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ABSTRACT |

The CODER (CQmposite Document Expert/Extended/Effective Retrieval) project is a
multi-year effort to ix;vcstigatr; how best to apply artificial intelligence; methods to increase

scheme for such a system, and the solutions chosen for CODER. An overall
object-oriented environment s constructed using-a set of message-passing primitives
based on a modified Prolog call paradigm. Within this environment is embedded the
skeleton of a flexible expert system, where task decomposition is performed in a
- knowledge-oriented fashion and where subtask managers are implemented as members of _
a community of experts. A three-level knowledge representation formalism of
elementary data types, frames, and relations is provided, and can be used to construct
knowledge structures such as terms, meaning structures, and document interpretations.
The use of individually tailored specialist experts coupled with standardized blackboard
modules for communication and control and external knowledge bases for
maintenance of factual world knowledge allows for quick prototyping, incremental
development, and flexibility under change. The system as a whole is structured as a set of
communicating modules, defined functionally and implemented under UNTX™ using
sockets and the TCP/IP protocol for communication. Inferential modules are being coded
in MU-Prolog; non-inferential modules are being prototyped in MU-Prolog and will be
re-implemented as needed in Cvt., o
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1. Motivation

Computers come and 20, but data go on forever.

--N. Bruce Berra

- As the world's pool of information, and particularly of machine-readable
information, continues to grow, it becomes increasingly necessary to engage the help of
computers to control and manipulate it. Early attempts at computer-aided text storage and
retrieval, however, have focused principally on performance and have achieved only
moderate levels of effectiveness. The CODER (CO mpbsite Document
- Expert/Extended/Effective Retrieval) project aims at constructing a research system
intended to address these problems through the mechanisms of knowledge-based and
goal-directed Al techniques. In keeping with Its purpose as a research tool, the system is
designed with sufficient flexibility to encompass a wide range of experimental techniques.
The system is also designed to permit evolutionary development, both of its overall
philosophy and of its specific functional modules.. The construct of a moderated exper:
system has been instrumental in achieving both of these design goals.

1.1. Problem Description

There is little need to dramatize the so-called “information explosion’ to any member
of the academic or business community. The proliferation of information-control services
such as BRS and DIALOG, the focus of both Tapanese and American research initiatives
on providing hardware and software for the ‘upcoming information society,” the current
déepcning crisis in library techmiques and resources; even the existence of such catch
phrases as ‘information explosion’ and “information society” point clearly to the increasing
importance of information as a commodity of the modern world. It is worthwhile,
however, to highlight three aspects of the problem. First and most obviously, we are



currently witnessing a geometric (or supergeometric) growth in amount of information,
and particularly on-line information. Second, we are witnessing a change in kind, in
which more and more on-line information is in the form of undigested text. The advent of
the word processor and electronic publishing are in part responsible for this change; the
development of CD-ROM as an information—diésemination tool [FOXE 86b] will only add
to this effect. In part, however, this change in kind from database to document base arises
from the third aspect of the information explosion: the social change in our attitudes
toward mformation. Itis not our place here to trace the causes behind modern society
coming to regard information as an important commodity; we only note that in the business
no less than the academic community, possession of information is considered to be as
important as the possession of tools.

Particular attention is being given in the design of CODER to ana1y31s and
representation of heterogeneous documents, such as electronic mail digests or messages,
which vary widely in style, length, topic, and structure. Understanding the structure of
such documents is one ability that allows human catalogers and retrieval specialists to
out-perform conventional information retrieval systems. Knowledge of document
structure will be combined in the system with knowledge of the entities that make up
documents (words, sentences, dates, or electronic addresses, to give a few examples) to -
accomplish both more refined analysis and more satisfactory retrieval of documertts (or
sections of documents) that satisfy the information needs of the system users. The initial
application is to support queries directed toward retrieving any relevant passage in the
messages included in a three year archive of issues of the ARPAnet AlList Digest, a fitting
- but challenging collection of composite documents.

This effort has evolved in part out of prior studies with the SMART information
retrieval system, where use of an extended Boolean logic proved beneficial, and where
query expansion using a relational lexicon improved search effectiveness [SALT 83c]. By
representing the uncertainty invoived inrindexing, and by 'viewing ‘qUery processmg-asa.
type of inexact reasoning, later versions of the SMART system successfully used the
p-norm model to support “soft” Boolean evaluation. The model of a relational lexicon is
particularly appealing since automatic processing of machine-readable dictionaries.can be
employed to identify many of the key relations for a relatively large vocabulary. Amnother
origin of this effort was work applying information retrieval techniques to the construction
of expert systems [WINE 85] and vice versa (see § 1.5). It became clear that a rule-based
* approach allows systems to be tailored to (classes of) users, and that several search



algorithms can be combined dynamically to give instantaneous rather than “batch” type.of
feedback with superior performance. This work implies that planning and scheduling
operations should be an integral part of an analysis and retrieval system,

Furthermore, it was clear that whereas complex probabilistic models of queries had
been investigated in several classical IS&R systems, relatively simple document anatysis
has been involved in prior work. Now that powerful Al engines are becoming available, it
seems timely to examine the benefits of carrying out a partial natural language analysis of
the incoming documents. Such a semi-controlled knowledge acquisition process, where
more precise and comprehensive knowledge representation is possible, should allow some
questions to be more effectively handled, and others to be answered for the first time.

1.2. Prior Work - Information Storage and Retrieval

Though visionaries have described their hopes for intelligent Infarmation retrieval

systems since at least the mid-1940's [BUSH 45], that goal has still not been reached.
Many preliminary steps have been taken, though, and by Integrating the results of some of
the most productive efforts, it is hoped that significant progress can be made during the
1980's and beyond. '
- - Traditional information refrieval systems can be divided into data retrieval systems,
which capitalize heavily on the constraints and internal structures of such entities as
employee records and account transactions, and document retrieval systems, which work
with natural language documents such as mail messages or literature abstracts using
algorithms informed by the syntactic and occasionally the semantic structure of words in
text. The most successful approach to the former problem has come through the theory of
relationél databases (see, e. g., [DATE 86]). Thus far, an equally successful theory has yet
to be provided for the latter. The most widely used representaiton for text documents
remains the vector of terms (or stemmed terms); the two most widely used means of
matching documents to user needs are by Boolean combination or vector distance.

Several extensions to this model have proven fruitful. Approximate matching
algorithms [HALL 80) can help avoid spelling errors or other €1TorS caused by lapses in
memory or lack of awareness of an ‘author's means of expression. Sophisticated access
methods aim at employing special data structures to save space and/or processing time



[FALO 85]). The use of feedback information to help in the construction of improved
queries was demonstrated by [ROCC 713, developed further in terms of probabilistic
estimation by [ROBE 76], and explained more completely in [VANR 791 and [SALT 83a].
It was applied to large collections through an intelligent front-end System as well [MORR
83]. Clustering has been considered numerous times: the most recent thorough study is
[VOOR 85]. |

Fuzzy set theory has been used to build a number of IS&R models. Bookstein
suggested including the ability to consider user-supplied term weights [BOOK 80]. Paice
carried out some small-scale experiments to demonstrate the value of “soft” Boolean
evaluation [PAIC 84]. The p-norm model, generalizing both of these approaches, was
explained and validated [SALT 83c], applied to.automatic ‘query construction [SALT 83b],
and adapted for (extended) Boolean feedback [SALTSS]. A recent study explored the
p-norm model further and found it more cffective than that proposed by Paice [FOXE
86a). _

Further improvements have been sought by utilizing other information besideg
terms. The value of bibliographic information was established at an early date [SALT 63].
Bibliographic coupling [KESS 63], citations [GARF 78], and cocitations [SMAL 73] were
all shown to help determine how closely pairs of documents relate. Relevance feedback
techniques were developed to incorporate some of the bibliographic data [MICH 71] in
searches. Since the results of different searches carried out for a single query tend to have
small overlap [KATZ 82], it seems wise to combine a variety of types of information.
Bichteler and Eaton found this to be of value with bibliographic coupling and cocitations -
[BICH 80]; 2 mix of those and other information does give demonstrablc_improvcme:nts
[FOXE 83a]. Indeed, part of the appeal of using knowledge-based_ and plan-based
retrieval in CODER is to better handle combining the wide variety of available information
that describes most documents, '

1.3. Prior Work - Computational Linguistics

- For more than a dozen years, work has progressed on the application of linguistic
insights to the development of information retrieval systems [SPAR 73]. Wendy Lehnert
has studied the variety of possible question types that people construct and how they



should be answered [LEHN 78). QOddy [ODDY 77] viewed the retrieval problem as a
dialog, stressing the human-computer interaction. To better understand users and fheir
behavior, a small amount of psychological research has been conducted: much further
study is required [BORG 84]. Most of the linguistic effort, however, relates to document
analysis. In the retrieval community, attention has been given to the use of discourse
analysis methods to aid in identification of “answer-passages” for passage retrieval [OCON
80]. Discourse analysis has also been of value in the TOPIC system, which uses word
expert parsing [RIEG 81] to summarize text into a hierarchical condensation, Research
relating to the Linguistic String Project has focused on applying a powerful parser to a
given sublanguage, such as that found in medical reports [SAGE 75].

' Parsing unrestrained text, however, presents a number of problems to conventional
parsers. Charniak points out the importance of understanding the context of a given
sentence [CHAR 82], and advances the idea that context is crucial for integrating syntax
and semantics [CHAR 83]. Indeed, the FRUMP system [DEJO 82} could not function
without having stored scripzs to match against in order to establish the proper context(s).
Schank et al. have used scripts for a variety of natural language analysis tasks [SCHA 77],
including a conceptual approach to retrieval [SCHA 81]. Simmons [SIMM 84] uses a
similar construct, the schema, to aid in analysis, building of a representation, and possible
later translation. Wilensky et al. [WILE 84] use a phrasal approach to parsing, and have
developed support for dialog, translation, and accessing a knowledge base on UNIX™
use.

Despite, or perhaps because of, this wide range of approaches and prototype
systems, practical natural language parsing has made slow progress over the last twenty
years. Practical parsing requires a vast lexicon, parsers capable of handling many different
syntactic patterns, and the ability to fail gracefully, all characteristics rarely found in
research systems. Progress has been appreciable, however [SLOC 85], and success rates
of 80-90% in machine translation contexts, for instance, are not unusual. Encouraging
results, moreover, have recently been published both in the theoretical analysis of natural
langnage [PERR 84, GAZD 85b] and in the application of expert, knowledge-based
systems technology to natural language parsing. The theoretical results provide evidence
of computationally tractable classes of formal languages (e.g., those based on head
grammars and indexed grammars) that may be sufficient to embed natural languages; the
expert systems approach provides a “phenomenologically plausible” means for combining
the different types of knowledge required in natural language understanding.



One method for applying expert systems technology to parsing involves the use of
word experts [RIEG 81, HAHN 84a], where each word in a section of text triggers a
separate knowledge source with expertise on the relations between possible contexts and
possible meanings for the word. This approach has actually been used in the TOPIC

Approaching the problems. of parsing froma knowledge-based perspective requires
a source for lmowled_gc, particularly knowledge about words, Evens and Smith described

- construction. Two basic approaches are discernible in this work: production of lexicons
from machine-rcadablc dictionaries ‘and from bodies of target text,

patterns. For instance, Burghard Rieger [RIEG 84] analysed the statistical distribution of
words in text based on their Co-occurrence frequency, then clustered them into dependency
trees based on a pre-defined metric space. Jerry Hobbs [HOBB 84] went farther, and used
syntactic and sémantic patterns to derive word relationships from selected medical text

Finally, a set of extremely sophisticated patterns were applied in the RINA system [ZERN
85] to Iocate unknown figurative phrases in text and attempt to fit .them, through context,
into an existing lexicon. The results produced in this sort of conceptual bootstrapping are
encouraging, but it must be noted that they are more encouraging the-more information i
already available in the lexicon to start with.



Work on deriving computational lexicons from text dictionaries has only been
possible through the generosity of dictionary publishers. Merriam-Webster, in previous
years, allowed researchers to format the Seventh Collegiare [SHER 74]. Amsler studied
their Pocket Dictionary and discovered a “tangled hierarchy” of word relationships [AMSL
80]. Since that time there have been other dictionary studies ‘as well [PETE 82, AMSL
84]. A great deal of analysis, however, is needed to build a lexicon from a dictionary.
Peterson and Amsler were able to automatically extract syntactic information from the
Merriam-Webster tapes; collecting semantic information, on the other hand, was only
possible with the aid of quantities of human labor. Nor is it clear just how much implicit
semantic knowledge is available in a dictionary to be extracted. Some indications of
- possible semantic relations have been described by the Sedelows [SEDE 85a, SEDE 85b] .
and by Martha Evens [EVEN 82]. Thomas Ahlswede has studied adjective definitions
[AHLS 83] and has been developing a tool kit for manual and/or automatic construction of
a relational lexicon [AHLS 85]. Chodorow, Byrd, and Heidorn [CHOD 85] have
antomatically extracted semantic hierarchies from large dictionaries, relating some 40,000
nouns and 8,000 verbs in short, bushy trees. There is reason to believe, however [MILL
5], that this work only scratches the surface.

