type
subsumption when matching frame types. Knowledge should also be added to aliow it to betrer
kandle temporal queries. The current version can only handle ranges of days within a month or
months within 2 vear, for instance. A relatively smeall number of rules in the outer shell would
remove this restriction. All such improvements, however, can be made in the outer shell,
allowing the inner shell io Temain.opimized for fast search.

6.2.3. The lexicon.

There are several difficulties inherent in supporting large knowledge bases directly in
Prolog. The principle problem is, of course, that of simply maintaining 2 darabase that may
consist of hundreds of thousands of clauses. MU-Prolog and its suceessor, the compilabie
NU-Prolog, provide an external darabase facility that uses dynamic hashing and a superimposed
codeword scheme to minimize search and update times [47, 48]. Using this faciliry, fact bases
with over 10,000 facts have been successfully stored and consulted by CODER, with each fact
represented by a single Prolog clause. Storing and consuiting facts, however, is not the only
bottleneck in Prolog.

The CODER lexicon is the cenral storage facility for knowiedge about English words and
phrases. Its basis is a set of syntactic and semantic relations derived from the Collins English
Dictionary. As described above, each of these relations is indexed by a frame object describing

30

the binding point of the relation in the dictionary entry. Attempting to load these facts directly
into a Prolog database, however, creates two problems. First, the frames are structures,
represented in Prolog as specially formed lists. Hashing schemes tuned to optimal performance
when the hash keys are atoms and integers no longer function as well when the key is a
structure. MU-Prolog attempts to solve this through its superimposed codeword scheme: the
hash keys for structures are created by composing the structure elements. In the case of the
term_descriptor frames, however, most of the structure elements are small integers, which
serve mainly to obscure the significant element, the lemma itself.

Then again, the representation of the Jemma causes problems. If lemmata are represented
by atoms — certainly the firs: alternative which presents itself — the Prolog atom table is guickly
overloaded. If they are represented by sirings, the strings are stuctures composed of letters
drawn from the small set of the alphabet — so the problem of assigning umque hash keys
quickly reasserts itself. Instead of taking either of these alternatives, we have chosen to
represent each lernma by a unique integer, which is then separated from the rest of the term
descriptor for optimum recall (see Figure 10). This makes possible optimal hashing and 2
minimal database size. To translate from character strings back and forth to these lexeme
numbers, the lexicon depends on a secondary facility written in C.

The lexicon thus consists of two functional modules, each with a set of data files (cmrurP
11). The primary module, written in Prolog and using MU-Prolog external catabases, keeps
ack of lexical properties and relanonships. Ir depends on the C module to rranslate text items
into lexeme numbers, Morphological analysis is distributed between the two modules. Regular
inflectional transformations and some high-frequency derivations are handled by the C program,
which can recognize them efficiently. A large number of irregular inflections and most
derivational wansformations have been derived from the CED and are currently stored in one of
the MU-Prolog databases. In the near fumre, we hope 1o incorporate this information into the C
module.

Once momholociéal analysis and Jexeme-to-number wanslaton wkes place, frame matching
can be accomplished d,u'ef‘t}y through Prolog unificarion. This is possible because the lexicon
contains only one frame type, and that has a1l irs slots filled with elementary data. Further, the
term_descriptor frames used in the lexicon have the special property, noted above, that their
slots are filled in order. The biggest problems in frame matching, subsumpiion and recursive
matching, thus fail to arise: two term descriptors maich if and only if their lexeme numbers are
the same and the hierarchy list of the first is a head of the second. No code beyond basic Hist
operations is required to discover frames matching an incoming term.

(a)

c_COMPARE(['chase', 1, 2, 1], ['steeplechase’, 1, 1, 2]).

(b)

cComp{ 43207, [1, 2, 1], 76492, [1, 1, 2]).

(c)

c_COMPARE([term_desc, [{lemmz, [chase]], [entry, [1]], [pos_num, 23,
[gef_num, [1]]], [term_desc, [[lemma, [steeplechase]], {entry, (1],
ipos_num, [1]], [def_num, [2]]] }.

-“Fig. 10: An example of the COMPARE (“see also™) relation from the
Collins English Dictionary (a) as it is produced by the dictionary
parser, (b) asit is stored in the Prolog external database, and
(c) asitisreturned to the rest of the CODER community, as
a statement in the FRL. |

Analysiy Retrieval
Subsystem Subsyrtem

\/

(Lexical Expent

— irreguiar inflections
~ morphoiogy

— Tcialed 1erms

- diqiontry browsing

m Manazr:
= Tt wiietiions

f Pars of Speech o weTE ~ oo

> i

Enty Texis.
h:recu.‘lars
~ pinrals i
= verh forms
- morpaociogies| Cross Refs:
varianis - “Compere”s C-mee package:
— “Sex giso’s — Siring remeve)
k| C = Weteo: — Dew o zédilien
p ;m;x — €iCuoDErY mAm=nance
= J&TNC usern Im

Fig. 11: Internal structure of the Je exicon in CODER
Version 1.1.

31

6.2.4. Summary.

All three current knowledge bases depend heavily on the specific structure of the frames in
their domain. In the case of the document knowledge base, where least is known about the
internal smucture of the frames used, a broader matching algorithm is used than that intended in
the language design. In effect, frames can be retrieved that include a given piece of knowledge
at any level of embedding, but not at a specific level, or in a specific role. The general EKB
module has the ability to do either. The other two current implementations are constrained to
work with only the particular frame types currently in use to describe their domains. As the
picture of their domains is refined, and more types are added, this approach will quickly become
unwieldy and prone 1o errors. Fortunately, we expect the general moduie 1o be ready before

this happens.

7. Feasibility Testing.

As mentioned earlier, CODER has always been intended to serve as a testbed for the use of
Al methods in informaton retrieval. While ultimately this will include formal comparative
testing against current versions of other systems such 2s SMART and RUBRIC [56], there is &
great deal of system extension, tuning, and interface refinement needed before such
comparisons will be feasible. Further, there are thorny problems regarding experimental design
that must be resolved for such testing to have a chance of vielding insightful results. However,
CODER has been tested at various stages of its development, and the results of those tests give
evidence thar we are progressing on the fight meck. Indeed, “micro” level lesung may ultimately
prove to be the best way 10 explore verious hypotheses, where shghtly different versions of
CODER are compared 10 determine effects of varying approaches 1o document analysis,
retrieval, human-computer interacton, erc.

