Using Group and Subsystem Level Analysis
to Validate Software Metrics
on Commercial Software Systems

Dennis Kafura
James Canning

TR 88-13

Using Group and Subsystem Level Analysis
to Validate Software Metrics on Commercial Software Systems

Dr. Dennis Kafura
Department of Computer Science
Virginia Tech
Blacksburg, Virginia 24061

Dr. James-Canning
Department of Computer Science
University of Lowell
Lowell, Massachusetts 01854

Absiract

This paper reports the results of 2 study which examined the relationship between a
collection of software metrics and the development data (such as errors and coding time}
of three commercially produced software systems. The software metrics inciude both
measures of system interconnectivity and measures of system code. This study revealed
strong relationships between the metrics and the development data when individual
components were aggregated by structure (into subsystems) or by similarity (into
groups). The subsystem and group results imply that research and applicaton of metrics
should be focused above the component level. The group results also imply that metrics
can guide the effective application of project resources by identifving those groups which,
for example, will contain a disproportionately large fraction of errors. Finally, the study
showed the overall utility of two interconnectvity metrics: Henry and Kafura's
information flow metric and McClure's invocation metric. This result is significant
because interconnectivity metrics can be applied early in the life cycle.

I. Introduction

This paper reports the results of an effort to validate a variety of software metrics using
three commercially produced systems. In total these systems contain over two hundred
thousand lines of code and seven hundred executable components. The ulumate purpose
of this effort was to determine whether there were significant relationships between
software metrics and the historical development data which can be exploited to advantage
in the software engineering process.

In this study we have expanded on previous work in two ways. First, we have employed
more varied ways of viewing the relationships between the metrics and the development

data including:
 linear correlations at a subsystem level

+ studies of groups of components which are "similar" in both metric
characteristics and development data characteristcs

The use of these different views allowed us to examine more completely different aspects
of the complete relationship between the metrics and the development data. Second, we
incorporated a more varied collection of metrics. Previous research in this area has
typically been limited to the application of code metrics such as: lines of code, McCabe's
Cyclomatic number [McCa76], and Halstead's software science measures [Hais77]. In
addition to these metrics, we also included four interconnectivity metrics which measure
conmo! and data flow interfaces among system components: Henry and Kafura's
Information Flow measure [Henr81a], Woodfield's Syntactic Interconnection Model
[Woo0d80], Yau and Collofello's Stability measure [Yau80} and McClure's Invocation
complexity [McCl78].

This paper is practical and empirical. Kearney et.al. [Kear86] have termed this approach
"expioratory.” They note that ... with limited understanding of programs and
programming, exploratory work is necessary to provide direction for further stady” [pg.
1050]. The weakness of this approach 1s that ... lacking a theory of programming
behavior ... these explorations are difficult to interpret and provide only weak suppert for
the use of complexity measures” and that "... until more comprehensive evidence is
available, software complexity measures should be used very cautously” [pg. 1044].
Finally, they conclude that "complexity measures currently available provide only a crude
index of software complexity” [pg. 1050]. Without lessening the need for a theory of
metrics, we believe that empirical studies such as this one provide important guidance on
the practical application of software metrics. Furthermore, practicioners are discovering
that a collection of even simple metrics provides substantial benefits [Grad§7].

The remainder of this paper is organized as follows. In the next section we explain in
detail the motivations for examining measures at the subsystem level anc the use of
grouping technigues. This section also describes both the metrics that were used and the
systems and historical development data. Section III, a baseline for the rest of paper,
contzins the component level linear correlation analysis. Sections IV and V present,
respectvely, the subsystem level analysis and the group analysis. The last section
summarizes the resolts.

II. Metrics and Development Data

This section describes the basic components of our study. It first explains why we
decided to use subsystem and grouping technigues to view the relationship between the
metrics and the development data. We then briefly present the collection of software
metrics which were used. Finally, the systems and the historical data are described.

Subsystem and Group Analysis

The first motivation for studying software at the subsystem level 1s that management
plans and cost models are more frequently concerned with the cost and resources of
subsystems than with individual components. This is illustrated in the environment from
which the data used in this paper was obtained (NASA Goddard Space Flight Center). In
this environment management reports the assignment of programmers to subsystems.

The second motivation is that development data is more easily collected and verified at the
subsystem level. It is not always possible to identify a single component as the sole cause
of an error or to correctly estimate the time spent working on a particular component. In
this paper we will see that the subsystem data seems 10 contain less "noise" than the
component level data. '

The third motivation for using subsystems is the same as the first motivation for using
groups. Measurement of subsystemns or component groups does not require the metrics to
differentate between components having approximately the same metmic or development

ata characteristic. In a subsystem or group analysis, small differences in component
metric values and developmental data readings exert less effect than in a component level
analysis.

The second motivation for using groups is that by studying groups it is easier to identify
and understand those components winch are "outiiers” [Kafug5]. It may be unrealistic 1o
assume that the development staff has the resources to give every component the same
high degree of testing and review as that given 10 "critical” components. Since some
differential effort is applied in any event, management can better assess how to distribute
the resources for a project by identifying those components which have exmemely high
metric values.