1.4. Prior Work - Artifical Inteliigence

The hallmark AT systems of the past have typically been the work of a single mind,
if not always a single implementor, Attempts to extend such systems to cover realistically
large domains, however, have generally run afoul of the Al maxim ‘the solution to the
small problem is generally not the solution to the large problem’ (see, for example [LENA
841).T This effect has resulted in much disappointment, both within the field and from
sources outside it. Consequently, considerable attention has recently been placed on

TPart of this scale-up problem, of course, is algorithmic; procedures which work well in sub-problems
rarely work well in the more general case. The intention in CODER is to minimize this effect throngh a
knowledge-intensive approach to system development; algorithms and inference mechanisms are kept
purposefully simple and general, the complexity of the problem domain being expressed instead in large
amounts of factual knowledge. Thus the natural language recognizers under construction -are
themselves very simple engines, but are allied o 3 huge lexicon of knowledge about individual words and
phrases in the English language. The more important aspect of the problem, however, remaing the
engineering of Al systems (again, see [LENA 84] and its motivator, [RTTC 84]).



defining models that will allow ‘production-scale’ Alsystems to be built,

One promising suggestion is the *society of mind’ model [MINS 77], that pictures
intelligent activity as the result of a consensus among competing functional units, each of
which expresses a different facet of intelligent behavior. This concept can be dated to
Oliver Selfridge's PANDEMONIUM proposal [SELF 591 and is still advocated by
cognitive scientists and computer scientists alike. J.F. Sowa, for instance, uses a related
model to describe conceptual processing in [SOWA 84]. The metaphor is attractive both as
an engineering methodology, where it provides a criterion for system decomposition, and
introspectively, where it corresponds well to many of our own experiences of how we
think. The main problem in expressing this model in programs has been providing the
elements in the society with some sort of organizing control, so that literal pandemonium
does not ensue.

A key breakthough in resolving this problem came in the late 1970's with the
HEARSAY-II speech understanding system [ERMA 80]. HEARSAY approached its task
through a community of knowledge sources communicating through a shared data area
called a blackboard. Knowledge sources could post both hypotheses about the problem
under consideration at each run and new tasks motivated during their activation.
Processing and control were thus equably distributed across the community. The
blackboard itself was so structured, however, as to ensure that Processing always
proceded in a hierarchical manner, with knowledge sources at each logical level triggering
processing at the next higher level until the sentences recognized from the input speech
were posted to the highest level of the blackboard. This hierarchical structure was a key
factor in the system'’s admirable performance, as subsequent attempts to generalize the
blackboard structure revealed [BALZ 80, ERMA 81]. Thus, while the blackboard |
continues to be a common device for communication in Al systems, its use in control has
declined.t

A more effective method of control involves designating a particular module to
control the focus of attention of the community (see, e.g., [LESS 80] or [RYCH 84]).
This module can then combine tasks suggested by the knowledge sources with some sort
of control knowledge or planning algorithm [ERMA 84, NECH 84]. This model fits

+Exceptions to this rule, such as Barbara Hayes-Roth's work [HAYE 84, HAYE 854], are admitted to be
excessively slow and cumbersome for production-quality systems. [CORK 82] reported some success in
maintaining focus of attention through classifying knowledge sources as either goal-directed or
data-directed, but little follow-up work appears to have been done on this approach.



neatly into the theory of hierarchical planning proposed by Mark Stefik [STEF 81}, with
the focus of attention corresponding to the strategy space -and the tactical methods used by
the individual knowledge sources corresponding to the design space. Leon Sterling
[STER 847 has elucidated a related model of logical programming where the knowledge
involved in problem soiving is divided into three levels: g domain level of factual
knowledge, a methods level of tactical knowledge and a planning level of strategic
knowledge. :

The “society of mind’ model is attractive to those involved in building large systems
because it provides a method for distributing an artificial intelligence project EMONgG TRAny
- developers. An orthogonal approach to coordinating development teams and to reducing
the overhead of building AT systems has been to provide .environments for Al
‘programming in the large’. The expert systems production tools such as S1 [RYCH 84]
and KEE [KEHL 83] fall into this category, as do more general Al tools such as CK-LOG
[SRIN 84], LASER [REDD 85] and LOOKS [MIZO 84]. Key questions in design or
choice of such an environment include the programming paradigm on which it is built and
which others it supports. A logic programming paradigm has been advocated [HELM 85],
as has an object-oriented approach [TOKA 84]. Carlo Zaniolo [ZANI 84] advocates
combining the two; Daniel Bobrow goes farther, suggesting that Al development requires a
wide variety of paradigms [BOBR 853]. Bobrow's ideas are reflected in the LOOPS
environment [BOBR 82], which provides facilities for mixing several different
programming styles under an overali object—orient_ed paradigm.

Several of the environments mentioned above, including CK-LOG and LOOKS,
provide some sort of knowledge representation facitity. Knowledge Tepresentation is :an
integral part to the construction of knowledge-based systems, and is arguably one of the
foundations of AI. The Fifth Generation project has designed a knowledge representation
language, Mandala [FURU 84], as one of the key provisions of their artificial intelligence
programming environment, Other integrated knowledge representation / programming
environments include Prolog/KR [NAKA 84] and KRINE [OGAW 841. Of course,
several stand-alone knowledge representation /knowledgc management systems have been
constructed, notably KRL [BOBR 77}, Kxypton [BRAC 83b} and KL-ONE [BRAC 85b].
Greiner [GREI 80] has even proposed a knowledge i‘eprcscntation language language to be
used in designing such environments; unfortunately, the state of the art in knowedge
engineering is not sufficiently stable to make this a viable possibility,



10

1.5. Comparable Systems

CODER is not alone in the attempt to apply artificial intelligence techniques to the
problem of text information systéms. The problem is, in fact, an obvious candidate for an
expért systems approach: it is a problem where conventional programming techmiques
have consistently fallen short of satisfactory solutions, yet where humans produce
acceptable performance without appearing to use creative or intuitive problem-solving

techniques. Thus, several different projects over the last few years have begun to attempt
to define the categories of knowledge and the “rules of thumb” that human experts in
document analysis and document retrieval use to serve clients with needs for text-based
information.

Such systems generally fall into three different categories, depending on the focus of
their application of expertise. First, there are systems that attempt to analyze documents
for the purpose of determining their content. These systems are generally not concerned
with the problems of document retrieval and presentation so much as with automatically
producing abstracts or summaries of input documents. Pioneeering work by Wendy
Lehnert and Michael Dyer at Yale [LEHN 81, DYER 83] used an analysis of narrative
structure to produce summaries of stories in a highly restricted universe. Successful
summaries have also been produced from text drawn from the syntactically restricted world
of newspaper articles [DEJO 82, DECK 85] and semantically limited domains such as
medical writing [SAGE 75, OBER 85] and scientific texts [GOME 85]. Larger domains
are addressed by the EPISTLE system [MILL 80, MCCO 84], which attempts to
summarize electronic mail messages in an office environment, and TOPIC [HAHN 84b,
HAHN 85] which produces abstracts of arbitrary documents in the field of information
processing.

Some of these abstracting systems map documents into sets of key words or key
phrases (see [PAIC 81] for a discussion of candidate techniques for-this process). ‘Others,
including EPISTLE and TOPIC, use specialized languages or logics for capturing
document content. This representational ability is the second area in which the
knowledge-based approach has an impact on the process of document retrieval. Current
expert retrieval systems run the gamut from systems like I3R, where a sophisticated

analysis of user needs is coupled to a flat document representation as vectors of stemmed
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terms, to systems like RESEDA [ZARR 81, ZARR 84], where highly structured
knowledge permits efficient temporal and linguistic inference in response to user-queries,
Unfortunately, RESEDA’s knowledge base is so sophisticated that it cannot be constructed
automatically, making it unsuitable in CODER's intended domains of application. More
suitable are the systems employed in RUBRIC [TONG 85, MCCU 85] and ARGON
[PATE 84a]. ARGON, like RESEDA, uses a hand-constructed database in its current
implementation, but provides a frame-based knowledge representation structure using the
KANDOR system [PATE 84b] that comes to grips with many of the problems involved in
representing natural language. RUBRIC, which works in a Iafgc document-collection
'environment similar to the CODER domain, deals with text through a flexible concept
hierarchy built above words and word phrases. In this way, it is able both to identify
word (strings) in text as exemplifying concepts and navigate among concepts in an attempt
to satisfy users’ information needs,

The most sophisticated part of RUBRIC, however, falls in the third area for the
applying of expert-systems technology to information retrieval: the process of
understanding and fulfilling a user's information needs.” Query construction in RUBRIC is
viewed as building a rule base that captures domain knowledge relating to a given
question, so that the job of a user stating an information need is much akin to that of a
knowledge engineer formulating rules in a sub-domain of special interest [TONG 83].
This approach, which has the advantage that domain knowledge can be gathered as needed
at retrieval time, instead of having to be engineered into the System before itis completed,
is also followed by Gautam Biswas' group in Columbia [BISW 85, BISW 86]. Several
other expert systems have concentrated on this end of the problem, including the early
CONIT system, where expertise was applied to ‘help users connect to suitable commercial
databases and carry out searches using a common command language [YIPM 79, MARC
83). Karen Sparck Jones has performed much valuable research on using linguistic
knowledge to expand the terms of a user's query in order to match semantially related
document terms '[SPAR 84a, SPAR 84b]. Other researchers (e.g. [COYL 83], [DESA 85]
and [FIDE 86]) atternpt to capture the behavior of trained search intermediaries in expert
systems. Several of these techniques are combined in the I3R system, where expertise is
encoded in a set of cooperating knowledge sources on search methods (vector,
probabilistic, clustered or other), domain concepts, and user characteristics {THOM 85,
CROF 86].

While CODER has similarities to several of these systems, it is unique in that it
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attempts a unified attack on alj phases of the problem, from document analysis to user
interface Management. By adopting a coherent overall picture, where analysis,
representation and retrieval are aJ] driven by a single theory of document structure and
content, CODER is expected to provide high levels of recall and précision and a subtle
matching of user needs to passages retrieved. Further, CODER differs from the majority
of the systems described in this section in that it is constructed as d.research testbed, where
many theories of content and form can be tested experimentally. Therefore, the thrust of
the explorations described in this document has been to design a unified environment
within which a broad range of different techniques and theories may be applied to assess
the impact of expert systems / knowledge-based techniques -on the -entire process of
information sforage and retrieval.



2. Design

If we are doing something that we understand weakly, we cannot
hope for good results. And language ... is still rather weakly
understood.

-- Kimmo Kettunen, 1986

The purpose of the CODER project is to provide an experimental testbed for
Investigating the use of artificial intelligence techniques in the storage and retrieval of
composite documents. The system is designed to allow a variety of techniques from
different branches of AI to be applied to various aspects of the task of analysis, indexing,
and retrieval of documents. It is hoped that the system will be of use for a wide range of
experiments, as the SMART system has been over the last decades, and that it will have the
flexibility and ruggedness to endure, like SMART, over a considerable lifespan.

In this chapter, we discuss design issues raised by the project mission and some of
the decisions that were made to resolve them. In making these decisions, our basic aim
has been to keep the environment both powerful and flexible enough to satisfy the evalving
demands of an experimental system. The fields of artificial intelligence and information
retrieval are both currently undergoing a rapid Process -Ofchangc. If CODER is to serve its
purpose as a c'omparative System, it is important that it be able to adapt to such changes as
they occur. '

2.1 Knowledge Engineering

In designing a knowledge—-based'system’-s_uch as-CODER we must-deal with at least
four issues regarding the knowledge on which it is based. First, we must decide how the
knowledge is to be encoded: that is to say, the represention of system knbwledge.
Second, we must deal with how it is to be managed within the system: with issues

13
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involving the maintenance of knowledge. Then again, we must plan where system
knowledge is to come from: we must consider the acquisition of knowledge. Finally, we
must consider the use to which the knowledge is to be put: the inference methods that the
knowledge must support. In all these areas, we must allow as broad an area of
experimentation as possible to the CODER user within the constraints of system
consistency. ‘ ,

While knowledge representation techniques in Al have rightly been described as “as
yet non-convergent” [BRAC 86, p. xiii], there are several schemes that are recognized as
showing promise of broad applicability. These include schemes based on Jrames, on
semantic (or associative) netwo}-ks, on first-order logic (or some restriction of it such as
Horn clalises), and on production rules. Tn addition, there is a widely recognized need for
a system of representation for procedural knowledge beyond that provided by underhanded
use of one of the declarative formalisms or by arbitrary Lisp PROG statements. It has
been argued (e.g., by [CLAN 83]), that production rules play several different roles,
allowing both declarative and procedural interpretations at different times. Indeed, none of
- the existing representation systems is free from semantic e.xmbiguity'r and all have been used
in various systems to model different things. This lack of clear definition has generally
been recognized by the system designers, and has often been used as a Justification for
adding “escape clauses” whereby arbitrary functionality could be added to the system by its
users: a refreshing contrast to this trend is provided by the recent KANDOR system
[PATE 84b, PIGM 84]. _

Such clarity would be admirable in CODER as well if it could be achieved without
compromising the generality of the knowledge representation provided. However, there
are many types of knowledge for which representation issues cannot be separated from the
inference methods used. As designof inference mechanisms is ‘a-specialized process that
will take place, probably many times, during the experimental use of the system, there is
no way to predict exactly what the demands of the inference engines used will be. This

TSee, for instance, [WOQD 75] and [BRAC 83a] for semantic networks, [HAYE 79] and [ISRA 81] for
frames, and [MOOR 82] for logic, Israel and Brachman [ISRA 811, in fact, attempt a criticisro of all three
schemes from 2 model theoretic perspective: their observations on ‘semantics ‘are cogent and clarifying.
Further clarification has been provided by Alan Newell INEWE 81] and Hector Levesque [LEVE 84b],
who argue that the functional semantics ‘of “knowledge manipulation can and shoutd ‘be kept independemt
from the particular scheme used in knowledge maintenance. Many issues, however, must still be resolved
before either a unified lanaguge for knowledge Tepresentation or a consistent semantics for that language
can be constructed.
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motivates the overall approach to knowledge engineering in CODER. Knowledge is
divided into two conceptual types: factual or world knowledge, and expert knowledge.
Factual knowledge is knowledge of entities in the problem world, their attributes -and the
relations among them. This type of knowledge is controlled tightly in CODER, nsing a
three-level system of elementary data types, frames, and logical relations (see Chapter 3).
Expert knowledge is knowledge at a logical level above world knowledge: knowledge of
classes of entities, metaknowledge of how to create and manipulate facts, and-so forth. It
can involve hypothetical, procedural, or rule-based knowledge, it may draw upon the same
formalisms provided for factual knowledge, or it may use other forms entirely. No
restrictions are placed on the syntax or semantics of expert knowledge, so that individual
experimenters can be free to develop their own formalisms as they are needed. Expert
knowledge is, however, limited in locality: its use must remain local to the expert(s)
developed by the experimenter. For communication among the modules of the system,
only the factual knowledge representation is used.