The first rest of CODER concerned the ability of our distributed Prolog svstem to funcdon
in real time on a collection of processors. In early 1987 modules were brought up on a VAX
and two SUN computers, and z skeleral version of CODER, involving the blackboard/strategist
complex and several simple experts, exhibited reasonabie Tesponse time while performing a
partial search. This successful test of our communications approach led us to proceed with
iplementing and integrating the various components needed in a distribured expert-based
informarion systern [4].

32

The second test of CODER was in early 1988, when all of the system modules had been at
least partially implemented, that is of Version 1.0 as described in [58). An interface designed
for VT100 class terminals allowed users to reply to questions needed for user modelling and 10
later examine the frames constructed, to read short tutorials about system operation, to browse
in a subset of the files from the CED or in the complete machine readable version of the
Handbook of Artificial Intelligence, 10 be led through a step-by-step process of Boolean query
formulation, to enter p-norm or vector queries consmucted from single words, and to apply
Prolog search routines to find identifiers of potentially relevant documents. Thou ghonlya
small number of rules were included to demonstrate “intelli gent” information retrieval, much of
the needed information for such rules was being collected, and there were “stubs” to facilitate
substantial extensions in each local expert.

The third test of CODER, in the Spring of 1988, was of Version 1.1. Term vectors were
built for an entire year of ATList Digestissues (1987: this year makes up about a quarter of the
total store of some 8000 messages). Frames were constructed for a subset of those messages
(January 1987), that being the largest number that could be stored in the current document
structure base. C modules adapted from the SMART system provided access to the term
vectors, the lexicon B-tree routines gave access to substantial portions of the CED (with
morphological analysis suppor{) and improvements were made in the interface and other
componems. The following subsections give more specifics regarding the Version 1.1

environment.

7.1. Document analysis examples and results.

i Version 1.1, the main change from Version 1.0 was to have a realistic collection of dara,

and to integrate the lexical manager, the analysis subsysiem, and the rerieval subsysier. As

uch these extensions relate directly 10 our desire 1o 185%, 25 S00T as possible, the mrifity of using
frames for infolmauon remieval.

Figure 12 illusrrates, in steps, the analysis of part of a digest from the raw text stage 1o
frames. Part A shows the issue header for one of the digests sent eatly in 1987. After applying
LEX and C processing, tokens are identified and the data is put in the form of Prolog facts, as
shown in Part B. Thereafter, Prolog routines manipulate the document representations. A clue
dictionary is consulted to heip identify the issue date and other fields, and sections of the issue
table of conients are broken out, as can be seen in Part C. Ultimarely, frames are produced as
given in Part D; in particular, issue and topic frames are constructed. Note that the topic slot in
the diges:_issue frame is filled with a list of slots of type topic, each of which has slots for the

(2) Raw Text Input

AlList Digest Monday, 19 Jan 1987 Volume 5 : Issue &

Todzy's Topics:
Seminars - General Logic (SRI) &
Using Fast and Slow Weights (UCB) &
An Implementation of Adaptive Search (SRI) &
The Semantics of Clocks (CSLI} &
Inteliigent Database Sysrems (SRI) &
Formal Theories of Action (SU) &
Mid-Adantic Math Logic Seminar (UPenn),
Conference - Directions & Implications of Advanced Computing

(b) Raw Text as Prolog Line Facts

line(1, [Sparabegin, 1, Shheap, zilist, 3, Sheap, digest, Sspace, 12, Sisdab, ‘Monday', 19, "Jan', 1987,
Sisdae, $space, 8, Sissuebegin, Svolissbeg, 'S, '8', Svolissend, Sreturn]).

hine(3, [Sempty_line, 1, Sparabegin, 2, Stopicsbeg, $return]).

Iine(4, [$hlbeg, Sheap, seminars, Shlend, Sh2beg, Sheap, general, Sheap, logie, ', Seap, =i,
‘&', Shcap, using, Sheap, fast, and, $heap, slow, Sheap, weights, ¢, Scap, ueh,, &,
Sheap, an, Sheep, implementation, of, Sheap, adapiive, Sheap, search, ', Scap, sti,), ‘&',
Shcap, the, Sheap, semantics, of, Sheap., clocks, '(, Scap, csliY, &, Sheap, intelligent,
Sheap, database, Sheap, systems, '(, deap, i), '&', Sheap, formal, Sheap, theories, of,
Sheap, action, '(, Scap, su,, &', Sheap, mid, ', Sheap, stlamic, Sheep, math, Sheap,
logic, Sheap, seminar, 'C, Shheap, upert, 2, 'V, Sh2end, Srerurn]).

{¢) Indexed Facrs

pera(l, 1.1.nona.f]).
parall, 3.4.nomnef]).
para(3, 11.11xnone0]).

incex(Sparagraph(1.1.[], 1)k

index{Sspace(1.5.]], 1Z2).
ndex(Sissuedare(1.6.[], Monday'.19.Far 198 7.])).

index(Sheaderl(4.1.], {Sheap).seminars.[])).
index(Sheader2¢4.2 3,

(Shcap).general.{Shcap).lo gic.'(\f, Scav).s:i.')'.(&).(Shcap).usmg.(Shcap).fasLand.(Shcap).s}ow.(S

hczp).weights.'('.(Scap}.ucb.')'.(&).(Shcap}.an.(Shcap).implsmema.xjon.of.(Shcap).a:iaptive.(Shca
p).search.'('.(Scap}.sri.')'.(&).{Shcap).zhe.(Shcap).smamics.of_(Shcap).c}ocks.‘{'.(Scap).cslj.')'.{

&).(Sheap).inell; gan{Shcap}.database.(Shcap).sys tems.'(.{Scap).sti) . (&).(Sheap).formal.(She
ap).theon'es.of.(Shcap).acr.ion.‘(‘.(Scap).su.')'.(&).(Shcap).mici(-).(Shcap).aﬂamic.(Sh:ap).math.(

Shcap).logic.(Shcap).seminar.'('.(Shhcap}.upenn.Z.‘)'.[])).