The Metrics

Three general classes of software metrics can be distinguished: measures based on the
system's design structure, termed "interconnectivity metrics”, measures based only on
implementation details, termed "code merrics” and measures which are a combination of
the other two, termed "hybrid metrics." The use of both interconnectivity and code
metrics is important for two reasons. First, these classes of metrics appear to be
measuring different aspects of the system [Henr81b} [KafuB4]. Second, each class of
metrics can be first used at different points in the software life cycie. While code merics
may be useful indicators during the testing and maintenance phases, they come too late in
the software life cycle to address fundamental design decisions. Interconnectivity metrics,
on the other hand, can be taken early in the life cycie since they are based only on system
features which emerge at the high-level design phase. The hybnd metrics were created for
this study to test the utility of weighting an interconnectivity metric by a code metric.

For reference, the merrics are briefly described in Table 1. There is no weighted
invocation complexity measure because this did not appear to be meaningful given the
way the invocation compiexity measure is defined. Also several weighting factors were

wied (LOC, EFFORT, and CYCLO). Only the LOC weighted measures are presented
because the choice of weighting facior made little difference in the results.

Table 1: Metric Summary

Abbreviation Metric Name What it measures
Code Metrics

LOC lines-of-code component size

EFFORT software science effort mental difficulty

CYCLO cyclomatic complexity local control flow

Interconnectivity Merrics

INFOFLOW information flow complexity global data flow

INVOKE invocation complexity global control flow

REVIEW review complexity combined global data/control
flow _

STABILITY stability measure resistance to "ripple effect”
changes

Hybrid Merrics

INFO-LOC weighted information flow combined size/global data
flow

REV-LOC weighted review complexity combined size/global
data/control fiow

STAB-LOC weighted stability measure combined size/'ripple effect”

Of the four interconnectivity metrics the information flow metric has been previously
applied and validated on realistic programs: the UNIX operating system [Henr79]
[Henr81a] [Henr84], and a database management system [Kafu87]. Two of the
interconnectivity metrics, Woodfield's review measure and McClure's invocation
complexity were applied with success on smaller scale programs. Woodfield[Wood&80]
conducted controlled experiments which measured programs built by students competing
in a programming contest and correlated these measures with coding time.
McClure{McCl78] applied the invocation measure to a self-built COBOL program and
provided a subjective evaluation. The stability measure of Yau and Collofello[Yau 80]

was proposed but not validated.

Source Code and Historical Database

Critical resources necessary for this project were provided by the Software Engineering
Laboratory (SEL) headed by Frank McGarry, Dr. Jerry Page and Dr. Victor Bastii. This
organization, formed in 1976, is composed of three members: Nasa/Goddard Space
Flight Center(GSFC), The University of Maryland (Computer Science Department), and
Computer Science Corporation (Flight Systems Operation). The SEL has defined and
implemented an extensive monitoring and data collection process by which the details of
all aspects of the software development process and product could be extracted for
analysis [Nasa §1].

One critical resource provided by SEL management was the source code for three large
scale projects, each of which was writien in FORTRAN. These three software systems
will be referred to as PROJECT A, PROJECT B, and PROJECT C. Each project is
further subdivided by Nasa/Goddard into subsystems. The largest project, PROJECT A,
has nine subsystems while PROJECT B and PROJECT C possess seven and six
subsystems respectively. Throughout this paper individual subsystems will be identified
by a number appended to its associated project name. Thus, subsystem three in
PROJECT A will be referred to as subsystem A.3 . Each subsystem is a collection of
components {i.e., FORTRAN subroutines, functions, and data blocks). Within a given
project, subsystems generally do not share common components. That is, routines from
one subsystem rarely call routines from another subsystem. Communication berween
subsysiems is usually achieved through the use of giobal variables and project wide
tables. However, all subsystems share a pool of utility routines written in FORTRAN and
assembly language.

In addition to the three FORTRAN systems, SEL also provided a developmental database
for each of the three projects. Selected for this study were the following variables:

Count Based Dependent Variables

Component Changes: A modification to a component made either
to COITECt an €error, to improve System
performance, to add capability, or to
implement a requirements change.

Component Errors: A discrepancy between a specification and its
implementadon. The specification might be &
requirement specification, a design
specification, or a coding specification.

Time Based Dependent Variables

Design Hours: The time recorded by SEL personnel to
create, to read and 1o review the design of an
individual component or subsysterm.

Code Total Hours: The time recorded by SEL personnel to
implement, 1o read and to review the coding
of an individual component or subsystem.

Code Hours: The time recorded by SEL personnel just to
implement an individual component or
subsystem.

Test Hours: The time recorded by SEL personnel 10 test

an individual component or subsystem,
including unit testing, integration testing,
and testng reviews.

Total Hours: The time arributed to the entre development
of a component or subsystem.,

In addition to the two count based variables mentioned above, a third count based
variable, WEIGHTED CHANGES, was derived. This is 2 measure of the total amount
of effort spent either to fix an error or to make a change to a given component[Basi83].
The calculation of the weighed changes is given in Appendix A.

Filtering the Data

Because of the nature of the data collection process and the environment in which the
systems were constructed, not all of the components from the three projects were used.
One subset of components, referred 10 as DATASET A, was utilized in those experiments
which compared the metrics with the count based dependent variables (ERRORS,
CHANGES, WEIGHTED CHANGES). In particular, DATASET A does not include
those components which were entirely or largely reused from prior projects. In all, 561
components were included in DATASET A. The second subset of components, known
as DATASET B, was used in those experiments which related the metrics to time base
dependent variables. DATASET B is a subset of DATASET A. The selection process,
or "filter", used to produce DATASET B, was found to be necessary in order to adjust
for problems with the data reporting mechanisms [Basi83]. In all, 331 components were
used in DATASET B. A more detailed description of each of these two sets of
components is presented in Appendix B.