The factual knowledge representation language is also used in defining the
knowledge maintenance facilities of the system. These facilities, in concert with systems
such as KANDOR and Krypton [BRAC 83b], are defined functionally, ‘in terms of what
operations can be performed on objects constructed in accordance with the representation
formulas (see § 4.3.3). Following their intended use as repositories for factual knowledge
about the problem world, no inference capabilities are included in the operations defining
these k:iowledge bases. Instead, approxiinate matching operations are provided, so that
sets of matching facts or descriptions of entities can be retrieved by incomplete facts or
partial descriptions. Inference, either over factual knowledge or over their own local
knowledge structures, is properly the domain of the experts, and will be discussed below
(§ 2.6 and § 4.3.2).

The distinction between factual knowledge and expertise is also useful in analyzing
the strategies used for knowledge acquisition. Expertise, the representation.of the broad
knowledge and ‘rules of thumb’ used in performing some particular task, will generally be
constructed manually by the experimenter attempting to analyze and automate the task.
Factual knowledge, the thousands of tiny facts that flesh out the world, can generally be
collected automatically, either by the system itself or by ancillary programs. For instance,
knowledge of words for CODER is being redacted automatically from machine-readable
dictionaries, while knowledge of the documents in a collection and the users in a
community will be accumulated automatically by the system during analysis and retrieval
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sessions respectively. Expertise on how to recognize documents or how to ‘parse natural
language sentences, however, will be encoded by the experimenters responsible for the
construction of the responsible experts,

2.2 Document Architecture

One of the representational advances of CODER over classical IS&R systems is its

ability to easily handie composite documents, CODER represents the information with

- which it is designed to work neither as relational tuples nor as flat strings of text, but as
structured entities composed of fields, each of which can be filled by only certain types of
data. These fields may themselves be composed of other fields with more specific
restrictions on the types and semantic content of data‘that may fill them, and so forth. This
approach allows different aspects of a document to be represented in content-appropriate
ways, rather as is currently done by a human cataloger. Moreover, by being able to
recognize the semantic restrictions on 2 given field of a document, the system is given the
opportunity to use specialized parsing techniques or inference methods in analyzing the
data in that field, and to uge specialized disambiguating and clustering techniques during
retrieval. _ _

To accomplish all this, however, the system must provide facilities for defining and
manipulating both structures of fields and the different data types that fill the fields. These
Structures may themselves contain Structures (as when a date occurs .as part of a
bibliographic reference within the bibliography field of a Journal article) -or sets
or lists of structures. It must be possible both to navigate within such structures and to
specify methods for recognizing and making inferences from the data types that make up
their fields. Finally, it must be possible to create and store abstract representations of
structures, for instance in indexing an analyzed document, even when they are not fully
instantiated. For instance, the System must be able to segment a document into a list of
bibliographic references even if not all the references are compiete, or to identify it as a
report of an event even if the document does not exactly match the template for a report
of event structure, '

Of the various knowledge representation structures provided in the CODER system,
complosite documents form a subtype of frames. CODER frames are structured
descriptions that model objects with typed attributes. In composite documents, the
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attributes in question are the contents of the document fields. For example, one attribute
of an electronic-mail message (one slot of the electronic-mail message frame) is

its date of origin, which is of type date (itself a frame with slots for day, month and
year). Thus, a document type is defined by listing the possible attributes that a document
of that type can have and the types of its fields.

Of course, knowledge about a type of document is not limited to its prototypical
definition. Associated with a given document type may be semantic knowledge (such as
the expected content of a field), inter-type knowledge (which document types are also
permitted to be - or are also likely to be -- which other types), and relations among fields
(this field is required in a document of this type; these two are mutually exclusive). This
knowledge, howevér, is perhaps best considered expertise, and can be well modeled in the
system through rules managed by a Document Type Expert.

Using frames to represent documents has certain obvious advantages. .Since frames
may have other frames as slot fillers, it is relatively simple to mirror schemes for
hierarchical decomposition of documents, such as ISO-WG3 [HORA 83] or the
COBATEF model [PEEL 85]. Text fields, for instance, may be defined as lists of
paragraphs; paragraphs as lists of sentences; sentences as lists of text items. Markup
structures may be included as separate fields of the document frame and/or the component
frames (lists or tables, for example, often require specific layout information to clarify their
semantic form). In addition, since a frame instance need not have 2l its slots filled, it is
easy to create representations of a document based on imperfect matches. If a document is
interpreted as being similar to an ideal type, a partial instantiation of that type can be
formed to represent the document. Those aspects of the document that correspond to the
ideal can be used to fill slots in the instantiation and those aspects of the ideal that have no
match in the document can be ignored. Any aspects of the document that do not fit the
ideal can be either ignored as well or fit to another ideal, thereby creating a separate
interpretation of the document.

When 'a document is modeled by several interpretations, of course, ‘there is a
possiblility that the interpretations are inconsistent among themselves. This is not always
the case. We can say that a document is a journal article and at the same time a book
‘review without being inconsistent. Neither is it inconsistent to describe the same
document as a bibliographic reference, although the bibliographic portion of .a book
review is usually only a small part of it. Inconsistencies may nevertherless arise, however,
when a key text item is interpreted in different ways, or sﬁnply when differemt aspects of
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the document invoke different ideals. When this occurs, we say that the interpretations
formed from the document are not mutually satisfiable,t We can, however, find maximal
satisfiable subsets of the set of all interpretations. Inclusion in one or more such subsets
can then serve as a criterion for a good indexing interpretation; ie., for an interpretation
that can be stored as knowledge describing the document. _

2.3 Natural Language Understanding

Probably the most difficult parts of a composite document for any IS&R system to
handle are the text fields that make up the bodies of most documents in an information
retrieval environment, For CODER, this problem is compounded by the experimental
nature of the project. It must be possible during the system's lifespan to-configure the
System with any of a number of different natural language analyzers, with different
theoretical bases and of different levels of sophistication, in order to assess their impact on
the information handling process. Of course, it is impossible to create a system that will
Support equally well all of the multitude of natural language parsers proposed by the
computational linguistics community, The CODER system, however, has -enough
flexibility to work well with any of a2 wide range of parsers, including but not limited to
those based on Augmented Transition Networks [BATE 78, WINO 837, Definite Clause
Grammars [PERE 83], Linguistic String Grammars [SAGE 81}, and Phrase Structure
Grammars [CREA 85]. Each of these paradigms can lead to high quality parsing of natural
language text, and in the current state of computational linguistics research, it-would be
foolhardy in the extreme to commit to only one.

content. This is the analog in the frame language 1o the analysis of validity for the language of predicate
calculus in classical model theory, and we will adapt the vocabulary of model theory here as'an alternative
to the more problematic possible worlds interpretation of non-monotonic knowledge. Thus we describe
the process of document cataloging as one of finding maximal satisfiabie sets of Tepresentations in the
frame language that hold for the document, and we will say that the document is a mode] of such 4 set,
See Chapter 3 for a more compiete discussion, '
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almost a reasonable assumption, although not quite true in practice), it is a trujsm of empirical
information-remeval research that neither the individual words nor the linguistic constructs used in
forming questions ang expressing needs are the same as those used in the expository diction characteristic
of the target documents. Thus 2 query parser may share the same language Tecognizer as a document
analyzer, but will generally require a different set of meaning Tepresentation productions,
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abstract representation, however, is not constrained by interaction effects: many such
systems may be tried with only local changes. And the CODER environment provides
sufficient flexibility that the more far-reaching decisions of text representation can at least
be approached from an experimental point of view.,

Despite this flexibility, choice of a natural language parser is limited in two important
ways. First, of course, the parsers are limited in the type of output they can produce, It is
assumed that whatever parser is chosen will reduce the language of the input text to some
sort of abstract structure, and thar that structure will be representable in the factual
representation language described above, Actually, this is a minor restriction, since to our
knowledge any conceptual structure yet proposed can be Tepresented as a subset of the
domains of relations and frames (semantic nets, for example, are formed from relations,
while case structures can be regarded as types of frames). More importantly, the candidate
parsers are limited by the raw material with ‘which-they are constraimed to-work, Any
natural Ianguage parser requires some mformation about the words in the language in order
to do its work, In the CODER System, this information is contained in a relational lexicon
abstracted from several sources, ‘most notably from ‘machine-readable tapes of ‘several
major English dictionaries. Providing the information from these dictionaries to the parser
designer does not, of course, prevent use of different sources of knowledge (attached
procedures, for instance), but it poses what may be an irresistable femptation to use the
knowledge already in the System. What is more, it poses the temptation to use the
knowledge in the form in which it already exists: relations among words, or relations
between words and elementary domains such as parts of speech or semantic
categories. Again, these relations can be used in 2 wide range of parsing strategies,
including those listed above. And it must be noted that machine-aided translation projects,
which have a comparable goal in requiring robust parsing of most text and graceful failure
on the remainder, have had good results using relatively simple grammars coupled to large
lexicons [GAZD 85b]. Thus we can expect this restriction also to be relatively minor in
practice.

2.4 Lexicon Construction

In order for any language analyzer to be other than a toy (or at best, an interesting
research project with more implications than results), it must be able to draw on a large
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uncountable), semantic knowledge (relations of Synonymy between words; hierarchical
relations induced from definitions), and pragmatic knowledge (appropriate realms of
diction; knowledge pertaining to specific domains of discourse).

Lexicons for computational linguistic purposes have been constructed In a number of

0 a narrow realm of discourse, Exceptions to this rule, such as TOPIC, have still required
hundreds of man-hours invested in lexicon construction. Accordingly, it seems

humans, Dictionaries provide not only the discrete information needed by g
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Current English (OALDCE) [HORN 74} and the Collins English Dictionary (CED)

[HANK 79] have recently been made available by the Oxford Text Archive for research
purposes. Both of these are being used in the construction of the CODER lexicon.
Several other texts of considerable computational linguistic interest, including the Oxford
Dictionary of Quotations (ODQ) and the Oxford Dictionary of Contemporary Idiomatic

English (ODCIE), have also been obtained, and knowledge can be extracted from them as
required. ODCIE in particular can be of value for matching phrases and idioms, for
determining the detailed case structure of verbs taking auxilliary prepositions and particles,
and for obtaining prototypical samples of use.

OALDCE is a dictionary intended for use by people learning English as a second
language. Though relatively small (c. 24,000 entries), it contains a great deal of highly
specific information, including simple definitions, cxampies showing the use of different
word senses (often in the form of sentences with explanations), idiomatic phrases, national
differences in spelling and usages, and verb case structures. ‘CED isa ]arge up-to-date
one-volume dictionary, with over 162,000 references (85,000 headwords) and 14,000
biographical and geographical articles and with excellent coverage of science and
technology. It provides semantic category information for fully 15% of listed definitions,
several different sorts of cross-references 1o related words, and notes explaining proper
usage of the words (see [WOHL 86] for a full analysis of the information explicit in the
CED and the relations used to capture it for the CODER lexicon). Together these two

dictionaries have a wealth of information to-use jn automatic text-analysis.

The CODER lexicon is being developed in stages (see Fig. 2.1). First, the tapes
must be converted from typesetting format 1o a structural form more suited fo high-level
manipulation. This involves both a clean-up phase, to remove spurious data such as page
breaks and space left for illustrations, and a parsing phase, where the semantic content of
indentations and font changes are translated to explicit semantic relation markers. Roger
Mitton recently completed a cleanup effort for the OALDCE; the Collins dictionary was
cleaned up locally during the Fall of 1985. Alse locally, the UNIX™ tools Jlex and yacc
are being used to convert the grammars implicit in the typesetting conventions -of the
dictionary entries to files of relations in a syntactic form acceptable to direct manipulation
by a Prolog interprefer (again, see [WOHL 86} for details of the CODER CED effort). The
files of Prolog statements produced as output by these parsers constitute the end point of
the first stage.

Next, the CED and OALDCE data must be merged and ambiguities resolved. It is



23

File of Entries

Dictienary

Hierarchy
Information
(Amsler; Evens)

e > O]

v

Tape

( Definition

T. Text)
P.0S.'s and ) .
Category -
Information General i
Linguistie i
Knowledge "

e T T

- eal A
Mo;zr?;zglca Specialized
infarmation Vorid
Knowledge
Bagnerouryrs S

Prototypical

Lse
Information

Hierarchical

Knowiedge
obtained during
Document input

packer, “ @

Information

i

Fig. 2.1: Construction of the CODER Lexicon.



24

likely that a few words that occur in the OALDCE will not occur in the CED, and that
many will occur only in the larger CED, but the overlap of the two is nonetheless
considerable. Within that overlap, however, there may be little commonality between the
two dictionaries in the differentiation of senses within a given word entry, or even in how
many entries a given lexeme is given.