(d) Frames Produced

Note: Following are slot names and contents for » digest_issue frame.
Siots with no contents are not shown, in the interest of breviry,
Explanatory comments are included in curly brackets,

issue: {Frame type is 'issue’; contents are shown indented below.)
isu_date: {frame type is daie }

year; 1987
month: 1
day_of_month: 19
day_of_week: Monday
isu_num: 8
isu_vol: 5

topic: . {This slot is filled with a list of frames of ype topic', each
containing headerl” and header?' slots. A few are shown here. }
headerl: [Sheap, seminars]
beader2: [Shcap, general, Shcap, Jogic, (, $cap, s,)]

headerl: [Sheap, seminars)
header2: [Sheap, using, Sheap, fast, znd, $heap, slow, Sheap, weights, (, Scap, uch,)]

Fig. 12: Example of issue header analysis.

33

two portions of a topic line: header] and header2.

Figure 13 illustrates the same type of processing, albeit in less detail, for a digest message.
In Part A the raw text is shown for a message that is a seminar announcement. After document
analysis according to the stages discussed above, frames are again produced, as can be seen in
Part B. Here there are a variety of low level frames, for dates, times, names, addresses, etc.
that identify the context of word occurrence. There are also some higher level frames describing
the document content that allow us to tell, for example, that “Vladimir Lifschitz” is the name of
the speaker for the seminar.

Figure 14 gives overall statistics on the first moderate scale test of document analysis
routines. As can be seen in Part A, 12 issues were analyzed, and contained almost four
thousand lines of text making up 76 messages. Part B illustrates that 112 islands were explored
to identify 64 blocks, and that over two thousand frames were automartically identified. In Part
C all frames that had more than 15 instances are listed, giving the number identified in this rext
collecdon,

Cleariy, the CODER analysis subsystem is capable of automatically extracting many of the
important low level and some of the higher level frames that most document readers would
agree describe useful objects in the domain of this collection. Further, this processing is
surprisingly fast, given that a pipeline of interpreted Prolog routines are involved and that the
full word Iist from the CED is accessed when vectors are constracied from the messages.

7.2. Retrieval examples.

Given that frames at various levels are produced, it is important to illustrate how the
contextaal information provided thereby can be useful to improve retrieval. This is shown in
Figure 15 by way of examples taken from the test collecton. Three different types of context
are given. In Pamt A, the name “Mark Richer” is shown 1o appear as z name with an associated
electronic address in the first example line. However, the lexeme “mark”™ occurs 2s & reguiar
noun as well, as can be seen in the second line. Further, the lexeme “richer” occurs as an
adjective, as can be seen in the next Kne.,

In Part B the word “university” is considered. It appears as part of an address, in the
subject line of a messags, and in its normal usage as part of the body of a message. In Part C
the word “January” appears, first as part of the date line of a message, second as part of the
subject line, and finally in a line of message body text.

Clearly, then, the CODER analysis subsysiem can identify lexemes in VaryIng contexts,
and we expect this will allow users to state their information needs with a high degree of

(2) Raw text input,

Drats: 17 Jan 87 2119 PST
From: Viedimir Lifschitz <VAL@SAIL STANFORD.EDU>
Subject Seminar - Formal Theories of Action {(SU)

Commonsense and Nonmenoionic Reasoning Seminar
FORMAL THEORIES OF ACTICN
Viadimir Lifschitz

Thursday, Janvary 22, épm
Blgg. 160, Room 161K

We apply circamseription 10 formalizing reasoning sbout the effecis
of sctions in the framework of sinuation caleuins. An axiomatic description
of cxusel connections between actions and changes allows us W solve the
gualtification problers and the frame problem using only gimpie forms of
circumscrption.

In this talk the method is illustrated by consructing &
circomnscriptive theory of the blocks world in which blocks can be moved
and painted. We show that the theory allows 1s 1o compune the resuly of
s exeqution of 20y sequential plan.

{b) Frames produced,

Notz: Following are siot names end contents for z digest_issue frame.
Slots with no comtents are ot shown, in the interest of brevity,
Explanziory comments are inciuded in curly brackets,

msg_id: 40031515
ga2ic_semt [irmnenvpeis dere_time)
date: {fremetypeis Gme)

vee: 1987

montz 1

dev_of_month; 17
ume {Fametypeis time)

bour 21

minuse: PLI

time_zone; ST

from: {frametypeis individual §
nzme: {frametype is name)

firsz viadimr
Jast Lifschiw
e emall address: {frame type is emzil_sderess }
user_id: [YAL} .
- soures_node:r {frame Typeis node }
Iocai [SAT, ., STANFORD]
Gomaisr [EDU]
supjest [Soesy, seminer -, Ehc#p, formal, Shep, theosics, of, $neep, azdon, {, Sap, 2,)]
St Hme: 1
#nd_kine: 24

doc_typs: samvne
conten: frame: {frametypeis sensnar’}
semine_date: {frametypeis date }
1

™Monty
dey_of_mont: 2
day_of_ week: Thurseday
semiver_title; {Sheap, commonsense, and, $hezp, nonmonotonic, $neap, reasoning, Sheap,
seminar, $remim)

speaker. {fremetypeis indivigual }
name: {Imme type is name }
st viadimiz
agy lifschitz

Fig. 13: Example of digest message analysis.

i
H
i

(a) Description of input

Entitv Number in the input collection
Issues 12
Messages 76
Lines 3910

(b} Results of analysis.

Entr Number produced
Low-level Prolog facts 3566
Indexed entries from tagging 6109
Islands 112
Blocks ' 64
Frame related facts 2120

(c) Slots filled in (most frequent slots).