II. Component Level Analysis

This section presents the Spearman coefficients obtained by correlating, on a2 component
basis, the ten complexity metrics with the four development measures: ERRORS,
CHANGES, WEIGHTED CHANGES and CODING TIME. The data in this section,
showing weak and/or inconsistent correlations, will serve 2s a baseline against which the
data in Sections IV and V can be evaluated.

The Spearman coefficients derived by measuring all components are found in the column
labelled ALL PROJECTS in Table 2. The correlations between the metrics and the
ERROR-data are rather low indicating little or no reladonship between them. Similar
results were observed for both CHANGES and WEIGHTED CHANGES. These results
were not totally unexpected. Previous research by Basili et. al. [Basi83), found similar
results when comparing errors with software science metrics. Basili et.al. noted that the
discrete nature of error reporting, with 52 percent of their components having zero errors,
could account for the low Spearman correlations. The dismibution of the error and change
dara in DATASET A is similarly skewed.

In an atternpt to account for project rejated effects, the components of DATASET A were
partiioned and analyzed by project. The Spearman correlations between the metrics and
the error data for the three individual projects are presented in Table 2. Almost all the
merrics show stronger associations with ERRORS for PROJECT A and PROJECT C
than they did for the across project analysis. In particular the three code memics: LOC
(.627), CYCLO (.513), and EFFORT (.610) , exhibit noticeably higher correlations with
ERRORS when applied to the components of PROJECT C. Of the three hybrid merics,
the INFO-LOC metric was the only measure to show significant improvements in the
correlations. Again, these improvements are present for both PROJECT A and PROJECT
C. The pure interconnectivity metrics have somewhat weaker associations to ERRORS
than do either the code or hybrid metrics. Among the four interconnectivity metrics,
Henry and Kafura's INFOFLOW and McClure's INVOKE measure exhibit the strongest
relatonship 10 ERRORS.

Table 2 : Component Analysis Within Projects -- ERRORS

ALL

PROJECTS PROIJ. A PROJ. B PROIJ. C
LOC 470 506 257 o .627
CYCLO 373 .390 7 513
EFFORT A6T 494 .189 .610
INFOFLOW 321 462 ? 489
INVOKE 398 331 406 AT79
REVIEW 7 .250 209 -.249
STABILITY 174 228 7 287
INFO-LOC 364 496 7 536
REVIEW-LOC 254 509 281 ?
STAB-LOC 219 A75 267 257

KEY: 7 P>.05, OTHERWISEP < .01

The correlations found in Table 2 generally indicated an inconsistent relationship between
the memics and ERRORS. No single metric nor any class of merics demonstrated a
strong overall correlation. LOC and EFFORT, for exampie, both have correlations over
0.6 on Project C while both have correlations less than 0.25 on Project B. Similar
observations can be made when comparing the metrics 1o the other Two count based
metrics (CHANGES and WEIGHTED CHANGES).

Table 3 presents the Spearman rank coefiicients between the complexity metrics and
CODING TIME for components in DATASET B. The other time based data was not used
since this data was not reported-on a-component basis. From the data presented in this
table, code metrics relate more swongly to CODING TIME than either interconnectivity. or
hybrid metrics. Among the interconnectivity and hybrid metrics, the INFOFLOW metric
(.437) and the INFO-LOC metmic (.479) indicate the strongest association to CODING

TIME

" Also presented in Table 3 are the results of correlations which partitioned the components
of DATASET B by project. As can be seen, the coefficients for PROJECT A indicate
stronger association 1o CODING TIME for every metric. Furthermore, for some metrics,
the comelations with CODING TIME also increases for PROJECT C componenis. As
before, in the experiments with the count based data, improvements in the correlations
are not as consistent for Project B. '

Table 3: Spearman Correlations: Metrics With CODING TIME

ALL
PROJECTS PROI. A PROI B PROJ. C
LOC S44 634 475 576
CYCLO 583 674 442 581
EFFORT 557 583 523 369
INFOFLOW 437 599 421 468
INVOKE 286 .293 ? .350
REVIEW -.180 7 ? -.327
STABILITY 303 468 392 306
INFO-LOC A79 616 A65 517
REVIEW-LOC 164 583 424 ?
STAB-LOC 271 409 320 266

KEY: ? P> .05, otherwise P < .05

IV. Subsystem Level Analysis

The results of the previous section correlated the software metrics with the developmental
data on & component basis. In this section the unit of observation is not a single
component but an entire subsystem.

Both sofrware complexity measures and developmental data values were defined for each
of the twenty-one subsystems. Since 2 given component did not belong 1o more than a
single subsystem, software complexity measures for a subsystem were derived by
summing the complexites of all of its components. Simnilarly, the count based measures

for a subsystem (ERRORS, WEIGHTED CHANGES) were established by totaling the

count based measures for its individual components. Time based measures included not
only the times of individual components but also added any overhead time attributed 1o
the subsystem. This overhead time is due to the inability of programmers to atribute their
design and testing effort to individual cornponents.

‘The resuits of the subsystem level analysis given below describes two similar but distinct

experiments. The first experiment correlated the subsysiem complexities with the
subsystem development data using all twenty-one subsystems. The second experiment
used only nine of the subsystems. Twelve subsystems were eliminated since they

contained reused components which were constructed and tested during the development

of previous projects.