Third, other sources like ODQ and ODCIE can be utilized to add more information.
This will provide knowledge on language pragmatics; it is an interesting open question
how much help the “quotable quotes” of Shakespeare and Browning will provide in
document analysis and retrieval. Additional knowledge on pragmatics can be obtained
from problem domain-specific texts (for the first test collection-of A/List messages, such
knowledge may be able to be abstracted from the machine-readable form of the Handbook
of Artificial Intelligence, recently released to researchers on a limited basis). Knowledge
about words can also be input interactively during the process of document analysis, for
instance when a new name is encountered in the input text,

Finally, parsing of dictionary definitions will be undertaken so that kernel words and
lexical semantic relations can be identified and recorded. Smith has found in work on
Webster's Seventh Collegiate Dicziénary that a high proportion of definitions fall-into-a few
syntactic forms, and Ahlswede has used these defining forms to analyze adjective
definitions [AHLS 1983]. These defining forms, besides helping to identify the key terms
in a definition text and their function in explicating the word sense being defined, can
themselves provide semantic information about the word sense: for instance, Evens notes
that the form “one who” identifies the sense as referring to a human subject. Obviously,
these last three steps may proceed in parallel,

2.5 Test Collections

One of the major criticisms leveled against the experimental work done on
information storage and retrieval in the past has been that the data sets used were small and
controlled, and that the results obtained and technigues evolved did not scale up well to
large files of real data. Specifically, models for retrieval based either on vectors or
Boolean combinations of words worked well when tested on cases where the number of
word types was high compared to the number of documents in the system. Recent results
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indicate, however, that they may not fare as well when applied in situations where large
numbers of the available documents can be found containing any reasonably -common
word [BLAI 85]. While the system investigated in this study was a commercial System,
optimized for performance and not reflective of current advances in conventional IS&R,
the large-collection effect can be significant for any system. Consequently, the CODER
system has been designed to function on reasonably large collections of realistic data.

As an example, the collection that has been created for the initial testing runs is a set
of electronic mail messages drawn from about three years of postings to the ARPANET
AIList Digest. About 4000 individual messages occur in the collection, each of which can
be considered as a single composite document; between all the documents, the collection
comprises over a mﬂlion words. The documents vary considerably in length, content,
style and diction, and include such disparate entities as calls for papers, announcements of
seminars, requests for information, philosophical wanderings, and lists of bibliographic
references (including references to ‘previous- postings in-the AfLis!). Thereis throughout
the collection, however, a certain unity of content and a common vocabulary and body .of
understood knowledge., Future document collections will include documents drawn from
different sources, and eventually even from several sources.at once.

Use of such large collections, however, raises several issues. First, of course, there
are issues of efficiency. Since the CODER project is only required to operate in a research
environment, the efficiency of analysis and storage of documents is not crucial, and CPU
hours can be spent assembling, analysing, and storing the collection that-could not easily
be spared in a commercial environment. Retrieval speed, however, is if anything more
crucial in an experimental system (where exhaustive testing of different configurations
involves multiple sets of retrieval 1uns, each of which may require many documents being
retrieved and presented to the user) than in a production system. Thus the databases, not
only of the documents themselves, but of the knowledge indexing the documents, must
respond quickly even given the large number of documents and pieces of knowledge in the
system.

Next, the use of large collections raises issues of hardware. In a research
environment no less than in a commercial one, storage space on any given computer
system 18 a scarce and valuable commodity. CODER requires large amounts of space,
both for the document databases and for the lexicon. Lacking special-purpose hardware,
the most reasonable solution seems to be to structure CODER as a distributed system,
allowing separate knowledge bases to exist on separate machines,
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Finally, the use of large collections raises issues of testing. The early work in
Boolean and vector retrieval used small, well-controlled collections precisely in order that
the techniques under investigation could be tested completely. With a small collection of
documents, one can determine whether or not a document is relevant to any query by
asking knowledgeable human beings. In collections the size-of -actual.document.data sets,
this is no longer possible. While it is precisely because these data sets are too large to be
cataloged by humans that the issue of automatic analysis is 8o critical at this time, these sets
can only be used in an experimental context if we are to give up measuring system
performance in terms of absolute values of recail and precision. Itis possible, of course,
to compare configurations of the system among each other, and to compare sets of
documents retrieved by versions of the CODER system with those retrieved by versions,
for instance, of the SMART systemn. Such comparative measures, however, will have to
be our standard in working with large collections of realistic data.

2.6 Al Support Environment

The CODER project has been conceived as an investigation into the applicability -of
the techniques of artificial intelligence to information retrieval, Other than the question of
natural language parsing, there are several ways that Al techniques can aid the information
Storage and retrieval process, Abstraction from the results of document parsing to the key -
concepts under which the document can be indexed is a process beyond the reach of
conventional programming techniques, but not intuitively beyond those of rule-driven
systems. The knowledge maintenance techniques required to ensure consistency of a
document interpretation or a set of hypotheses about a user's information need have been
explored only in the context of Al, as have the techniques required to relate facts in a
knowledge base to the entities that they describe (and entities to the facts that describe
them) and to trace which types of knowledge are most helpful -or what sources of
knowledge least suspect, Planning a search, expanding a search through the discovery of
semantically related concepts, and understanding a user's response to a search all come
under the general heading of areas where artificial intelligence techniques hold great
promise. Use of these techniques, however, requires.a.commitment to-an environment for
their support and to the paradigms of their use.
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The development of an artificial intelligence system typically follows a different
paradigm than the conventional design/build/test approach [BOBR 85]. Typically, Al
developers prefer an incremental, exploratory approach where system design and
implementation evolve together with the developers' understanding of the problem.
Maintaining a coherent system under exploratory development by several different people,
however, requires more than an exceptionally steady hand. Thus it has been necessary to
limit the exploration possible by any single developer working on the CODER system.
Rather than limit the directions in which such exploration may proceed, though, coherence
is maintained by limiting the interactions between system modules and by limiting the size
of the domain within which any given developer may work. Developers working on the
CODER system are required to work within the constructs of a limited set of module types
obeying strict communication standards (see Chapter 4). The internal structure of each
module (for instance, whether it is inferential, pattern-directed, or even procedural) is left
to the designer's judgment, but the external interface it presents to the remainder of the
system and the knowledge structures it represents are rigidly specified. This provides a
maximum of freedom for exploratory development within the domain of a given module,
- while still ensuring that the modules will fit together.

Supporting Al techniques also requires a very high-level language in which the
knowledge and inference techniques can be coded. This requirement conflicts directly with
the requirement for efficiency in retrieval, as VHLLs are notorious for their slow
execution. For the CODER project, however, efficiency is most-crucial in the database
aspects of the project, and there exists a language dialect, MU-Prolog [NAIS 85], that
provides a very high-level paradigm oriented to artificial intelligence work and .also
provides strong support for large built-in knowledge bases. Prolog has been used widely
in AI programming, notably for expert:sysiems [LEEN 85] and:natural langnage -pa:tsing
[PERE 83], and MU-Prolog itself has proven effective in a variety of knowledge
representation tasks [HELM 85]. However, Prolog is often cited as a better language for
prototyping than for system construction (e.g., by [SUBR 85]. [DOYL 85] makes the
same point, extending it to include such languages as Lisp and OPS5). This is in part due
to the power of the Prolog interpreter combined with the simple and untyped Prolog
environment. While a Prolog program is easily decomposed into apparently independent
modules, the rule database constructed by the interpreter from a program is monolithic, and
large Prolog programs often collapse into 2-sea-of unwanted interaction-effects. This-effect
is difficult enough in a program crafted by a single person who can, at least, ensure the
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purity of the local name-space. In a multi-programmer environment, it is magnified
beyond endurance. This effect is avoided in the CODER project by the simple expedient of
invoking a separate copy of the interpreter for each Prolog-based module. Thus, an
mndividual experimenter can build, for example, a natural language parser or a search
planner without either fearing unwanted interaction with other modules of the system or
needing to worry about how those modules are built (see § 4.4),

For several reasons, therefore, we have found it necessary to break the CODER
system into modules. Modular decomposition is, of course, the accepted methodology .in
conventional software design, but its application in artificial intelligence systems is
problematic. It is relatively easy to specify the decomposition and external characteristics
of a user interface; less easy, but still relativeiy straightforward to specify those of a frame
manipulation module; very difficult to specify the decomposition of the task of retrieval, or
the external characteristics of the (sub-)task managers involved. We have noted above the
necessity of restricting the possibilities for exploratory development, but there is every
reason to believe that our decomposition of the major tasks of the sysfem will change as
our understanding of the problem -evolves through modeling and -experimentation.
Software engineering and Al make VETy uneasy partners.

Our solution to this apparent dilemna has been provided through the concept of
expert systems. This term has been used widely in the Iast few years to mean many
different things: here we use it to mean that the CODER system functions by applying
high-level domain knowledge, expertise, to solve the problems of document indexing and
retrieval. This decision serves two goals. First, it keeps expertise explicit, implying that it
is coded separately from any inference engines used by the experts. This accords well
with two of the primary lessons of the last decade of AT research: that intelligent behavior
depends heavily on the knowledge of the behaving system, and that in artificial Systems
~ this knowledge is best engineered separately from the mechanisms for -manipu—l%zting it.

Second, it suggests that problem decomposition proceed along the lines of the domains of

knowledge used in discovering solutions.

Each of the two primary tasks that CODER addresses is thus assigned to a-group-of
cooperating experts. Each expert is closely bound to a single sub-task, either specific to
one of the larger tasks or adaptable to either. The community of experts involved in a task
can change over time, as the decomposition .of the task changes, without affecting either
system resources such as the lexicon or the document knowledge base, or, more
importantly, the underlying structure of the system. Individual experts can also change, or
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even be replaced, in order to better adapt them to their missions, but such changes will not
effect the other experts in the community. In fact, most changes in the composition of the
community will not affect most experts: changes in the performance of the task of query
parsing, for instance, need have no effect on an cxpcrf whose charge involves discovering
synonyms for words. _

An expert is assigned a small area of specialization. This both isolates the
development of the expert from that of the surrounding system and mitigates the problems
of rule interaction within the expert. Tasks which are found ‘to ‘be too complex can be
further subdivided along the lines of the areas of expertise required to solve them. As a
further benefit, experts can be specialized to deal with different types of knowledge, so that
an expert that manipulates knowledge of how to do things can nse different inference
mechanisms than an expert in what to do. This will enable the reasoning portions of these
experts to run with more efficiency than, for instance, general rule-based inference engines
(see [LEVE 84a] for a formal analysis of this effect). In practice, we expect that a few
generic knowledge-handling engines can be specialized into a multitude of different
experts. The work of Chandrasekanan (e.g., [CHAN 85]) holds great promise that a few
such powerful generics can be isolated and put to good use. And as such methods are
better understood, they can be used in CODER to build new experts, again without
affecting the existing modules of the system.

This method of problem decomposition is particularly well suited to the tasks of
document analysis and réuieval, where the relevance of a given document to a given
information need is typically overdetermined by many weak factors: occurrence of certain
terms or meaning structures in the document text, authorship by an authority in-the field of
the user's need, or currency of the information in the document, to name but a few. It is
expected that it will also be relevant to a much larger class of problems where solutions are
also weakly overdetermined by the solution to many different subtasks, and where the
factors can be isolated by the domains of knowledge required to solve each subtask. The
final design criterion of the CODER system is thus that it be built with as much generality
as possible, both so that structures created at one point in the system can be used in other
areas, and so that the general structure of the system, gua expert system, can be reused to
solve other problems.



3. Representation

Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge,
{The world is the totality of facts, not of things.)

-- Ludwig Wittgenstein, Tractatus Lo gico-Philosophicus

The CODER system is designed to bring considerably more power to bear on the
problems of information storage and retrieval than can more conventional systems, It.does
this both through more powerful methods and more powerful representations. The
methods include a marriage of the more successful results of the Iatest generation of
information retrieval systems with recent developments in expert systems and
computational linguistics. The representations are symbolic structures of the type evolved
in the artificial intelligence research of the last two decades with the aim of -rcpresent'mg
knowledge., _

Basically, CODER will need to use at least two sorts of knowledge: general
knowledge about a subject area, and specific knowledge about entities in the problem
universe. It will also need to model these entities, which include words, names, and other
lexical items; documents and fields of documents, and users .of the system. The system
needs to represent and control facts about these entities, if possible associating the facts
with some sort of confidence level, In addition, it must represent and manipulate rules for
recognizing general classes of entities, facts about such-classes,-and metaknowledge about
~ the interaction of classes of facts. The problem faced in-designing a system of knowledge
representation for the system is therefore to provide facilities for modeling these entities,
modeling attributes of the entities and facts relating one to another, and modeling
knowledge about classes of entities, including both general factual knowledge and
procedural knowledge detailing, for instance, how to classify or manipulate objects of a
given class.

30
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3.1. The Problem Universe

The primary entities in the CODER universe, as in the universe of information
retrieval Systems in general, are documents and users; the primary task is to provide users
with relevant documents. Users have a variety of abstract characteristics, including
attention span, experience in using the system and level of expertise in any of a number of
subject areas. They also have information needs, which they must express to the system,
generally in the form of a query. Similarly, documents have abstract characteristics, such
as type, author, and date of entry into the system, and they have information content,
which the system must be able to identify and represent. In the documents of the CODER
domain, this content is generally carried by sections of raw text in a natural language.
Natural language, however, is primarily a linear form. In order to permit effective access
to the information content of input documents, the system must perform some sort of
analysis on the documents and digest their text sections into more tractable knowledge
structures. Thus the entities that make up text -- both atomic entities such as names and
words (or word stems, or word senses) and the structures such as phrases, sentences and
paragraphs that are built up of them -- are also important citizens of the problem nniverse.

These entities -- text items, documents, and users -- are the primary items of which
the system is required to have knowedge, and thus the entities whose characteristics drive
the structure and organization of knowledge in CODER. It may be necessary for the
system to maintain knowledge about other classes of entities (it will certainly be useful to
maintain an authority file of knowledge about document authors, for instance, and
probably also to maintain knowledge about bibliographic entities beyond the documents
actually entered in the system), but the focus of the system is on supplying text documents
to users. The structure and organization of the system knowledge bases, in contrast, is
directed by the use to which that knowledge is to be put: the matching of information
sources to information needs. It is the interplay between these two requirements that
informs the knowledge representations chosen for the system.