Slotname Number Slot name Number
first 107 day_of_month 92
month oz vear &7
hour 52 minuie 82
second 82 ' time_zone 82
darte 76 date_sent 76
email_address 76 end_line 76
from 76 msg id 76
- source_node 76 span 76
start_line ' 76 subject 76
ome 76 user_id 70
headear] 69 heade? £9
czy_of_week 62 domain &
last 60 Toute 25
net_name 19 middls 16

Fig. 14: Statistics on document test collection.

(a) Names — First and last names that are common words:

From: Mark Richer <RICHER@SUMEX-AIM.STANFORD.EDU>
... Intentionality is the feature that Brentano cited as the mark of the .

... only appropriate for algorithm-level theories, provide a richer data ...

{b) Addresses — Noun used in address, subject line and message body:

... Universirv of Olinois ...
Subject: Conference - Universitv Demos at AAAT, ...

- Universitv and research institutes are invited 10 partcipate i the ...

(¢} Dates — Month name in heading, subject line and messace body:

ST

Date: 20 January 87 13:28-EDT
Subject: CSLI Calender, J anuary 15, No.12

... January 14 meetine oniv: S13.00 ...

w

Fig. 15: Examples of disambiguation by context.

34

precision. However, for that to be useful, the retrieval subsystem must facilitate entry of
appropriate specifications, followed by search, rewrieval, and presentation. Before
implementing all of these capabilities it seemed worthwhile to make a further feasibility test.
Thus 15 illustrated in Figure 16.

In Part A, six different English statements are given regarding queries supported by the
initial frame search implementation (described in §6.2.2). The right column gives a more
formal description of each query, referring to frame and siot names in a pseudo-Boolean query
notation adapted from the actual Prolog code employed. Conjunctions and disjunctions of
clauses are allowed, and slot values can be examined to see if words are Included, if values are
exactly matched, or if arithmetic comparisons hold true,

In Part B search times are given for these queries. All but the first query gave reasonable
response times on a fairly heavily loaded VAX-11/785, and this test was with our first simple
implementation. Clearly the initdal results are promising. Further enhancement and testing is
planned as is discussed in the next section.

8. Future Work.

A wide range of activities are planned regarding further development, testing, and
application of the CODER system in general and the fact Tepresentation language in particuiar.
First, consider further work on CODER. A variety of enhancement activities should be
completed later in 1988. The user interface for VT100 class terminals will be completed, and
will be supplemented by a second interface where naturel language query processing helps make
the cialog smucnure more flexible. A third interface will also be developed using windowing on
& Macintosh T system.

The NU-Prolog compiler from Melbourne University will be extended so that
CODZER-style communications can be incinded, and will be poried to other computers so that
further development can indeed be done in 2 dismibuted environment, Work on NU-Prolog
handling of large fact bases will be conrnued. Significant speed-up in all aspects of the system
operation is expected as a result.

Another thread of research involves testing the utility of query expansion based on the use
of a large lexicon. Preliminary work, as discussed by Fox and others [20, 21] suggest that
rewieval performance will improve and that machine readzble dictionaries will produce a rich

{a) Description of each sample query

Number English Statement Specification

1 Subject has one of 'expert’, digest_message.subject has

'system’ or 'blackboard' ('expert' OR 'system' OR
'blackboard")

2 Date is during 1987 and date.year=1987 AND
1s before 15th of month date.day_of_month<l5

3 Digest message subject digest_message.subject has
has Minsky' ‘Minsky"

4 Digest message subject digest_message.subject has
has 'Al' AT"

5 Message longer than 40 lins span.end_line > 40

6 Last name 'Shaffer' nname.last has 'Shaffer’

(b) Search times (on loaded VAX 11/7 85)

CQpery User CPU secs Svstem_CPU secs Clock time (secs)
1 17.6 1.2 34
2 4.7 0.5 13
3 6.4 0.3 i5
4 6.4 0.3 i4
5 1.0 (.1 0
6 1.0 0.0 0

Fig. 16: Queries and their timings.

35

harvest in terms of word relationships to make this possible. A variety of dictionaries will be
integrated to aid in this process. Eventually, 2 CD-ROM version of the ERIC education
database and the ERIC thesaurus will be used for query expansion experimentation.

Regarding the utility of frames, the current preliminary testing will lead to further
investigations, after some tuning of the document analysis processing and a complete integration
of that with external knowledge bases and the remieval subsystem. Ultmately, large scale
testing is expected with students searching the same collection of AIList messages on CODER,
SMART, and a version of RUBRIC. If these tes:s are successful, further study may involve
the use of techniques to “learn” about document types and structures so that the initial
knowledge engineering effort now required when applying CODER to a new domain can be

significantly reduced.

26

Bibliography

[3]

t4]

[6]

[7]

L8]

(9]

[10]

(1]

[12]

ANST Standard: Information Processing — Text and Office Systems — Standard
Generalized Markup Language. ISO 8879-1986, ANSL

Belkin, N.J., T. Seeger, and G. Wersig. “Distributed expert problem treatment as a
model for information system analysis and design.” Journal of Information Science 5
(1983), pp. 153-167.

Belkin, N. J. and W. B. Croft. “Retrieval Techniques.” In Martha E. Williams (ed.)
Annual Review of Information Science and Technology v. 22. 1987, pp. 109-143,

Belkin, N.J., C. Borgman, H. Brooks, T. Bylander, W. Croft, P. Daniels, S.
Deerwester, E. Fox, P. Ingwersen, R. Rada, K. Sparck Jones, R. Thompson, and D.
Walker. “Dismibuted Expert-Based Informaion Systems: an interdisciplinary approach.”
Informarion Processing and Management 23:5 (1987), Pp. 395-409.

Borgman, Christine L. “Designing an information retrieval interface based on user
characteristics.” Proceedings of the Eighth Annual International ACM SIGIR Conference
on Research and Development in informarion Rerrieval (Monrréal, Québec: 5-7 June
1985). ACM, 1983, pp. 139-146, :

Borgman, C.L. “Individual differences in the use of informarion remieval systems: 2 pilot
stedy.” ASIS-86: Proceedings of the Annual Meering. Knowledge Industry
Fublications, 1986, pp. 30-31..