The Spearman coefficients given in Tabie 4 were obtained by correlating the five
development times with the ten metrics for all twenty-one subsystems. One observation
that is immediately apparent is that these Spearman rank coefficients indicate a much
stronger relationship between the metrics and the tme based data than did the
corresponding analysis at the component level. The Spearman rank coefficients indicate
that the three code metrics (LENGTH, EFFORT, and CYCLO) each induce an ordering
on the subsystems that is highly similar to the ordering induced on them by any of the
development times. Furthermore, with Spearman correlations ranging berween 0.63 and
0.81, McClure's invocation complexity, INVOKE, is the metric most closely related to

the five development times. Of the remaining interconnectivity metrics, the stability metry
of Yau and Collofello also indicates a strong rank association with TOTAL HOURS
(0.62) and DESIGN HOURS (0.72). The ability of the information flow metwics and the
review metrics to rank order the subsystems according to the various development times
is generally weaker than the other MEics.

Table 4 : Complexity Metrics Correlated With Time Based Data (N=21)

CODE
TOTAL DESIGN TOTAL CODE TEST
HOURS HOURS HOQURS HOURS __HOURS

LOC 697 740 607 645 .603
EFFORT 690 710 614 633 .607
CYCLO 707 661 636 .644 .684
INFOFLOW 484 580 ? 7 511
INVOKE 790 811 .750 692 632
REVIEW 488 587 ? ? 7

STABILITY .620 720 540 510 444
INFO-LOC ? 7 7 7 ?

REVIEW-LOC 7?7 528 ? ? Ad44
STAB-LOC 624 696 542 545 468

KEY: ? p>0.05, otherwise p < 0.05

The Spearman rank correlation coefficients in Table 5 indicate relationships between the
metrics and the count based data. Once again, it is apparent that the metrics display a
much sronger relationship with ERRORS and CHANGES at the subsystem level than
they do at the component level. These results indicate that code metrics POSSEss 2 srong
rank association with subsystem-wide errors and subsystem-wide changes. Collectively,
the interconnectivity metrics have a somewhat weaker relationship with ERRORS and
CHANGES than do the code metrics. Of these, McClure's INVOKE measure relates the
most strongly with ERRORS (0.70) and CHANGES (0.81). Furthermore, the STAB-
LOC metric also indicates a rather strong relationship with ERRORS (0.67) and
CHANGES (0.70). _

Table 5: Complexity Metrics Correlated With Count Based Data (N=21)

ERRORS CHANGES

LOC 823 800
CYCLO 669 .740
EFFORT 754 781
INFOFLOW 635 ?

INVOKE 700 815
REVIEW ? 515
STABILITY 553 .650
INFO-LOC 613 ?

REVIEW-LOC 568 562
STAB-LOC 679 707

KEY:? p > .05, otherwise p <.05

Many of the twenty-one subsystems used in the above analysis contained reused
components. The development data fora component which is reused without change will
show zero errors and zero times regardless of its complexity measures and its initial
development experience. In an effort to control for this bias, the above experiments were
redone using onty the nine subsystems which contained no more than ten percent reused
code. The Spearman correlation coefficients berween the metrics and the tme base data
are presented in Table 8. Table 7 contains the Spearman rank coefficients generated by
correlating the merrics with the count based variables.

These tables indicate a much stronger association berween the metrics and the data than
the previous experiment which included all rwenty-one subsystems. These increased
correlations are atibuted to improvement in the quality of the data.

Table 6: Complexity Metrics Correlated With Time Based Data (N:B)-

. CODE .
TOTAL DESIGN TOTAL CODE TEST
HOURS HQURS HOQURS HOURS HOURS

LOC 816 .850 683 733 733
CYCLO .850 484 783 833 766
EFFORT 816 850 .683 733 733
INFOFLOW .816 .850 700 7 .816
INVOKE 733 766 .667 716 ?

REVIEW 816 .850 .683 733 733
STABILITY .800 .900 7 712 700
INFO-LOC 716 716 ? 7 766
REVIEW-LOC .800 833 667 750 716
STAB-L.OC 667 750 ! ? ?

KEY: ?p > .05, otherwise p < .05

10

Table 7: Complexity Metrics Correlated With Count Based Data {(N=9)

ERRORS CHANGES
LOC 928 966
EFFORT 028 966
CYCLO 861 933
INFOFLOW 778 783
INVOKE J11 .800
REVIEW 928 966
STABILITY 928 966
INFO-LOC 769 .733
REVIEW-LOC 893 933
STAB-LOC 878 883

KEY: p> 0.05, otherwise p < 0.05 .