3.1.1. Text

The problem of automatically extracting content from unconstrained text has been the
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focus of artificial intelligence research since the dawn of Al as a self-conscious field.
Much of the early work in knowledge representation (for instance, Quillian's work on
semantic nets [QUIL 66)]) was directly motivated by linguistic considerations. And while
early research into machine digesting of text was as disappointing as early work in machine
translation,'r recent advances in both natural language-understanding and knowledge
engineering make possible a cautious optimism. One of the purposes of the CODER
project is to evaluate the gains such sophisticated analyses can provide over atomistic
word-frequency indexing. This goal in turn induces two requirements on the
knowledge-representation facilities of the system: CODER must support both the
knowledge structures used in natural language pzrsing and the (possibly quite different)
structures required for the representation -of text-content.

In compiling a computer program, it is customary to make a sharp split between the
analysis phase, where lexical and syntactic items of the language are recognized, and the
generation phase, where equivalent structures of a different language are created, A similar
split can be made in the process-of deriving knowledge structures from natural language
text. For instance, while different members of the Yale Al group have used.a number of
parsing strategies (fop-down, bottom-up, demon-based) to analyze incoming text, they
have maintained a set of philosophically consistent structures for representing text content
throughout. Of course, in the area between .parsiﬁg text and .generating abstract
representations of content, a large grey area intervenes that is usually described as
‘semantic.” What is within this area (indeed, whether there is anything there except for the
interaction between the syntactic constraints of the language and the logical constraints of
the knowledge into which it is being mapped) is currently an area of active research. It
seems unlikely, however, that the representational structures required in this phase of
natural language understanding will differ greatly from those required on either side.

Recent advances in formal language theory, as well as the renewed interest in
computer articulation of natural language generated by the Fifth Generation project, have
resulted in 2 multitude of promising new parsing techniques, among which we can mention

TAs recently as 1983, for instance, it was possible for Gerald Salton to state that “frequency-based
phrase-generation systems are simpler to implement and are currently more effective” than linguistic
analysis in indexing a document for retrieval [SALT 83a, p. 91]. Salton, however, does not cite
comparative studies later than 1970, a date at which computer text understanding was still in an extremely
primitive state. More recent relevant work includes the TOPIC system [HAHN 85} as well as the work of
C.D. Paice (e.g. [PAIC 811} and Karen Sparck Jones [SPAR 84a].
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those based on head and phrase structure grammars (e.g., [POLL 841), indexed grammars
[GAZD 85a] and unification [SHIE 84], as well as the more established techniques of
DCG-based and linguistic string parsers. The choices for text representation formalisms
are somewhat narrower, but nonetheless include many variations on several distinct
groups. Semantic nets are still advocated (e.g., by [SIMM 84]), as are related structures
such as I. F. Sowa's ‘conceptual graphs’ [SOWA 84]. Roger Schank's ‘conceptual
dependencies’ are widely used: related structures have been advocated by Lehnert [LEHN
78] and Wilensky [WILE 84]. The KL-ONE system has been used with some success
[BOBR 80, SOND 84], as have other frame-based or mixed frame/metwork models.
Finally, systems based on transformational grammar, such as [SAGE 81], make use of
formalisms based on the transformed deep structure. |

Selecting among this wide variety of choices, both among the parsers and comntent
representations available, to determine the best mix(es) for the task of information retrieval
is no small task itself. It is reasonable to assume, in fact, that it can only be done on an
experimental basis in a context that supports a number of different paradigms. The
CODER project attempts to provide such a context through architectural features ensuring
the decoupling of parsing paradigms from the rest of the system, through a lexicon of
word knowledge for parser designers to draw upon, and through a set of common
knowledge representation formalisms within which various content-representing structures
can be designed.

3.1.2. Documents

‘Early work on text retrieval tended to represent documents first as flat streams of text
and then as equally flat abstract structures such as term vectors. While this approach is
adequate (at least in small collections) for running text, it is patently inadequate for dealing
with such text items as names and dates, and fails completely to handle structural features
such as the delineation of the abstract (or even the title) of a journal article from the body of
the text. In contrast to this, most commercial bibliographic services have used highly
structured database technology to control such document features as authors, publication
information, and subject descriptors. Quite apart from the well-known difficulties of
adapting database technology to text items, which vary widely in length, internal structure,
and conventions for lexical ordering, this approach requires the service of human
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catalogers to convert authors' names to authoritative form and dates to canonical format,
not to mention choosing subject descriptors from an approved and controlied thesaurus.
This amount of work is prohibitive for all but the most important collections.

More sophisticated analyses of document structure have been performed in recent
years, although no attempt has yet been made to adapt these analyses to information
retrieval. Reacting to a perceived need for standards of interchange among different
organizations involved in the production of electronic documents, several international
organizations (notably the ISO) have proposed standards for electronic document structure
[HORA 85]. Gary Kimura [KIMU 84, KIMU 86] has investigated a model of documents
as heirarchical objects formed from both ordered and unordered sets of more primitive
objects. Both Kimura and the ISO model recognize a logical strocture and a {eyour
structure in documents, the former governing the decomposition of a document into title,
sections, paragraphs and the like, and the latter providing the syntactic clues (centering of a
title, use of font information, and so forth) that humans use visually in discerning the
relationships among text items on a page. The COBATEEF system [PEEL 85] presents an
extremely fine-grained synthesis of these two dimensions based on a unifying
box-and-glue model for text objects.

Documents prepared on one or another of these models wear their internal structure
on their sleeves. Other electronic images of documents are not as revealing, at least to an

artificial system. An electronic document prepared under, for-instance, TROFF or TgX
includes a great deal of formatting information -designed to make its logical structure
obvious to the human eye. Mapping this structure into abstract form is, however,
non-trivial, and it is reasonable to expect that only part can be automatically recovered. An
intermediate case is posed by electronic mail messages, which are produced with some
explicit structure in the fields of their beadexs, bot also carry free text (with, perhaps,
irnplicit structure) in their body and subject fields. Recently, there have been proposals
(e.g., IMALO 86]) to push more of the information content -of mail documents into-such
structured fields through the use of template-based editors and mail systems.

Beyond straightforward decomposition into, for instance, title, author and body
segments, and even beyond more complex and informative hierarchical decompositions,
documents and document aspects can stand in logically more involved relationships to each
other. Kimura, for instance, points to the possibility of structure sharing within a
document, as when an equation or table is referred to several times within a text section.
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In addition, documents can be nested recursively within one another, as when one mail
message forwards another that itself contains fragments of a third.” Even a single
- document (a single body of work by a single author at a single time), may be best
~ described by a nested set of interpretations, as when a mail message parenthetically
includes a list of bibliographic references or when a request for information includes a
description of the work motivating the request. Finally, a document may have more than
one consistent interpretation, either because the purpose of the document is ambiguous or
simply because, in the way of natural language documents, it serves more than one
purpose at once.

Thus documents, like natural language text, pose two different (though related)
problems: recognition and representation of structure. Representation requires a set of
knowledge structures sufficient to capture the different aspects of different types of
documents. Recognition requires knowledge of both types and prototypes: itrequires the

ability to fit a document to a matching pattern (top-down) and to recognize elements -

(bottom-up) that may signal particular document interpretations. Note here that prototype
knowledge of document structure should not overly constrain interpretation: it should be
possible to build an interpretation of a document based on a partial match to a prototype, or
on sufficient similarity to a prototype. Although this depends-on the inference techniques
employed, rather than the knowledge representations themselves, it points up an important
difference between the patterns used in parsing document structures.and the patterns used
to build abstract interpretations of the documents. The parsing knowledge includes a great
deal of metaknowlédge about the aspects of a document and the relations among those
aspects (for instance, that one aspect depends on another or that two aspects are mutually

exclusive) that has less to do with the internal structure .of the representation than with its
relation to a model. Parsing also requires knowledge about the relations among different
document representations: which are consistent with each other, which can lead to one
another, and what the clues are for following those leads. In short, representation involves
knowledge of distinctions and relations among individual documents {or document
components); recognition involves knowledge of distinctions and relations among

TBabatz and Bogen [BABA 85] present a number of different relations that may obtain among glectronic
messages, including revising, commenting on, and rendering obsolete. In the domain of journal articles,
the usefulness of citation and co-citation relations for retrieval is well-known [BICH 80]: it is necessary
to identify and parse bibliographies and to recognize references in text, however, before such relations can
be used in a fully avtomatic system.
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document prototypes.

3.1.3. Users

Recognition of users is generally easy, because it is generally artificial. In a
computational environment, users are usually recognized by their ID's, or conceivably by
their names. This is the most likely mechanism for use in CODER, although it is
reasonable to imagine such an identification being defeated by a combination of other
evidence. This is possible because, unlike most SyStems, CODER maintains more
information about each user than her ID code and permissions. Individual users have a
number of aspects that are important in.-tuning the information retrieval process to their
needs. These include general characteristics such as attention span and competency in
system use, as well as characteristics specific to the information-retrieval process, such as
how many documents the user can absorb in a session and the relative value she puts on
recall and precision. The user also has a history of interaction with the system: what
search techniques have helped most in filling her needs, in which conceptual areas useful
documents have been found ... in short, any common aspects of success that the system
can abstract.

In addition to knowledge about a user discovered by the system, the
information-retrieval task can be aided by knowledge offered by the user. The user may
suggest semantic relations between words, ‘variants on representations, or expert
judgements from her own area of specialization. Such knowledge should not, as a rule, be
regarded with the same confidence as system knowledge, particularly when working with
a different user. Neither should it be discarded, however, for it may aid greatly in later
searches for the same user. It is reasonable, thus, to maintain it as local to the user.
- Conceivably, as the system gains experience, knowledge :sﬁggested by several users or
knowledge from an expert user's specialty can be allowed to pass into the system's central
knowledge bases.

3.1.4. Constraints on the Universe

Restriction of the CODER problem universe to the symbolic ‘world -of text and
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documents provides several fortunate constraints on the knowledge required by the
system. The system, for instance, has no need to understand spatial knowledge, nor does
it need any understanding of primitive physics. Further, while document representation
involves a fair amount of temporal information (an electronic mail message may have a
dateltime of origin, a dateltime of receipt and a history of access since its receipt, and may
as well itself describe an event with a date and time of occurrence) that information occurs
only in well-defined subareas which require a limited subset of the full vocabulary -of
temporal knowledge. All the time information involved in bibiliographic descriptions, for
instance, can be represented as instants on a quantized line, thus eliminating both problems
of duration and any trace of Zeno's paradox. In addition, the number of temporal relations
of bibliographic interest is limited: we wantto find documents with origin before (or after)
that of a given document, or between two arbitrary dates, but that is about the extent of our
interest. Finally, the problem domain does not include any ‘natural’ continuous functions.
One can, of course, introduce continuous functions into the system. The CODER
prototype, for instance, uses continuous functions to represent belief and similarity in
time-honored fashions. Such functions can, however, be restricted to the (sub-)domain of
their introduction and handled there, without the need to involve the basic knowledge
representation mechanisms. The problem universe is thus, for all its complexjiyﬂ
extremely well-behaved, and it has been possible to cover it with a parsimonious set of
knowledge representation formalisms.

3.2. Knowledge Formalisms

One of the most striking findings of the 1ast decades of Al research has been the
importance of explicit knowledge to intelligent behavior. In the CODER system, tw0
distinct types of knowledge are recognized: factual knowledge about entities in the
problem universe, and general knowledge or éxperti_se within -a -domain of discourse.
Different architectural constrocts are provided for the storage and manipulation of these
two types of knowledge: expertise is controlled by experts and factual knowledge by
external knowledge bases. The CODER system as 2 whole is made up of communities of
these specialized experts, communicating with each other and with system users through a
set of active blackboards (see Chapter-4). Each expert-consists-of an inference-engine and
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a local knowledge base structured to suit the type of inference performed: a
backward-chaining cﬁgine would draw on a body of rules, while a classifier might require
a discrimination net. The exact form of the expertise is thus a design decision local to.each
expert. Forms of domain knowledge can be varied or.even invented by the knowledge
engineer working on the particular specialty being modeled. When knowledge is
communicated by an expert to the rest of the community, however, or when it is stored for
use in later phases of processing, it must be in a form independent of any particular
decision taken by the individual designer or implementer. That form is provided by the
factual knowledge described in this chapter.

The CODER system uses three levels of representation formalisms for factual
knowledge (Fig. 3.1), each built recursively on the lower levels. These three levels are
used to model attributes, entities, and logical relations among entities. The semantics of
each level is defined functionally, in terms of the operations for manipulating objects from
each level and in terms of the subsumption hierarchies that relate types and objects of that
level to the others. A lattice-theoretic approaéh to inheritance is taken throughout the
knowledge administration system [SCOT 76; though cf. CART 85], althou gh the
significance of arcs in the lattices differs among the levels. The external knowledge bases
are also defined functionally, so that the knowledge that the system has of the world can be
made available to more than one expert through a common interface. Designing the
functionality of knowledge manipulation in concert with the representation formalism
ensures that the knowledge bases will remain free from paradoxical behavior [LEVE 84b].
It also provides for a clean architecture, as it permits a generic external knowledge base to
be reused throughout the system.

3.2.1. Elementary Data Types

At the lowest level, attributes are modeled in CODER by elementary data types
'(EDT'S). These are the sorts familiar from the theory of abstract data types [YEHR 78T:
sets of objects associated with sets of valid operations ranging over them. The classical
types char, real, int and atom are provided in this category; new elementary data types
can be created through the specification of the set of operations defining them, or through
quantification or restriction of existing elementary types. The EDT part of speech, for
Instance, is a restriction of the atom type; the type phone number-is a quantification (10
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digit) of a restriction of char. Restricted EDT's inherit the operations of their parent fype
without change; quantified EDT's respond to the operators of their quantifiers by returning
objects of their parent type. Thus the two constructors together form a complex -but
well-behaved semi-lattice above each primitive EDT, and we can say that if EDT a is-either
a quantification or a restriction of EDT b then b subsumes a. EDT's may also be

constructed by juxtaposition, where one type is followed by another (possibly from a
different lattice altogether). In this case, the constructed EDT is defined to be weaker than
either of its parent types, and responds to the constructor operations by returning objects of
the parent types.