Borgman, C.L.. “Individual differences in the use of information retrieval Systems: some
issues and some data.” Proceedings of the Tenth Annual International ACM SIGIR
Conference on Research and Development in [nformation Retrieval (New Orleans, LA:
3-5 June 1987). ACM, 1987, pp. 61-71.

Borgman, Christine L. “Information systems functionality: a user-driven perspective.”
Paper presented at the Workshop on Distributed Expert-Based Information Systems.
School of Communicatdons, Informaton and Library Stdies, Rutgers University, March
1987.

rachman, Ronald J., Richard E. Fikes ané Hector I. Levesgue. “Krypton: 2 funcronsl
approach to knowledge representation.” IEEE Compurer 16:10 (Oct. 1983), pp. 67-73.

Brachman, Ronald J. and Hector J. Levesque. “The tractébﬂity of subsumprtion in
frame-based descriptive languages.” AAAI-84- Proceedings of the National Conference
on Artificial Intelligence (Austin, TX: Aug. 6-10, 1984). AAAL 1984, pp. 34-37.

Brachman, Ronald J. and Hector J. Levesque. Readings in Knowledge Represeniation.
Los Altos, CA: Morgan Kanfman, 19853,

Brachman, Ronald J. and James G. Schmolze: “An overview of the KL-ONE knowledge
representation system.” Cognitive Science 9 (1985), pp. 171-216.

37

[13] Buckley, C. Implementation of the SMART Information Retrieval System. TR 85-686,

[14]
[15]
[16]
[17]
(18]
[191

(201

[21]

[22
[23]
[24]

[25]

Comell Univ., Dept. of Comp. Sci., May 1985,

Croft, W. Bruce and Roger H. Thompson. “I3R: a new approach to the design of
document retrieval systems.” Journal of the American Sociery for Information Science

38:6 (1987), pp. 389-404.

Daniels, Penny J. “The user modelling function of an Intelligent interface for document
retrieval sysiems.” In IRFIS 6. Intelligent Information Systems for the Information
Sociery (Frascati, Sept. 1985). Amsterdam: North-Holland, 1986.

Fahlmar, Scott E., David S. Touretzky and Walter van Roggen. “Cancellation in a
parallel semantic network.” Proceedings of the Seventh International Joint Conference on
Artificial Intelligence (Vancouver, BC, 24-28 Aug. 1981): Los Altos, CA: Morgan
Kaufman, 1981, pp. 257-263.

Fikes, Richard and Tom Kehler. “The role of frame-based representation in reasoning.”
Communicarions of the ACM 28:9 (Sept. 1985), pp. 904-920. :

Fox, E.A. “Information retrieval: research into new capabilities.” In Steve Lambert and
Suzanne Ropiequet (eds.) CD-ROM: The New Papyrus. Redmond, WA: Microsoft
Press, 1986, pp. 143-174.

Fox, E.A. “Development of the CODER Systeml: a testbed for arrificial intelligence
methods in information remieval.’ information Processing and Managemen: 23:4
(1987), pp. 341-366.

Fox, E.A. “Improved remrieval using a relational thesaurus expansion of Boolean logic
queries.” In Martha W. Evens (ed.} Relarional Modeis of the Lexicon: Representing
Knowledge in Semantic Networks. Cambridge: Cambridge University Press, 1988 (10
appear).

Fox, E.A. “Oprical discs and CD-ROM: publishing and access.” In Martha E. Williams
{ed.} Annual Review of Information Science and Technology Vol. 23. 1988 (10 appear),

Fox, E.A. and Q-F. Chen. “Tex: analysis in the CODER svstem.” FProceedings Fourth
Annual USC Computer Science Svmposium: Language and Dasa in Svstems (Columbia,
SC: & April 1987). pp. 7-14.

Fox, E.A. and RK. France. “Architecture of zn €Xpert system for composite document
analysis, representation and retrieval.” Inzernarional Journal of Approximare Reasoning
1:2 (1987), pp. 151-175.

Fox, E.A., I.T. Nuner, T. Ahlswede, M. Evens, and J. Markowitz. “Building & large
thesaurus for informarion retrieval ” Proceedings Second Conference on Applied Nawral

Language Processing (Austin, Texas: 9-12 Feb. 1988). ACL, 1988, pp. 101-108.

Fox, E.A., MLT. Weaver, 'Q-P. Chen, and R.X. France. “Implementing a distibuted
experi-based information retrieval system.” Proceedings RIAO (Recherche
d'Informarions Assistee par Ordinareur) 88 User-Oriented Text and Image Handiing

March 21-24, 1988, (Cambridge, MA: 21-24 March 1988). pp. 708-726,

N

[26]

(27]

[28]

[29]

[30]

[31]

137]

[38]

[39]

38

France, R.K. and E.A. Fox. “Knowledge structures for information retrieval:
representaton in the CODER project.” Proceedings I[EEE Expert Systems in Government
Symposium (McLean, VA: 20-24 Oct. 1986). IEEE, 1986, pp. 135-141.

Hahn, Udo and Ulrick Reimer. TOPIC Essentials. Postfach 5560, D-7750 Konstanz 1,
Universtat Konstanz, April 1986.

Hanks, P. ed. Collins Dictionary of the English Language. London: William Collins
Sons & Co., 1979.

Hayes-Roth, Frederick. “Rule-Based Systems.” Communications of the ACM, 28:9
(Sept. 1985), pp. 921-932.

Hollaar, L.A. “The Utah Text Remieval project.” Information Technology: Research and
Development 2:4 (Oct. 1983), pp. 155-168.

Hollaar, L.A. “A testbed for information retrieval research- the Utah Retrieval System
architecture.” Proceedings of the Eighth Annual Internarional ACM SIGIR Conference on

' Research and Development in | nformation Retrieval (Montréal, Québec: 5-7 June 1985).

ACM, 1985, pp. 227-232.

Hou, C.T. and U. Kekeritz. “Eine frame implementation in Proleg.” Rundbrief des
Fachausschusses 1.2 der GI {Apzl 1986), pp. 19-25.