V. Group Level Analysis

This section presents the results of experiments which analyzed groups of "sirmilar”
components. Because of the variation in the grouping techniques, the complexity memics
and the rvpes of developmental data, 2 total of ninety cases were generated and analvzed.
This lerge amount of information has been summarized in the following tables which are
represeniative of the total ninety cases. '

The-complete group analysis utilized three grouping techniques. Three techniques were
used 1o investigate the effect of different grouping methods and to gain confidence that the
overall results were not sensitive to a particular grouping technique. One grouping
method, referred to as the Logged Data technique, identifies six distinct groups. Two of
the groups contain those components with values lying within one standard deviation
from the mean. A second pair of groups contain components with values lying within two
standard deviations of the mean. Finally, those components lying more than two
standard deviations from the mean comprise the last two groups. However, since most of
the original data is asymmetric with positive skew the usefulness of univariate summary
statistics, such 2s the mean and the standard deviation is minimal. Meaningful summary
statistics can be obtained, however, for asymmetric data, by first (a) mansforming the data
to achieve a symmetric distribution, (b) calculating the mean m, and standard deviation s
of the transformed data, and then (c) applying the inverse transform to the values: m-2s,
m-s, m, m+s, m+2s to determine the group boundaries of the original data. A logarithmic
transformation to obtain a non-skewed dismibution has been used by Crawford et. al.
[Craw83] to analyze static metrics. In addition to the Logged Data technique, a clustening
method and a simple rank grouping were also used. These other two techniques are
described in Appendix C. Since there were no significant differences among the three
techniques, only the results using the Logged Data technique will be given here.

Our first step, shown in Table 8, examined the relationship between metric groups and
development data group. The second step, showrn in the subsequent tables, examined

11

various statistics within the metric groups. Table 8 show how the 561 components in
DATASET A are distributed across each metric roup and each error group for three
different metrics. The three metrics (LOC, INVOKE, and INFO-LOC) represent the
three classes of metrics (code, interconnectivity, and hybrid). Consider the 3 values in
metric group 1 and error group 1. This group contains those components which have no
errors and the least complexity as judged by the metric. For the particular group, there
are 9 components if the LOC merric is used, 54 if the INVOKE metric is used, and 13 if
the INFO-LOC metric is used. The difference in these counts reflect the fact that the
metrics are classifying the components according to different criteria.- The bottom and
right margins of the table show summary data for each column (metric group) and each
row (error group).

Notice that the distribution of components across metric groups appears to be normally

distributed while the distribution across error groups remains skewed. The components
in the metric groups for the remaining seven metrics were similarly distribated.

Table 8. Crosstabulation of Metric Groups with Error Groups

LOC
INVOKE METRIC GROUPS
INFCG-LOC
1 2 3 4 5 6
9 42 120 45 18 0 | 234
1 | 54 40 65 65 10 0 | 234
13 44 95 70 12 0 | 234
1 3 45 55 11 1| 116
2 116 12 43 38 7 0 | 116
0 14 36 49 17 0 | 116
0 3 21 34 17 1 76
'~ ERROR 3 7 5 15 | 37 12 0 76
GROUPS D 4 16 | 35 | 18 1 76
0 6 15 32 20 3 76
4 |11 3 10 38 13 1 76
1 7 14 26 27 1 76
0 1 9 23 13 2 47
5 6 1 4 21 14 1 47
0 8 9 16 | 12 2 47
0 0 1 7 4 0 12
6 0 0 1 1 8 2 12
0 0 2 3 5 2 12
10 55 211 196 82 7 | 561
94 61 138 200 64 4 | 561
16 77 172 199 91 6 | 561

This non-normal distribution of the error groups caused us to partition the 561
components into component without errors (234) and components with errors (327).
Table @ indicates how the components were diszributed across metric groups with respect
to this parntioning.

12

The percentage of components within each group containing no errors is shown for all ten

metrics in Table 9. Notice that no errors were reported for 81% of the components found

in INFO-LOC Group 1. However, only 57% of the components in INFO-LOC Group 2

were found to be errorless, 55% percent for INFO-LOC Group 3 and so on,

Interestingly, all components belonging to the highest INFO-LOC group did contain at

ieast one error. This trend is also everywhere consistent for McCabe's CYCLO metric

ranging from 76%(Group 1) down to 0%(Group 6). The third code merric, Halstead's

EFFORT generally exhibits this same property, but does contain an-anomalous jurmp

between the Group 5 and Group 6 boundaries. Furthermore, of the four interconnectivity

metrics, only Woodfield's Review complexity fails to show any pattern. The soongest.
relationship between the various interconnectivity metric groups and fraction of errorless

components exist with the INFOFLOW groups. These percentages steadily decrease from
73% (Group 1) to 53% (Group 3) to 0% (Group 6). Of the three hybrid metrics, only the

INFO-LOC metric defines groups with consistently decreasing percentages. The
REVIEW-LOC metric exhibits this desirable trend for Group 2 through Group 6,
however it does report only 20% of the components to be errorless for its least complex
group of components.

Table 9: Percentage of Erroriess Components Across Groups

GROUP NUMBER
1 2 3 4 5 6
METRIC
LOC 90% 76% 56% 22% 21% 0%
CYCLO 76% 63% 53% 26% 25% 0%
EFFORT 80% 64% 54% 29% 18% 33%
INFOFLOW 73% 51% 53% 36% 17% 0%
- INVORE 57% 65% 47% 32% 15% 0%
REVIEW 14% — 53% 36% 17%
STABILITY 60% 51% 40% 38% 31% —_
INFO-LOC 81% 57% 55% 35% 13% 0%
REVIEW-LOC 20% 80% 61% 229 22% 11%
STAB-LOC 56% 49% 40% 35% 26% 80%

Next, the information contained in the two-way crosstabulatons between the merric based
groups and the WEIGHTED CHANGES based groups has been summarized in Table
10. This table captures the ability of the merrics 1o identify components which will be
highly affected by changes. To obtain the percentages given in this table, components
with the highest WEIGHTED CHANGE values were defined as "severely impacted.” In
particular, a component possessed a "high" WEIGHTED CHANGE value if the grouping
method classified the component into either Group 4, Group 5, or Group 6. The entries
in Table 10 indicate the percentage of components within each metric group which were
severely impacted. For example,72% of the components in LOC group 5 were also
identified to be severely impacted components, while 100% of the components in
INVOKE group 6 were severely impacted components. The percentages given in the last
two columns of Tabie 10 generally indicate that components placed into the higher metric
groups are likely to be severely impacted by system changes. LOC and CYCLO perform

the best among the code metrics, INVOKE and INFOFLOW among the interconnectivity
metrics, and REVIEW-LOC among the hybrid metrcs.