Elemcntary types, thus, are interconnected in a set of semilattices above the primitive
types. No such relation holds, however, among the elementary data objects. This is not to
say that objects of a given fype may not have a linear ordering. In fact, all primitive types
that submit to restriction must have such an ordering for the restriction syntax to have
meaning. Such relations, however, are independent of the place of the type in the
subsumption hierarchy. A 3 drawn from the restricted type [1-10], for instance, cannot
be considered weaker than a 32 drawn from the primitive type inf. Similarly, it is not
meaningful to ask for a new instance of a primitive type. One can, of course, ask for a
number or an atom that one has never seen before (the Lisp gensym function has just
such a semantics), but one cannot ask for an instance guaranteed to always be unique: one
- occurrence of the atom g000039 will always be indistinguishable from every other
occurrence of g000039. Both of these properties are entirely appropriate for models of
attributes. Neither, however, hold for objects of the higher levels.

3.2.2. Frames

At the second level, the CODER knowledge administration facility provides
primitives for modeling entities. The model of an entity may have many aspects, including
both attributes and, possibly, subsidiary entities. The set of aspects germane to any
particular sort of entity, however, is limited, as are the possible values for any aspect. Not
every entity, of course, will have all germane attributes (certainly not all aspects of an
entity will be known for every entity) and not every interesting aspect of an entity will be
captured within the set of germane aspects. The set simply captures those aspects typically
associated with an entity of that type. In light of this, the clear choice of formalism for
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modeling entities is some variant of frames. In CODER, we have taken an approach to
frames based on types: a frame instance is-always the member of some frame type, and a
frame type is defined by the set of its slots :and their-associated types. -Slots are named, as
are frame types, in order to provide a method for distinguishing two slots of the same type
when either may be missing from a particular frame instance.

More formally, a frame type consists of a type name together with a set of slot
definitions, each of which consists similarly of a slot name together with the (maximal)
type of object that may fill that slot. A frame object is an instantiation of some frame type:
the type name together with a subset of the allowed slots, each of ‘which is filled by an
object of (a type subsumed by) the type specified in the frame definition {see Fig. 3.2).
This definition of frames differs from early frame systems such as [MINS 75] and [BOBR
77] in two important ways, both involving the notion -of types. First, CODER frame
objects have limited and controlled slot sets. Many frame systems allow arbitrary slots to
be added to any frame object, making each frame object in effect the unique member of its
own kind. This creates problems both for a coherent description of kinds and for the
abductive classification of entities [BRAC 84, FAHL 81]. The frame system in CODER,
by contrast, distinguishes between frame types, which represent (natural) kindsT and
which fall into a subsumption hierarchy based solely on the attributes that objects of those
kinds are expected to possess; and frame objects, which rcpreserit descriptions of entities

11t is not our intention here to join the debate on the best definition of the “natural kinds” involved in
classification of peonies and penguins. It is in recognition that this debate wages unresolved that we use
the parentheses above. We do want, however, 1o distinguish a notion of “kind” different from the formal
notion of type, under which penguins can be members of the kind bird, even though they have no
average flying speed aspect. There are two ways that the distinction between frame types and objects
in the CODER frame system contributes to a natural modeling of this notion. First, while possession of
certain attributes by an entity may be important to the inductive recognition of that entitiy as being a
member of a kind, it is not necessary for the frame object that describes the entity to inherit all the slots
of the frame type describing the kind. In particular, default slot fillers may be replaced or even removed.
Second, while the aspects necessary {0 recognition of an entity as being a member of a kind are
represented by filled slots in the corresponding frame object, accidental aspects of the entity (for instance,
that a particular penguin has a large nose) are modeled by facts predicated on the entity. Such facts are
described later in the main text; note here only that those facts have both a different status and a different
location than facts about the kind penguin. Facts about entities are stored in one of the external
knowledge bases describing the problem world. Facts about kinds, however, are stored in classification
experts, whete they may be used in wholly different inference chains. Facts that a member of a kind must
have a certain aspect (that the corresponding slot must be filled), that 2 member may only have one of two
mautually exclusive aspects, or that members of one kind are also likely (or unlikely) to be members of
another, while vital to the recognition of natural kinds, are simply confusing when applied to descriptions
of individuals. The CODER systerm makes sure that these stay separate,
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ACTIVE-[A2]
verb: term
subj: ¢b
obj: ¢p
instr: cD
SUBSUMES
ACTIVE VT, INST ANCE-0F
|_verb: term |
subj: cp
obj: D
SUBSUMES
| YERB TRANS,
]_verb: term
| subj: ¢p
obj: D
SUBSUMES -
VERE ] SUbT: W,Lspoon—]
| verb: term | b o
med-poss
subj: o
obj: &

shel]

Fig. 3.2: Frame subsumption hierarchy for
Conceptual Dependency forms, with
€xample instantiation.
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as members of those kinds. Second, the slots in CODER frames are restricted by the types
of objects that may fill them. This restriction serves both a formal goal, ensuring that
instantiations of a given frame type are also instantiations of all types subsuming that type,
and an engineering goal, ensuring that objects created in one part of the system can be
understood in another part,

One frame type is said to subsume another Just in case all of its slots are either
included in the stronger frame type's slot list, or are generalizations of slots in the stronger
frame's slot list. Specifically, frame type a is said to subsume frame type b if every slot of
type a corresponds to a slot of type b with the same name and either the same or a stronger
type (see Fig. 3.3). Thus the frame type with no slots subsumes all frame types, and two
frame types are equivalent if and only if each subsumes the other. New frame types are
added to the subsumption hierarchy in one (or 2 combination) -of two ways: either by
constraining a slot in an existing frame to a stronger type, or by adding new slots. -Special
cases of this process include adding a frame identical to its parent and adding a frame with
two or more parents. This last case succeeds only if the slot lists of the two parents are
consistent: ie., if any slot that appears on both lists appears with either the same type or
two types one of which is subsumed by the other.

‘All frame types thus fall into a single inheritance hierarchy-defined by the relation of
frame subsumption and having the frame with no slots as bottom. Frame types inherit the
slots of their parents, although they may be restricted as described above, There is no
provision made for deleting a parental slot from a child type, as this leads to well-known
problems of classification [BRAC 8 3a]. Nor is there provision within the context of frame
type definition for expressing relations among slots or relations other than subsumption
among frame types. Instead, CODER maintains this knowledge in a set of frame type
experts, where it can be used as appropriate in the classification of entities. This allows the
system to provide a fast and computationally sound method of managing the frame types
themselves, while maintaining metaknowledge about use of the types in an inference
environment suitable to its application. In particular, this allows the system to maintain
knowledge relating frame types (or entities represented as frame instances) on the hasis of
their similarizy to each other, something that is not possible in classical frame-based
systems.

The corresponding relation fo subsumption for frame objects is matching (see Fig.
3.4). A frame object X is said to match a frame object Y if every filled slot of X matches.a
filled slot of Y, where elementary objects are said to matceh if and only if they are equal.
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subsumes(ancestor__frame, descendent frame) >
slot_fist(ancestor__frame, anc_list),
slot_!ist(descendent_frame, desc_list),
vX (X € anc_list > 3y (y € desc_list A name(x)=name(y) A
subsumes(type(x), type(y)) )).

Fig. 3.3: Semantics of frame subsumption.

match(framef, frame2) o
slot__!ist(type(frame‘l), list1) A
slot_list(type(frame2), list2) A :
vX (X e list1 A has_value(frame, X, V) >3y (y elist2 A
name(x)=name(y} A has_value(frame2, Y, I) A match(v, r) )).

match(elt1, elt2) o
elt1 = elt2.

Fig. 3.4: Semantics of frame matching.
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(Matching is an asymmetric relation: a less specific description matches a more specific
description, but not vice versa.) Note, however, that matching frame objects do not need
to be instances of subsuming frame types. In particular, frame objects with no slots filled
always match, no matter from where in the subsumption hierarchy their types were drawn.
What can be said about the corresponding frame types is that they have a greatest lower
bound (GLB: this is assured by the method of construction of the hierarchy) and that the
frame objects match ar the GLB: in other words, that a description based on the GLB type
is guaranteed compatible with the descriptions represented by the two frame objects.

Both the properties of elementary data objects noted above are violated for frame
objects. First, a frame instance is always identified as to its type. Thus, it is possible to
have two frame instances which have the same slot values, but where one type (and thus,
one instance) is weaker than, stronger than, or even incommensurate with the other.
Second, separate frame instances are separate computational objects. While two frame
instances may be equal they are never the same. Of course, two different frames may
both model the same entity. Indeed, the entire process of retrieving on frames is based on
being able to interpret whether it is possible for two frame instances to-describe the same
individual. This is exactly what is performed in matching: a test for matching frames
establishes the consistency of the two descriptions represented. Consistent descriptions
can then be synthesized (into a new frame object of the type at which they match) or
compared for similarity as required.

3.2.3. Relations

The top level of knowledge representation in CODER is provided by the domain of
logical relations. Relations model propositions over objects: synonymy is a relation
between terms; representing, a relation between a sentence and the meaning structure
produced from it by a parser. Propositions can be used to model attributes of entities that
are not paradigmatic of their type, or to model relationships among entities. Relations may
have any number of arguments, and may include weights, but always either obtain or do
not obtain: unlike frames, they cannot partially apply to an object. The CODER system
provides facilities for definition and use of relations, including specification of the types
that may occur for each argument, and for maintaining knowledge of the attributes of
relations, for instance whether or not'a given relation fs Symmetric, transitive, and so-forth.
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The relation types known to the System can be used in representing general knowledge
within the local knowledge bases of the System experts; skeletal propositions are typically
used to query the external knowledge bases. Ground instances of logical relations,
however -- those containing neither variables nor meta-terms -- are.said to be facts,

Facts are the basis for complex knowledge structures. It is possible, first, to build
relational structures nested to arbitrary depths. These can be used to represent situations
or concepts, but can be tested neither for equality nor for matching. Unlike frames,
relational structures have no orientation, so they must instead be compared for
isomorphism, a computationally expensive process. While the expense can be alleviated
by first comparing the objects on which the structures are built, it is still desirable to.avoid
deep nesting. The hypotheses used to communicate among experts are also built from
facts, each combined with a confidence level, the name of the expert proposing it, and its
dependencies on other hypotheses. Finally, facts can be combined into interpretations, as
when a document is interpreted as being an electronic mail message or a report of
event. Interpretations are said to be consistent Just in case an entity can be found for
which all the facts in the Interpretation are true. An entity may have more than one
consistent interpretation, but an entity without an interpretation is one of which the system
has no knowledge.

Canonically, these three domains are used to represent knowledge -of attributes,
individuals, and facts about individuals, respectively. The formalism can, however, be
adapted to other purposes, such as the representation of meaning by semantic nets.
Relations can be used to model a wealth of associative schemes, including J. F. Sowa's
“conceptual graphs” [SOWA 84], and frames, of course, can be used to model such
specialized entities as case structures and Conceptual Dependencies. Elementary data
objects provide both the power of abstract data typing and a primitivé method of operation
inheritance. Moreover, note that classical database tuples can be considered to be ground
instances of relations that may not have relations as their arguments (database relations,
therefore, are sets of CODER relations that obey this restriction and the various normal
forms. This is terminologically confusing, but perhaps apt). The various structures used
in classical retrieval, such as term vectors and p-norms, can also be easily embedded in the
factual representation language. This language thus encompasses most existing Al CL
and IS&R formalisms, and there is good reason to believe that it will continue to be
adequate for any representation formalism that the problem domain requires.
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To summarize, the CODER system is able to represent knowledge thar an individual
exists through creating a new object with (potentially) no attributes. It is able to represent
what the individual is (within the definition of its kind) through associating attributes with
the object, and it is able to represent knowledge about the individual through facts that
make reference to the object, Knowledge about individuals is the only knowledge stored
in the external knowledge bases or passed among experts as hypotheses: to know
something in CODER is to know a fact about a (set of) object(s). Facts and objects are
mutually supportive in the CODER environment, and neither can exist without the other, It
is arguable that this is true in human cognition as well; passant Dr. Wittgenstein above, we
make no such claim here. All that we note is that this knowledge formalism is both
logically sufficient and computationally effective for modeling and communication within
the system.

3.3. Knowledge Structures

Resolving the problems of analyzing documents and matching their representations
to users’ information needs involves both general and factual knowledge. This chapter
concentrates on the factual knowledge, since this is the knowledge that must be most
closely controlled between modules and versions of the system. Specifically, we examine
knowledge of the terms in the language of the documents, knowledge of the meaning
structures built from these terms to describe document content, and knowledge of how
such terms and structures, in the context of the type of document involved, determine
consistent interpretations representing the documents. |

3.3.1. Terms

The words encountered during document analysis are often not the words that one
finds in a dictionary. Words in text {what we shall here call lexical items) may relate to
their corresponding dictionary entries only through a set of transformations including
lexical mappings (such as capitalizﬁtion conventions), morphological mappings (such as
declensions and nominalizations) and other mappings, more difficult to classify, such as
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misspellings and geographical patterns of use. Words in the dictionary, in contrast, occur
as entries with both internal structure and external relationships, such as that between a
word and the words used in defining it.

| Still less are the words encountered in document analysis the terms under which the
document should be indexed. Even given a solution to the problem of identifying which
words in the document are important to, or crucially descriptive of, the document content,
and even given a method of systematically stripping away the syntactic transformations
described above, there remain difficulties in discovering which words are important to the
descriptive process in themselves and which are better clustered together or transformed to
some canonical descriptor. A typical human cataloging system uses both a canonical
thesaurus of subject descriptors and free terms drawn directly from the document at the
discretion of the cataloger. Mapping from the words in the text to a set of content
descriptors for a document 1s a subtle and complex process.