Jaeschke, G. “Reciprocal hashing: a method for generating minimal perfect hashin g
functions.” Communicarions of the ACM 24:12 (Dec. 1981).

Jennings, M. “The Electronic Manuscript Project.” Bulierin of the American Society for
Injormation Science 10:3 (Feb. 1984), pp. 11-13.

Lee, Newron S. “Programming with P-Shell.” JEEE Experr (1986), pp. 50-63.

Lenat, Doug, Mayank Prakash and Mary Shepherd. “CYC: using common sense
knowledge to overcome brittleness and knowledge acquisition bottlenecks.” A7 Magazine

-(Winter 1986), pp. 65-84.

Levesgue, Hector I. and Ronz2ld J. Brachman. “Expressivensss and Tacability in
knowledge representaton and reasoning.” Computarional Intelligence 3:2 (May 1987),
Pp. 78-93. An earlier version appeared in [11], pp. 42-70.

MacQueen, David, Gordon Plotkin and Ravi Sethi. “An ideal mode! for recursive
polymorphic types.” Conference Record of the Eleventh Annual ACM Symposium on
Principles of Programming Languages (Salt Lake Ciry, UT: Jan. 15-] 8, 1984). ACM,

1984, pp. 165-174.

Malone, Thomas W., Kenneth R. Grant, Frankivn A. Turbank, Stephen A, Brobst, and
Michael D. Coher.. “Intelligent information-sharing systems.” Communicarions of the
ACM 306:5 (May 1987), pp. 390-402.

[40]

[41]

[42]

[43]

[44]

[45]

[49]

[50]

[51)

39

Minsky, Marvin, “A framework for representing knowledge.” In Winston, P. (EC.). The
Psychology of Computer Vision. New Yori: McGraw-Hill, 1975. Reprinted in [11].

Mylopoulos, John and Hector J. Levesque. “An overview of knowledge representation.”
In Michael] L. Brodie, Joachim W. Schmidt and J ohn Mylopoulos (Ed's.) On Conceprual
Modelling. Berlin: Springer-Verlag, 1984, pp. 3-16.

Nado, Robert and Richard Fikes. “Semantically sound inheritance for a formally defined
frame language with defaults.” AAAJ-§7: Proceedings of the Narional Conference on
Artificial Intelligence (Seartle, WA - Aug. 1987). Los Altos, CA: Morgan Kaufman,
1987, pp. 443-448.

Patel-Schneider, P.F., R.I. Brachman, and H.J. Levesque. “ARGON: knowledge
representation meets information retrieval” The 7 irst Conference on Artificial I ntelligence
Applications (Denver, CO: Dec. 5-7, 1984): 1IEEE, 1984, pp. 280-286. (Also: Fairchild
Technical Report No. 654; FLAIR Technical Report No. 29, Sept. 1984).

Patel-Schneider, P.F. “Small can be beautiful in knowledge representation.” Workshop
on Principles of Knowledge-Based Systems (Denver, CO: Dec. 34, 1984): IEEE, 1984,
pp. 11-16. (Also: FLAIR Technical Report No. 37, October 1984).

Pigman, Victoria. “The Interaction between assertional and terminological knowiedge in
Krypton.” Workshop on Principles of Knowledge-Based Systems (Denver, CO: Dec
3-4,1984). IEEE, 1984, pp. 3-10.

Poliitt, Steven. “CANSEARCH: an CXPErt system approach 1o document remieval.”
Informarion Processing and Managemen: 23:2'(1987), pp. 118-138.

Ramamohanarao, K., John W. Lloyd and James A. Thom, “Partai-match remieval using
hashing and descriptors.” ACM Transactions or Database Systems 8:4 (Dec, 1983), pp.
552-576.

Ramamohanarao, K. and J. A. Shepherd. “An indexing scheme for very large databases
of Prolog clanses.” Proceedings of the Third International Conference on Logic
Programming (Imperial College, London: July 1986) 1986, pp. 231-278.

Rowe, Neii C. Arrificial Intelligence through Prolog. Englewood Cliffs, New Jersey:
Prendce Hall, 1988,

Scott, Dana S. “Domains for ienorational semantics.” In Mogens Neilsen and Erik
Meinecke Schmidr: Auromara, Languages and Frogramming: Ninth Colloguivm (Aarkus,
Denmark: July 12-16, 1982). Berlin: Springer-Verlag, 1982, pp. 577-613.

Smith, Linda C. and Amy J. Warmner. “A taxonomy of representations in information
rewieval system design.” In Hans], Dietschmann (Ed.) Representarions and Exchange
of Knowledge as a Basis of Information Processes. New York: North-Holland, 1984,
pp. 31-49.

{52]

[53]

[54]

[55]

4¢

Smith, 1.B., S.F. Weiss and G.J. Feruson. “MICROARRAS: an advanced full-text
rerrieval and analysis system.” Proceedings of the Tenth Annuai International ACM
SIGIR Conference on Research and Development in Informarion Rerrieval (New Orleans,
LA 3-5 June 1987). ACM, 1987, pp. 187-195.

Thompson, Roger H. and W. Bruce Croft. “An expert system for document retrieval
Expert Systems in Government Symposium (MacLean, VA: Ocr. 24-25, 1985). IEEE,

1985, pp. 448-456.

Thompson, Roger H. “An implementation overview of I3R Paper presented at the
Workshop on Distributed Experi-Based Information Systems. School of
Communications, Information and Library Studies, Rusgers University, March 1987,

Tong, Richard M., Lee A. Appelbaum, Victor N. Askman and James F. Cunningham.
“RUBRIC III - an object-oriented expert system for information retrieval.” Proceedings
IEEE Experr Systems in Government Symposium (McLean, VA: 22-24 Oct. 1986).
IEEE, 1986, pp. 106-115.

[56] Tong, Richard M., Lee A. Appelbaum, Victor N. Askman and James E. Cunningham.

157}

~
Lh
oo
| -

[59]

“Conceptual information retrieval using RUBRIC.” Proceedings of the Tenth Annual
Internarional ACM SIGIR Conference on Research & Development in Information
Rerrieval (New Orleans, LA June 3-5,1987). ACM, 1987, pp. 247-253.