Table 10: Fraction of Severely Impacted Components

GROUP NUMBER
1 2 3 4 -5 6

METRIC

LOC 0% 35% 43% 54% 72% 100%
CYCLO 15% 25% 43% 63% 66% 100%
EFFORT 5% 39% 48% 50% 81% 62%
INFOFLOW 58% 33% 41% 60% 77% 100%
INVOKE 36% 31% 40% 60% 82% 100%
REVIEW 70% —_ 449 53% 56% _—
STABILITY 40% 35% 47% 55% 63% —
INFO-LOC 55% 34% 42% 45% £5% 100%
REVIEW-LOC 0% 29% 44% 51% 70% 100%
STAB-LOC 29% 50% 49% 58% 65% 20%

Finally, Table 11 contains the mean number of ERRORS for groups. This table generally
indicates that higher complexity groups have a higher mean number of ERRORS. Note,
for example, the steady increase in the mean number of ERRORS across the six LOC
groups. The other two code mermrics, CYCLO and EFFORT, also show a similar
tendency. Of the four interconnectivity metrics, only Woodfield's REVIEW metric fails to
exhibit this behavior. It 1s striking to note the dramatic jump in the mean number of errors
between Group 5 and Group-6_for both the INFOFLOW merric { from 3.58 10 23.5) and
McClure's INVOKE complexity measure (from 5.85 10 20.75). Of the three hybrid
metrics, the INFO-LOC measure and the STAB-LOC measure both impose groupings on
the components which relate to the average number of errors reported. The trend is
consistent for the first five groups established by the STAB-LOC merric, while the sixth
group exhibits a decrease in the mean number of errors. The sharp increase between
group 5 and group 6 is also present for the INFO-LOC groups, jumping from 3.91 mean
errors t0 17.0 mean errors. The REVIEW-LOC metric fails to show any swong
relationship between the mean number of errors and the reported complexity. Results for
the Clustering and Ranking methods and also for Coding Time and Weighted Changes
are also similar and are also not presented here but can be found in [Cann§5]

14

Table 11: Mean Errors Per Group for Logged Data Technique

GROUP NUMEBER
1 2 3 4 5 6

METRIC

LOC 0.1 0.65 1.12 2.93 4.10 4.28
CYCLO 0.23 1.21 1.09 3.29 .3.46 3.12
EFFORT 0.67 0.78 1.57 2.95 2.80 2.55
INFOFLOW 1.07 1.62 1.49 1.98 3.58 23.50
INVOKE 1.25 0.67 1.17 2.19 5.85 20.75
REVIEW 5.05 — 1.37 2.24 2.80 —_
STABILITY 1.25 1.51 1.90 2.62 2.50 e
INFO-LOC (.43 1.50 1.34 2.03 3.91 17.00
REVIEW-LOC 5.34 0.48 0.98 2.28 4.08 3.55
STAB-LOC 1.08 1.53 1.57 2.48 491 0.20

In order to statistically support the hypothesis that the ten software metrics impose a
grouping on the components which yield significant differences in the three
developmental data means (ERRORS and WEIGHTED CHANGES), thirty analyses of
variance were performed. Twenty-five of the thirty analyses of variance rejected the null
hypothesis that the group means were all equal (alpha=.03).

VIL. Summary and Conclusions

In this paper we employed both subsystem and group analysis to stody the reladonships
berween ten software merrics and the development data from three commercially
developed software systems. From this study we conclude:

« The-sofeware metrics were validated. Strong relationships between the merrics and
the development data were observed at the subsystem level (Tables 4. 5,6, and 7).
Strong relationships were also visible when “similar” components were collected into
groups (Tables 9, 10, and 11). This validation should be particularly compeliing to
practicioners because the systems being studied were commercial products developed
by professional programmers for use in a production environment.

s Interconnectivity metrics should be used. Each of the four interconnectivity metrics
performed very well in at least one of the validation experiments. The information
flow metric correlated strongly with most of the subsystem time measures (Table 6;.
The invocation compiexity metric correlaied strongly with both time and count
measures (Table 4 and 5). Both the review complexity and the stability metrics
correlated srongly with errors and changes at the subsystem level (Table 7). Overall
the information flow and the invocation complexity metrics were the two best
interconnectivity meirics. These two metrics form an interestng pair because one
measures only the data flow among system components while the other focuses on
the global control flow. While interconnectivity metrics do not provide stronger
correlations than do the code metrics, it should be recalled that the interconnectivity
metrics can be taken earlier in the life cycle and, thus, they provide more leverage than
do code metrics on software quality problems.