The first step taken in the CODER system to identify the content of document text
involves the transformation of words to terms. A term is an unambignous semantic item
that can be said to be exemplified by the word in text. Terms and lexical items have a
many-to-many relation: the word “will” as in “force of will” maps to the same term as
does “voluntary,” but a different term than “will” as in “last will and testament.” To place
the discussion of terms in some perspective, consider the CODER lexicon.

The CODER lexicon is built primarily out of machine-readable versions of English
dictionaries, and a classical dictionary hierarchy [AMSL 80] has been used to structure the
knowledge derived. Items in a dictionary occur at one of a number of levels (typically
three or four, although the maximum depth of the hierarchy varies from dictionary
publisher to publisher). The topmost level is invariably the level of the entry headword, or
homograph. Separating a word into several entries denotes a deep distinction in meaning,
such as the different meanings of “will” mentioned above. Some dictioharies, such as
Webster's Seventh New C'ollegiaté Dictionary [PETE 82], create separate entries for each
change of syntactic function, separating for instance “will (n.)” (the legal document) from
“will (vb.)” (to leave by a will), The more common practice, and that followed in the
CODER lexicon, is to divide each entry into one or more parts of Speech, which are
themselves separated into definitions and subdefinitions (see Fig. 3.5). Linguistic
knowledge may attach at any point in the hierarchy and is inherited in the standard way by
the subsidiary levels. Inherited knowledge is not impeachable but may be refined, as when
particular definitions in a cluster of verb entries are labeled transifive or intransitive.



HEADWORD LEVEL [“will”, ["will",
usage notes
morpholegical variants
spelling variants
FUNCTIONAL LEVEL [ \ﬂll 1,11 [“will’, [ will", 2, 1]
parts of speech
irregular forms
SENSE LEVYEL [will’, 1,1, 1] ['win", 1, 1, 2] [ will', 2, 1, 3]
definitions -
sample uses
semantic categories
related adjectives
‘compare’s and ‘see-also's
SUBSENSE LEVEL ['wimrr, 2,1, 3, 1]
definitions

sample uses
semantic categories

Fig. 3.9: Hierarchical structure of terms in
the Lexicon, showing knowledge
attaching at each level.
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with the uncontrolled terms in the remainder of the lexicon so that correct descriptors can
be selected even when they are not themselves present in the document. Exemplar
knowledge and pragmatic knowledge (of, for instance, the appropriate contexts for a
controlled term), both of which are available from the Handbook, may also be of benefit in
the cataloging process.

3.3.2. Concepts

More often than not, the knowledge embodied in a section of fext will not be
precisely captured by a set of atomistic terms. In this case, it is necessary to supplement
such a base-level representation with more -complex structures in -order 1o .adequately -
represent the meaning of the text. Such complexity, of course, brings about a
corresponding difficulty in matching the structures to a given statement of a user's
information need. In CODER, we are exploring two major types of possible approach.,

During the parsing of natural language text, terms are discovered, not atomistically,
but in relation to other terms in the text. Thus one obvious type of structure to use is 2
direct mapping of those relations into either a semantic net or case frame model. Following
this path, for example, would allow the system to index a document which referred to
“knowledge representation implementation methods™ with a single noun-group structure,
rather than a set of primitive terms for “knowledge”, “representation” and so forth. Note
here that both Simmons-style semantic networks and J.F. Sowa's ‘conceptual graphs’ can
be embedded in the CODER relation domain, and conceptual dependencies and case
structures [FILL 68] embedded in the frame domain Several experimental comparisons
can thus be made without modifying the over-arching knowledge representation
formalisms.

Alternatively, one can set up a group of prototype models involving concepts that are
likely to occur in the document collection. Part of the task of document cataloging then
involves attempfing to match sections of text to-such prototypes in a mutually constraining
process with the establishment of document type. For instance, in the AlLis¢ -collection -
there are several recurring types of document, including calls for papers, requests for
information, reports on lectures, and so forth. These can be thought of as establishing
expectation-based parsing skeletons in the spirit of Roger Schank's scripts [SCHA 77),
though requiring a different set of primitives. The canonical events in these scripts provide
structures to be matched to the text of any given message: recognition of the structures
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motivates classification of the message to a script, .and triggering of the script creates
expectations of finding additional structures. Although not every message will fit neatly
into such a set of canonical scripts, this approach has considerable promise in that, for
messages that do match the prototypes, it is easy to establish which mearning structures are
relevant to the indexing of the document.

3.3.3. Document Interpretations

Ultimately, the goal of document analysis is to create a set of knowledge structures
to store in the document knowledge base. This knowledge can involve facts of two sorts:
assertions that a given document (part) is of a certain type, and assertions that it is
described by a certain term or meaning structure. Clearly, these two types of facts are
related: a document (part) of one type is more likely to have certain kinds of meaning
structures associated with it than another. Metaknowledge about such relations is
maintained by a document classification expert, which can both identify facts already
established about a document as being consistent with its description,-and suggest -certain
types of facts, usually associated with documents of that type, as things that need to be
established. We will call 2 description of a document as being of a type, together with a
constellation of facts about the document consistent with that description, an interpretation
of the document, and say that the facts subsrantiate and that the document models the
interpretation. '

In the AfList collection, for instance, there are many different types of documents:
announcements of lectures, requests for information, lists of bibliographic references, and
so forth. Each such message type defines a document type (what we will call a “soft
type”), which is represented initially as a frame type including slots appropriate to the
message type. These frame types make a “tangled hierarchy,” where each node can have
both more than one parent and more than one child, that is itself part of the overall frame
subsumption hierarchy. Each document in the collection also has a “hard type” (in this
case, all subtypes of the email message document type) that can be established -at input
time (Fig. 3.6). In addition, each document has content, represented by facts about the
terms and meaning structures that can be derived from the document text. Creating an
interpretation for a document in the colection thus becomes a task -of identifying a
maximally constrained typé in the document hierarchy and a set-of content facts consistent
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with it.

The CODER system pursues this task both bottom-up, analyzing the text :and
structured fields of the document to locate descriptive terms and meaning structures, and
top—down attempting to match the document to one or more prototypical document types,
and to use the metaknowledge associated with those types to identify significant events and
structures within the document. Typically, documents will have more than one
interpretation; at least one based on hard type, and possibly one or more based on soft
types. Only those .interpreta‘tions that are best substantiated are stored in the document
knowledge base, ensuring that facts are not stored without context. Facts used in more
than one interpretation, of course, are particularly good candidates for descriptors. This
selection process provides a base of document knowledge ‘which, ‘while not consistent
overall, includes a consistent context for any fact it holds.

3.4. An Example

All knowledge that the system holds about documents and users is in the form of
interpretations: sets of consistent facts that model the entity and provide computationally
effective abstractions of its salient characteristics. This knowledge is built up slowly,
during the process of analyzing documents as they are input, and users as they react in
retrieval sessions. In contrast, the system's knowledge of words, contained in an external
knowledge base known as the system lexicon is largely redacted from outside sources
[WOHL 86]. This word knowledge, together with the expertise built into each specialist
expert, forms the core of the system's ability to react intelligently to new documents and
quertes. To understand how this is so, consider this example.

On the occasion of Hitech's victory at the Gateway Open, the message in Fig. 3.7a
was distributed through the Digest. Some time later, let us say that the query in Fig. 3.7b
was presented to the system. Obviously, the information in the document is relévant to the
query, but certain problems for automatic recognition of that fact are immediately
apparent. First, the document contains very few words in common with the geoery. The
query is about a “program” “defeating” an “opponent:” the document about.a “computer”
“winning” against “masters.” Next, the terms used, while clear enough to the human

eader, are lexically ambivalent. “Master” alone has numerous senses. Then again, the
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Date: 6 October 1985 2023-EDT
- From:  Hans Berliner
Addr: Beriner@A.CS.CMU.EDU
Subject: Computer chess: hitech
Header: Games - Hitech Chess Performance.

[Forwarded from the CMU bboard by Laws@SRI-Al]

Hitech won its first tournament, and one with 4 masters in it. it
scored 3 1/2 - 1/2 to tie for first in the Gateway Open held at the
Pittsburgh Chess Club this week-end. However, on tie break we
were awarded first place. En route to this triumph, Hitech beat two
masters and tied with a third. 1t-alsodespatched alesserplayerina
brilliancy worthy of any collection of games. One of the games that
it won from a master was an absolute beauty of positional and
tactical skill. It just outplayed him from a to z. The other two
games were nothing to write home about, but it managed to:score the
necessary points. | believe this is the first time a computer has
won a tournament with more than one master in it.

We will have a show and tell early this week.

Fig.3.7a: A representative message from the AIList
collection.

When did a chess program last defeat a human opponent?

Fig. 3.7b: A representative query.
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jubilant and informal style of the message is likely to lead to parsing problems: what does
it mean to “despatch a lesser player with brilliancy?” Fig. 3.8 points up several more such
problems. ,

The key to cutting through these problems Hes in the word knowledge in the
CODER Iexicon. Robert Amsler has noted [AMSL 80] that word senses fend to cluster:
they fall into short, bushy near-trees, the lower-order levels of which are formed of groups
of words defined in terms of each other, Just such a situation occurs with two groups of
terms in the message, one based on “win” and the other on “game” (see Fig. 3.9). This
clustering serves two purposes: it serves to bring the clustered terms into the foreground
of processing, and it aids in disambiguating words in the text. In the context of the Hitech.
message, there is no difficulty in selected definition #5 “a player of a game, esp. chess or
bridge, who has won a specified number of tournament games” from among the 22
definitions for “master.” Some of the other definitions in the cluster are presented in Fig.
3.10, using the Prolog syntax in which they appear in the lexicon. Based on this
clustering, and on the occurrence of certain terms in the subject headers, a set of
high-confidence terms can be abstracted from the text.

While this process is being -carried -out by experts in word morphology, English
syntax, and the structure of the lexicon, other experts are simultaneously examining the
message header. With the hypothesis that the document is of hard type email message,
the types of the attributes “originator,” “address” and “date/time of origin” can.be nsed to
determine the parsing strategies to be applied fo the corresponding docnment fields: with
the success of those strategies, the hypothesis that that is a correct description is
strengthened. A frame can then be constructed following that description, and an
interpretation formed and stored relatin g that frame to the terms abstracted (Fig. 3.11).

With this much in hand, the message can be retrieved in response to the query in
Fig. 3.7b. The query terms “defeat” and “opponent” are both part of the “win” cluster:
expanding the query during the retrieval process will pick up enough other words in the
cluster to produce a close match with this document. Given more advanced
computational-linguistic techniques, however -- and the ability to build representational
structures from parsed text -- we can hope for something like the interpretation in Fig.
3.12. Here a “soft type™ has been identified for the message, resulting in-at-once a simpler
and more precise representation for the document's information content. Note that the
knowledge representation structures handle this case with the same ease as the less
sophisticated analysis.
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‘masters and tied with a third. It alsol despatched a lesser p\Iag ar ina”

Date: 6 October 1985 2023-EDT

From: Hans Berliner

Addr : Berliner@A .CS.CMU.EDU

Subject: Computer chess: hitech

Header: Games - Hitech Chess Performance.

[Forwarded from the CMU bboard by Laws@SRI “AbLder e
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Fig. 3.8: Some problem areas in the text.
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Date: 6 October 1985 2023-EDT

From: Hans Betliner

Addr: Beriner@A.CS.CMUEDU

Subject: Computer chess: hitech -

Header: Games - Hitech Chess Performance.

[Forwarded from the CMU bboard by Laws@SRI-AL]

Hitech won its first tournament, and one with 4 masters in it. It
scored 3 1/2 - 1/2 to fie for first in the Gateway Open held at the
Pittsburgh Chess Club this week-end. However, on fie break we were
awarded first place. En route to this triumph, Hitech beat fwo
masters and tied with a third. It also despatched a lesser player in
a brilliancy worthy of any collection of games. One of the games that
it won from a master was an absolute beauty of positional and tactical
skill. It just outplayed him from a to z. The other two games were
nothing to write home about, but it managed to score the necessary
points. | believe this is the first time a computer has won a
toumament with more than one master in it.

We will have a show and tell early this week.

Fig. 3.9: Conceptual clustering in the document text. The
game cluster is indicated in outline script; the win
cluster in boldface.
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¢ HEADWORD(['win', 1]).

c_PLURAL(['win', 1], ‘won').

¢_POS(['win', 1, 1], vb).

¢_DEF('wir', 1, 1,1, '(intr.) to achieve first place in a competitiont’, 1).

c_DEF(f'win', 1, 1, 2], '{tr.) to gain or receive {a prize, first place, efc.)ina
competition', 1).

c_DEF{'wir’, 1,1, 5], "to gain victory or triumph in (a batile, argument, etc.)’, 1).

¢_POS{['win', 1, 2], n}.

¢_CATEGORY{['win', 1, 2, 1], 'Informal’).

¢_DEF(['win', 1, 2, 1], 'a success, victory, or triumph'

¢ HEADWORD(['triumph’, 1]}.

c_POS{['triumph’, 1, 1], n).

¢ DEF(['triumph', 1, 1, 1], 'the feeling of exhultation and happiness derived fram.a
victory or major achievement', 1). _

c_DEF({'triumph’, 1, 1, 2], 'the act or condition of being victorious; victory', 1).

¢_ HEADWORD({['beat, 1]).

¢_PLURAL{['beat, 1], 'beat).

¢_POS(['beat, 1, 1], vb}.

¢_DEF(['beat, 1, 1, 11 ], 'to overcome {an opponent) in a contest, batile, etc.’, 1).