Touretzky, David. The Mathemarics of Inheritance Systems. Los Altos, CA: Morgan
Kaufman, 1986.

Weaver, Marybeth T. Implementing an Intelligent Rerrieval Systern: The CODER
System, Version 1.0. MS Thesis, VPI&SU Computer Science Dept., February 1988,
Blacksburg, VA (available from VPI&SU 25 TR-88-6).

Wohlwend, Robert C. Creation of a Prolog Fact Base from the Collins English
Dictionary. MS Report, VPI&SU Computer Science Dept., Blacksburg, VA, March
1986.

41

Appendix A: Frame Administration Modules

A.l. The frame type manager,

A 1.1, New frame types.
For each frame type, a Prolog fact contains the frame characteristics.
ka_frame(Frame_name, Parents, Slot_list).

where

* Frame_name is any name not already used as a frame, EDT or rejation Iype name.

* Parents is a list of frame type names representing classes of which this frame is a
member. For example, a journal_article frame type could have parent frame
type journal which could have parent frame type bibliographic_reference.

* Slot_list is a list of atribute names and characteristics. Al parent slots are
innerited, that is they are added 10 the list of siots defined for a new frame rype.

A list of characteristics per slot is contained in the slot_iist. Slot characierigrics are

represented by the list
[Slot_name, Class, Type, Cardinality_min, Cardinality_max, Defanlt]

where

* Slor_name is a slot identifier. Although slot names must be unigue within a given
frame type, they need not be unique among all frame types. Howsver, it is
recommended thar all slots be given unique names 1o avoid confusion.

* Class identifies the kind of object required to fill the slot. It must be e (EDT), f
(frame) or r (relaton).

* Typeisthe type name of the EDT, frame or relation to £l the siot.

* Cardinality_min is the minimum number of values allowed for the slot when the
frame object is instantiated. All slot values for frame objects are stored as Jists of
values. This value may be null if there is no lower bound on the number of slot
values.

* Cardinality_max is the maximum number of values aliowed for the slot when the
frame object is instantiated. This value may be nuil if there is no limit.

42

* Defauir is the value assigned 10 an EDT slot when 2 frame object is created.
A.1.2. Frame lattice manipulations.

Whern a new frame type is created, Prolog facts per parent-child relationship for the frame
are 2lso asserted so that the frame hierarchy may be efficiently navigated. Facts contain the
parent frame type and its direct descendant frame type: ka_fparent(Parent_type,
Child_type). Frame taxonomy Telatonships are reported by subframe_list(Frame_type,
Subframes) and superframe_list(Frame_type, Superframes) which return a st of
immediate subframe types and a list of all ancestors respectively. These predicates may also
either succeed or fail if both arguments are bound, thus indicating whether the frame types
provided have a parent-child relationship.

The subsumes(Ancestor, Descendant) predicate indicates whether one frame type is a
generalization of another. Any frame stored as a parent of another frame should subsume its
child frame. However, a pareni-child link is not required for one frame type to subsume
another. Finally, the frame fype manager of the KA complex includes the
Siot_list{Frame_type, Slot_list) predicate to return 2 frame type's list of slots or 1o
succeed if a given list of slots is 2 proper subset of the frame's slot list.

A.2. The frame object manager.

The new_frame predicate aliows establishment of a new frame object. This predicate is
of the form: new_frame(F rame_type, Frame_object). Any CODER €XDEert may issue
the new_frame predicare 1o creaie 2 new frame object as Jong as the object manager code has
been consulted. When issued, the frame_rype must be bound 1o a defined type; frame_object
may be unbound, in which case it will be returned as the object identifier which has been
assigned. If the module crearing the object wishes to assign its own identdfiers, it may do so.
However, the idenrifier assigned must be unique within the module's local fact base of frame
bbjects. Two types of assertions occur to create a new frame object:
Jobjid(Object_identifier, Frame_type). and Jobj(Object_identifier, Slot_name,
Slot_value_list). Sample facts representing two frames are listed in Figure A.1. When new
frames are created, the fobjid fact is asserted. Next, any siots having non-null default valnes are
asserted as fobj facts, Therefore, a fobj fact will not necessarily exist for every slot defined for a

43

given frame type. Indeed, no fobj facts are reguired when a frame object is created. Once a

frame object has been created, values such ag defaults may be removed and/or new values may

be assigned.

fobjid(163610917, user_eval).
fobjid(163610918, session).

fobj(163610917, satisfaction, [8]).
1obj(163610917, usefulness, ['67-907).
fobj(163610917, why_stop, ['out of time']).
fobj(163610917, easy_to_use, [v]).
fobj(163610918, nodoc_gueries, [07).
fobj(163610918, doc_guantity, [10]).
fobj(163610918, user_eval, [1636109177).
fobj(163610918, sessionlgth, [154]).
fobj(163610918, session_id, [26968]).

Fig. A.L. Sample frame objects.

"The method nsed to store frame objects does make less efficient nse of storage space than

other methods considered. However, it simplifies processing of slot valye manipulations and

reduces execution ime processing by eliminating the list wraversal required by other methods,
Two other possibilities were examined in conjunction with the one adopted.

For each new frame object, a single fact couid be asseried as: fobj(Object_id,
Frame_type, [Slorname.[VaIues], Slomame.[Values], ... B All slor

Lames and a list of values for each would be included in e single facr. Although
this method would considerably reduce the size of the knowledge bases created
and eliminates the redundant Storage of the object identifier Recessarv in the
method chosen, it would require list processing and menipulation every time a
siot value were added or removed. Ir additon, the frame object manipuiation
predicates would require excessive list processing. The frame objects in Figure
A.1 would be replaced by two facrs:

fobj(163610917, user_eval, [satisfaction.[g), usefulness.'67-907, why_stop.['out of ume’, ...)
fobj(163610918, session, {nodoc_queries.j0], doc_guantiry.[10], user_eval.[163610917], ... 3.

To reduce Storage requirements even mare, the Slomame couid be eliminated
from the list of slot names and values. Instead, each list of values would
posidonally be matched 1o the slor names defined in the frame type definidon.