15

+ Software metrics should be applied above the component level. For all the metrics
examined there were markedly stronger relationships at the subsystem level (Tables 4-
7) than at the component leve] (Tables 2 and 3). The stronger subsystem resuits may
be due to a variety of causes including: (1) there is less "noise” in the aggregated
development data, or (2) the metrics are not sufficiently accurate to discriminate
between small grain units (components) but they are capable of discriminating
properly between larger scale units (subsystems). While the cause is not known, the
implication for practicioners is clear. Since other resource control and planning
techniques are also aimed at the subsystem level, the fact that software complexity
metrics work at this level is also beneficial.

« Differential resource allocation can be guided by software metrics, The efficient
application of human and computer resources during the development process
requires the identification of those parts of the system which require more resources
to achieve desired quality objectives. The group anatysis aids in this identificaton as
illustrated by: group 6 for INFOFLOW, INVOKE, and INFO-LOC in Table 11;
group 6 in Table 9 for five of the ten metrics; group 6 (and usually group 5) for six of
the ten metrics in Table 10.

« Hybrid metrics are not useful. As illustrated in Tables 2-7, combining metrics
together does not lead to substantial improvements over the individual metrics. This
negative result implies that an all encompassing single metri¢ should not be sought.
Rather research should focus on defining a validated collection of metrics each of
which measures a different aspect of the system.

« Development data must account for software reuse. The characterisucs of reused
components are significantly different from newly developed ones (Appendix B).
The differences alter the relationship between the mermics (which are unaffected by
reuse) and the development data (which are affected by reuse). Compare, for
example, the resuits in Tables 4 and 5 versus those in Tables 6 and 7.

As in all case studies which are based on a single-environment, the usual cautions apply
10 any attempt 1o generalize these conclusions 1o-other environments. These cautions - as
well as the others mentioned in the introduction - should, rather than being discouraging,
serve to encourage additional research and experimentation.

References
[Basi83] Basili,V..Selby R.I,Phillips T., "Mérric Analysis and Data Validation

Across Fortran Projects,” IEEE Transactions on Software Engineering,
Vol. SE-9,No. 6. November 1983, ' '

[Cann85] Canning, J. Applyine Structure and Code Metrics 1o Large Scale Svstems,
Ph.D. Dissertation, Department of Computer Science, Virginia Tech, June
1985.

[Craw85] Crawford. S. McIntosh, A., and Pregibon, D., "An Analysis of Stauc
Merrics and Faults in C Software,” The Journal of Sysiems and Software,
Vol. 5, No. 1, February 1985. '

[Grad87] Grady, R.B., Caswell, D.L. Sofrware Metrics: Establishing a Company-
Wide Program. Prentice-Hall, Inc., Englewood, NI, 1987.

16

[Hals77]

[Henr79]

[Henr81la]

[Henr81b]

[Henr84]

[Kafu84]

[Kafu85]

[Kafu87]

[Kear86]

[McCa76]

[McCl178]

[Nasa81]

[Wood80]

[Yau80]

Halstead, M.H. Elements of Software Science , Elsevier North-Holland,
Inc. , New York , NY , 1877.

Henry, Sallie, Information Flow Metrics for the Evaluation of Operating
Systems' Structure, Ph.d Dissertation, Department of Computer Science,
Towa State University, 1979.

Henry, Sallie and D. Kafura, "Software Structure Merrics Based on
Information Flow", IEEE Transactions on Software Engineering, Vol. SE-
7, No. 5, pp. 510-518, September, 1981.

Henry, Sallie, D. Kafura, and K. Harris, "On the Relationships Among
Three Software Metrics", Performance Evaluation Review, Vol. 10, No.
1, pp. 81-88 Spring 1981.

Henry, Sallie and D. Kafura, "The Evaluation of Software Systems'
Structure Using Quantitative Software Merrics”, Software: Practice and
Experience Vol. 14(6) June 1984 pp.561-573.

Kafura D., Canning J., and Reddy G., "The Independence of Software
Metrics Taken at Different Life-Cyle Stages" Proceedings: Ninth Annual
Software Engineering Workshop, Goddard Space Flight Center, Nov. 28,
1984

Kafura D..Canning J., "A Validation of Sofrware Mewics Using Many
Merrics and Many Resources" Proceedings of the International Conference
of Sofrware Engineering, London England, August 1983, pp. 378-385.

Kafura D., Reddy, G.R., "The Use of Software Compiexity Metrics in
Sofrware Maintenance,” IEEE Transactions on Software Engineering, SE-

13, 3 (March 1987), 335-343.

Kearney, J.K., Sedlmeyer, R.L., Thompson, W.B., Gray, M.A., Adler,
ML.A. Software Complexity Measurement. Communications of the ACM,
29, 11 (November 1986), 1044-1050.

McCabe,T.J., "A Complexity Measure," IEEE Transactions on Software
Engineering, SE-2,4 (December 1976) , 308-320.

McClure, C. "A Model for Program Complexity Analysis,” in Proceedings
Third Internarional Conference on Software Engineering , Atlanta, Ga.
May 197§ , 149-157. -

National Aeronautics and Space Administradon, "Software Engineering
Laboratory (SEL) Data Base Organization and User's Guide", Software
Engineering Laboratory Series SEL-81-002, Sept. 1981

Woodfield,S.N., Enhanced Effort Estimation bv Extending Basic
Programming Models to Include Modularity Factors, Ph. D. Thesis,
Purdue University, Compurer Science Dept., 1980.

Yau S., Collofelio J., "Some Stability Measures for Software
Maintenance," IEEE Transactions on Software Engineering, Vol. SE-
6,No.6,Nov.1980. .

17

Appendix A: Calculation of Weighted Changes

In the Nasa/Goddard environment, programmers classify each change by estimating the
amount of effort needed to isolate the change/error and to implement the change/error.
The four possible classifications recorded in the developmental database are:

+ Less than one hour.

+ One hour to one day.
* One day to three days.
« Over three days.

Corresponding to each of these classifications are the four weights suggested by Basili:
0.5, 4.5, 16.0, or 32.0 hours. For each change, the appropriate weight 1s divided equally
among all components involved in the change. Thus, a component's WEIGHTED
CHANGE value is derived by summing the hours atmributed to the component for every
change with which it was involved.

Appendix B: Filtering of the Data Sets

The SEL database classifies each component as either: new code, extremely modified old
code, slightly modified old code, or an exact copy of old code. DATASET A contains
code which is either new code or exmemely modified old code. It is necessary to omit
slightly modified or exact copy code irom consideration since error counts and
development times for reused components do not accumulate from project to project m the
SEL reporting mechanism. Similarly, the time based measurements would also be biased
since they wonld not reflect the original effort expended in the development of slighdy
modified or exact copy code. It was decided that extremely modified components should
- be incorporated into the analyses since these components undergo a significant
transformarion. It was felt that count based measures and time based measures would
approximate the values of such a component had it been completely constucted anew. In
support of these decisions, Table B1 below provides the mean vaiues for the four
‘measures across the four component classifications. An analysis of variance was
performed using dependent variables (ERRORS, CHANGES, WEIGHTED CHANGES,
TOTAL TIME) 1o test the null hypothesis that mean values for the four component classes
were not statistically different. In each of the four analyses of variance the null hypothesis
was rejected (alpha=0.05). Furthermore, Fisher's Protected. Least Significance Test
(LSD) was used to identify those means which were significantly different. In ali four
tests, it was found that means from component class (1) and component class (2) were
not significantly different, but the means for these two classes were significantly different
from both class (3) and class (4).

Table Bl : Data Means for Various Component Types

Weighted Total
Component Class Errors Chanees Changoes Time
New Code 2.03 2.11 44.20 16.09
Exwmemely Modified 1.47 - 2.62 43.57 13.32
Shightly Modified 0.43 1.11 18.98 6.06
Duplicated 0.17 0.52 3.24 3.37

19

Another subset of the Nasa/Goddard components (DATASET B) was used for
experiments involving time based dependent variables. This collection of components not
only omits slightly modified routines and exact copy code, but also eliminates
components which fail to pass two additional tests. Both of these tests provide a validity
check on the reporting of time based dependent variables.

The first test eliminates those components which were constructed by programmers who
were identified as poor or inconsistant reporters of time based dependent variables.
Programmers were considered poor reporters if the ratio, Vm, found below, was less
than eighty percent. This ratio, first suggested by Basili et al. [Bas83], utilizes the parual
redundancy built into the SEL monitoring process. Each week every programmer files a
Component Status Report (CSR) describing the time they spent on-each module. Also on
a weekly basis, the project manager files a Resource Summary Form (RSF) recording the
time each programmer spent on the project during that week. Basihi et al. have indicated
that the manager reported information found in the Resource Summary Form is
considered to be the more accurate. Thus, if a given programmer fails to submit a
Component Status Report for a given week, this would lower his Vm ratio. The Vi ratio
is defined as:

Number of weekly CSR's submitted by programmer

Vm= :
Number of weeks programmer appears on RSF's

The second criterion is based on the fact that time based dependent variables are not only
reported for individual components, but are also reported for individual subsystems.
Programmers typically report their time spent on an individual component basis.
However, a programmer may choose to attribute work hours to an entire subsystem if
these hours cannot be accurately partitioned among that subsysiem’s individual
components. When the time reporung is done on a subsystem level, information at the
component level is lost. If less than eighty percent of 2 subsystem's reported time is
attributed to individual components, then these components are not incorporated into
DATASET ' '

Appendix C: Two Other Grouping Techniques

The second grouping technique, referred to as Clustering, is based on a2 hierarchical
clustering scheme. Basically, the aigorithm begins by forming one cluster for each
observation in the data. Components are then grouped according o a distance function,
clustering together those components which are "close neighbors.” Clusters are
determined by considering the distances between components within 2 given cluster
versus the distances berween the clusters. Ideally, the algorithm will choose the opumal
number of clusters, but we arbimarily fixed the number of clusters to be six for
COIMPATISON PuIposes.

The third grouping technique, referred to as Rank Grouping, defines the groups
according to the ranking of the components imposed by a given merric. The set of
components are first ranked in ascending order by a given metric and then placed into
groups according to rank. Components whose rank was less than one-sixth the total
number of components were assigned o group 1, components whose rank was greater
than one-sixth the total number of components but less than two-sixths the total number
of components were assigned to group 2 and so on. Whenever two Or more COmponents

20

had the same complexity measurement their ranks were redefined as the mean of their
corresponding ranks. Since it 1s possible that numerous components may have the same
complexity value, and in some instances this is likely (ie. REVIEW Metric) not all the
groups will necessarily contain the same number of members. In the worst case, a rank
order group may contain no components when this simple rule is used.

21