44

So, the single fac: for each object would contain: Jobj(Object_id,

Frame_type, [[Values], {Values], ... J). This method would require even

more extensive list mantpulation as well as matching of the frame rype slots to the
object slot value list for all frame object manipulation, In cases where no values
were assigned to slots, each slot would still have to be included in the list so that
the positional values could be properly matched to slots in the frame type
definition. :

The implementation strategy for frame objects could be rewritten accordin g to one of the above
methods or using some other strategy. Such modification, however, would Tequire rewriting of
all frame object predicates as well as rewriting of moduies which use the current frame object
structure.

A.2.1. Object manipulation.

Predicates to support the manipulation of frame objects allow updates to siot values, and
Support reasoning about the relationships berween or among frame objects. The is_frame and
has_slot value predicates return information about the existence of frame objects and the
values assigned to frame slots, respectively. Slot values are asser ed using the sef_slof value
predicate, and may be removed with the remove_slo!_value predicate. The equal_frames
and matching_frames predicates allow comparison berween frame objects. A frame object A
marches a frame object B if every filled slot of A maiches a filled slot of B. Slot values march
when slot types, classes and vaiues match or when values for a slot which subsumes another
slot match. Marching is an antisymmetric relation, whereas equai is 2 symmertric relation: every
slot in A must match a slot in B and every siotin B must maich a slotin A

45

Appendix B: External Knowledge Base.

External knowledge bases provide mechanisms for ransparent storage, indexing, and
remeval of large numbers of facts about individual entities in the CODER problem unjverse
‘Facts’ in this context is a technical term, refering to a ground instance of the CODER logical
relation data type. This data type has been designed 1o parallel the syntax of propositions in the
Prolog language, so CODER facts can be mapped directly 10 Prolog facts. Specifically, each
fact can expressed as a Prolog proposition that includes no variables. The proposition may have
other propositions nested within it arbitrarily deeply, but eventually the tree formed by such
propositons will terminate in objects of the other two CODER data types: frames and
clementary data objects.

A fact base supports 2 single function for storing new facts
enter (fact, source_id).

and three functions to rerrieve facts, one for each dara type:
Jacts_with_rel (skeletal_relarion, | Jact | _),
Jacts_with_frame (frame_type, Jframe_object, [fact | _ 7

Jacts_with_value (data_type, data_object, [fact | 1.

Specialized functions provide for the case where the relation bein g matched is the head of the
fact: '

Jacts_matcking (skeletal Jact, [fact | _]

and the case where it is only required to know what objects in the fact base match a given frame,
rather than what facts are known about the obiects:

Jrames_matching (frame_type, Jrame_object, | Jframe_object | _],

In addition, three parallel funcrions are provided which return the number of facts that any of the
primary retrieval functions would Tetreve:

46

num_with_rel(skeletal__relation, Num),
num_with_frame(frame_type, Jrame_object, Num).
num_with_value(data_type, data_object, Num),

These allow experts calling the fact manager to guard against unused large retrieval sets. None
of the remrieval operations succeed if called with their first arguments unbound or their last

argument bound,

B.1 Detailed Description of Functions

enter (fact, source_id). Where fact is 2 ground instance of a CODER relation, every
ergument of the fact is a syntactically correct use of a recognized relation, frame, or elementary
data type, and source_id is an atom specifying the source of the fact, succeeds while updatng
the local fact base to include fact. This updating includes tme- -stamping the fact 1o facilirate
later knowledge maintenance and analyzing the fact so that later remieval can occur on any of its
component relations, frames, or elementary data objects. Fails if and onl v if fact uses
unknown datz types, includes type violations, or is not syntactically correct,

facts_with _rel (skeleton, [fact | _ 1). Where skeleton is an instance of a
recognized relation and all the arguments of skeleton are either frame objects, elementary data
objects, skeleral relations, or CODER vanables, succeeds whils i binding the second argument 10
the Iist of all facts in-the loca fact base containing ground instances of reladons that can be
unified with skeleton. The order of elements mn the #istis inde terminate, and may (or may not)
vary from call 1o call. If no facts in the local base contain relations can be unified with
skeleton, succeeds while binding the second argument to the empty list. Fails if and only if
skeleton uses nnknown data types, includes type violations, or is not syntactically correct.

facts_with frame (frame _type, frame object, [fact | _ D. Where
frame_object is a valid frame object of type frame_type, possibly with some or all slots
unfilled, succeeds while binding the second argument to a list of al facts in the local fact base

47

that include references to frames of typc frame_type with at least those slots filled with
matching values. In other words, all facts that reference frames that are exactly like
frame_object and all facts that reference frames that are lke frame_object except that they
have additional slots filled, but no facts that have the same slots filled by norn-matching values,
and no facts that have unfilled slots where frame_object has filled slots. The order of
elements in the list is again indeterminate, and the list may again be empty, but the function fails
if and only if frame_object uses unknown daga types, includes type violations, or is not

syntactically correct.

facts_with_value (data_type, data_object, [fact | 1), Where data_object is 2
valid elementary object of type data_type, succeeds while binding the second argument to a
list (in indeterminate order) of all facts in the fact base that reference data_object at some
degree of recursion. May succeed while binding the second argument to the empty list if no
such facts are available, but will fail only if data_object is not an object of type data_type.

facts_matching (skeletal_fact, [fact | _ D Performs exactly as
facts_with_relapse, except that the remieved facts are constrained to be only those whose
head relations match the head Telation of skeletal fact,

frames_matching (frame_type, frame_object, [frame_object | _). Where
frame_object is a valid frame object of type frame_type, possibly with some or all slots
unfiiled, succeeds while binding the second argument to a list of all frames of type frame_type
referenced by facts in the local fact base thar match frame_object.

num_with_rel (skeleton, Num).

num_with_frame (frame type, frame_object, Num).

num_with_value (data_type, data_object, Num). All functon exactly as their
corresponding functons above, except that on succeeding they bind their final arguments to the
number of facts that the corresponding function would provide in irs list,