¢ HEADWORD(['dispatch’, 1]).
¢_VAR_SPELL{['dispatch’, 1], 'despaich’).
c_POS(['dispatch’, 1, 1], vi).

¢_DEF(['dispatch', 1, 1, 4], 'to murder or execute’, 1).

¢_HEADWORD({['out-, 1]).

c_POS{['out-, 1, 11, prefix).

¢_DEF(['out-, 1, 1, 1 ], 'excelling or surpassing in a particular action’, 1}.
¢_SAMP(['out-, 1, 1, 1], 'outiast).

c_SAMP(['out-', 1, 1, 1 ], "outlive’).

¢ HEADWORD({'play', 1)).

c_POS(['play', 1, 11, vb). -

¢_DEF(['play’, 1, 1, 21, '(tr.) to contend against {an-oppenent) in-a sporter game’, 1).
¢ _SAMP(play', 1, 1, 2], 'Ed played Tony at.chess and lost.").

Fig. 3.10:  Lexical relations relevant to identifying the
conceptual clusters.
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DOC_TYPE: email.msg - INTERPRETS DOC_ND. 2984

Type-spe cific Originator | LN: Berliner FN: Hans

parsing of Address | ID - Berfiner | | ND:{A, CS, CMU,, EDU]
header fields:

Date-of-origin [DY: 6 ||MO.10 ||YR: 1985

Time-of-origin |[HR: 20 | [MN: 23| |s¢{[2n:EBT:

) . Key Terms Confidence
Lexicon-aided Tehess’, 1,1, 1] 10
identification of [*hitech’, 1} 1.0
indexing terms: ' ['master’, 1,1, 5] 0.9

[‘game’, 1, 1, 4] 08
['triumph’, 1, 1, 2] 0.8
['play’, 1,1, 2] 0.8
f'win', 1,1, 2] 0.7
I'win®, 1,1, 5] 0.7
['game’, 1,1, 1] 0.6
['score’, 1,1, 1] 05
['score’, 1,1,2] 05
['computer’, 1,1, 1,1] 0.4

Fig.3.11: Term-based analysis of document.

DOC_TYPE: report_of_svent

Recognition of .
INTERPRETS DOC_NO: 2984

“soft” document

type: Originator { LIN: Berliner FN: Hans

Date-of-origin |[DY: 6 MO: 10 {|YR: 1983
Conceptual Event: _ :
analysis of 2::::-:1:. :?::ch Time: [ 4-6 /10/1985|
text: Object: [hyman chess masters)

Fig. 3.12: Content analysis of text deter-
mines “soft type” of document.
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It should be noted that much more knowledge can properly be stored in the lexicon
than what is shown in Fig. 3.10. Two other dictionaries, the analysis of which is
currently underway as part of the CODER project, promise t0 yield information on “verb
patterns, including common prepositions and particles and the appropriate placement of
modifiers and objects. Domain-specific knowledge can also be added to the lexicon in the
form of semantic relations among the word senses properlto that domain. All of this
knowledge can be represented in terms of facts about words in the language grouped into
interpretations of word senses. These interpretations, together with growing knowledge
bases of interpretations of documents and users, provide the CODER system with the
factual world knowledge needed to intelligently pursue the tasks of information storage and
retrieval.



4. Architecture

Everything should be done as simply as possible, but no simpler,

-- Albert Einstein

There are two problems implicit in realizing a system such as CODER. First, there
is a problem of system decomposition. The preceding chapters (particularly Chapter 2)
give some idea of the complexity of the system, both in terms of the number of knowledge
sources expected and in the amount of world knowledge involved. Second, there is a
problem of system construction. Qver the lifetime of CODER, it will be used for.a number
of different experiments, involving modules and knowlédge bases provided by a number
of different experimentors. If this complexity is not to engulf and destroy the project,
strong organizing principles will be required.

Fortunately, there are several probiem characteristics that provide serendipitous
assistance. First, both the task of document analysis and indexing and the task of
document retrieval can be partitioned into a set of weakly interacting knowledge sources.
Second, the tasks require only shallow plan trees. As will be seen below, a hierarchical
plan space only two levels deep is deemed adequate for the problem. Third, the problem
of information storage and retrieval is intensive, not in hypothetical (rule-based)
knowledge, nor in procedural knowledge, but in factual knowledge -- knowledge about
words, concepts, documents, users and so forth.

These characteristics have motivated our choice of a community of experts model,
where each knowledge source is modeled as a different expert with faculties for low-level
planning, and where global planning is handled by a separate strategist module. These
experts are kept simple by providing non-inferential ‘modules for knowledge representation
and knowledge maintenance which can be separately implemented and optimized.
Knowledge representations are moderated by a set of type managers which provide the
abstract structures necessary for modelling attributes, objects, and logical relations among

61
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objects. Knowledge maintenance functions are provided by specialized external
knowledge bases, which provide storage and quick recall for the © gratuitously complex”
facts of the problem universe. Isolating these collections of specific facts allows expert
design to focus on general knowledge of principles and on the interaction of these
principles with the complexities of the problem universe.

4.1. Functional Description

7 Conceptually, CODER can be thought of as being composed of two overlapping

subsystems: the Analysis Subsystem and the Retrieval Subsystem. Actually, the system
is so constructed that any number of instances of these subsystems can be running at any
given time, but it is useful nonetheless to envision it as being composed of two parts, one
for each of the system's principle tasks of information cataloging and information retrieval.
These two parts are in many ways mirror images of each other: each is modeled as a
community of experts and each makes use of the central "Spine” of knowledge banks and
kmowledge administrators (see Fig. 4.1). Many of the experts perform similar functions in
the two subsystems and use the same bodies of specialized knowledge: what-they do-with
this knowledge, however, and above.all the strategies for comb.inilig the experts' opinions,
can differ radically from subsystem 10 subsystem.

4.1.1. The Analysis Subsystem

The purpose of the Analysis Subsystem is to construct consistent sets of
propositions describing input documents. These propositions can then be stored in a
Document Knowledge Base and eventually used by the Retrieval Subsystem t0 judge the
relevance of a document to a given query. To this end the Analysis Subsystem must
decide both what a document is and what it is about. Processing a document, in other
words, involves classifying it (as, for instance, a journal article or a bibliography)
and cataloging it under appropriate concepts. It is-alsonecessary to-establish structured
daza about the document: its author, date of origin, and so forth. Experts in structured
data recognition and document classification interact with experts in natural language
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parsing, indexing and concept identification to form hypotheses of the most important
features of each document. When hypotheses of sufficient levels of confidence can be
combined into consistent interpretations, they are passed to the Document Knowledge Base
for storage. (Note that while each interpretation is required to be internally consistent,
there is no reason to expect them to be consistent ameng themselves. Different
interpretations may emphasize different aspects of a given document, or may represént
different parses of the same text.) A document may produce one or several interpretations.

4.1.2. The Retrieval Subsystem

The Retrieval Subsystem performs the dual of this process. Based on a query from
a user, the Subsystem develops an abstract representation of her information need .and
searches the cataloging information in the Document Knowledge Base to establish a set of
documents that may satisfy it. To this end, it must marshall expertise in understanding the
user's query, in modelling the user herself, and in navigating the Document Knowledge
Base, It may also call on knowledge of words and concepts to expand the query, or it may
rely on characteristics of document types or structured data (it may, for instance, look for
journal articles with a specific author), or it may use more subtle means, such as
co-citation clustering. Reports of its progress are constantly submitted to the user, either in
the form of documents that may fill her information need or in the form of terms (or
complex structures built of terms) that may better express that need. The relevance of an
entity (document, term, or structure) to the user's information need is the focus of a -dialdg
between the user and the experts in the Retrieval Subsystem that continues until the
information need s satisfied.

4.1.3. The Spine

Central to the system is a set of knowledge bases and type managers that provide
control and bulk storage for the information that is used by both the Analysis and Refrieval
Subsystems. This set of relatively “dumb” modules is called the Spine as a metaphor for
its relationship to the “smarter” experts in the two Subsystem comumunities. There are
several component modules in.the Spine, falling into two broad functional areas: external
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knowledge bases such as the Document Database or the Lexicon, and the system resources
of the Knowledge Administration Module. All these components are equally usable by
both Subsystems, although the amount and type of usage may vary. All the Spine
components also have a privileged interface through which they are accessible to a System
Administrator. Comparéble to-a Database Administrator interface, this interface provides a
deep (and dangerous) level of inspecting and changing functions for knowledge base
verification and maintenance. None of the system modules have access to this level.

The Knowledge Administration Module catalogs and classifies the types of entities
about which the system has knowledge, ensuring consistent representation and use of
knowledge throughout the system. Each of the three levels of the factual knowledge
répresentation formalism (see § 3.2) defines a type manager, which includes knowledge of
and about the types of entities defined at that level. For instance, the elementary data type
manager controls elementary objects such as integers, characters, lists of lists of
characters and so forth, and the knowledge of subsumption relations holding among
them. The frame manager _controls semantically structured frame objects such as
documents, dates, sentences and so forth; it also includes the functions to determine
subsumption relations among frame types and matches among frame objects. The relation
manager handles associative relation types such as synonym -of, described by, and is
author of, and has knowledge of such characteristics of these relations as reflexivity,
transitivity and symmetry. The three domains defined by the current state of these
managers (i.e., what distinctions they can make among 6bjects known to the system)
define the limits of knowledge available to the system.

Commeon storage is provided in the Sp'mé for-detailed knowledge -of each of the
primary types of entities in the system's universe. The Lexicon, for instance, maintains
knowledge about terms in the language. Tt can be conceptually divided into twoparts, onc
of general linguistic knowledge and the other of specialized world knowledge, particular to
the collection of documents employed. Althou gh knowledge from both conceptual halves
may be recalled by a given request, tagging the knowledge in this way promotes portability
by allowing knowledge of general use to bé decoupled from the pragmatibs of a given
document collection and re-used in other applications. Similarly, the Document
Knowledge Base maintains facts about the documents. Attached to the Knowledge Base is
a simple resource manager providing storage and retrieval for raw document text. These
two modules together are referred to as the Document Database. Finally, there is a User
Model Base of facts about individual users. These include reports of occurrences during a
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single session and general statements abont the user, such as the type of information that

among the people implementing it.

We have attacked thig complexity through the use of two organizing constructs.
From object-oriented programming, we have borrowed the paradigm of classes of objects,
and from expert systems, that of the community of experts. Using the principles of
object-oriented programming, we have been able 1o define a few general clagses of objects
-out of which the system can be constructed. The construct of the community of experts

environment [BOBR 831, 48 A0 organizing construct for logic Pprogramming [ZANI 34],
and in the construction of knowledge-based systems [TOKO 84]. Dividing a
knowledge-based System according to sub-domains of specialization also Seems natural.
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solve the task as a whole. In order to address the overall task, the experts ‘must

communicate among each other, and in order to solve it effectively, their efforts must be

coordinated according to some global strategy. The concept of a blackboard [ERMA 80,

HAYE 85] has been used in several CXpert systems to provide communication among -
experts: in CODER we have specialized the blackboard construct to include an active

plarming principle for expert coordination.

Regarding the objects in the system as being instances of classes has several
advantages. First, many modules can be implemented once on a generic level and the
generic module specialized to create individual system objects. Second, even for modules
(such as the individual experts) that must be built md1v1dually, the object-oriented approach
provides an effective way of specifying the external behavior of all the modules in a class.
There are also payoffs in the design phase: thinking of modules in generic terms promotes
a cleaner design, and makes the overall picture easier to understand.

Designing the system as a collection of communicating objects also makes easier two
system goals that could othér_wise be quite sticky. In the real world of limited machines
and programming environments, CODER presents implementation difficulties both in the
number of modules that it comprises and in the amount of knowledge necessary for its
function. Not having a large mainframe to dedicate to the ‘sole purpose of running the
System, we very early made the design dec1s1on to distribute the system.among a. group of
networked machines in the local environment, all of which run UNLIX™ and thus support
Intra-machine communication via the pipe construct and inter-machine communication via
the TCP/IP protocol [LEFF 84]. This decision allows us to place the large external
knowledge bases where there is sufficient storage, the user interfaces where there are
bit-mapped screens, and the inferential modules where there is computational power.
Designing the system as a collection of communicating objects makes it possible to
implement the distribution of the system separately from the system architecture itself,
Each module can be built as a single process-(or, conceivably, set-of: processes) Tunning on
a single machine. Communication with other modules is then handled through abstract
message-passing primitives. All details of the location. of the other modules in the system
and the protocols needed to reach them are hidden within the communication managers that
implement these primitives. At the level of system objects, all the implementor needs to
know are abstract names. _

In addition, the message-object paradigm helps hide language-dependent details.
CODER involves both modules (such as the experts and blackboard strategists) that are by
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their nature inferential and modules (such as the type managers and external knowledge
bases) that have no such commitment. In fact, some portions of the user interfaces are best
written procedurally, in a language with sufficient low-level primitives for bit
manipulation. These conflicting demands have made it desirable to build the system in a
multi-language environment. Inferential modules are being coded in MU-Prolog, a
UNIX-based dialect of Edinburgh Prolog supportin g extended communication and
database operations [NAIS 85]. Procedural modules are being coded in C++, a dialect of
C that supports the class-object paradigm [STRO 85]. Modules with no paradigm
requirement will be prototyped in MU -Prolog and may then be re-implemented in C++ as
required for efficiency. Consistency between languages is maintained at the level of
module-to-module communications, Standardizing the message protocol between objects
and treating the knowledge representations as abstract objects themselves makes it possible
to conceal the language in which a given module is implemented from all the other modules
in the system,

4.3. System Object Classes

Four classes of computational objects make up the basic building blocks of the
CODER system (see Fig. 4.2). Experts capture the knowledge manipulation and inference
aspects of the intelligent behavior the System is designed to exhibit. Each community of
experts is provided with an active blackboard, which provides both 2 central
communication area and an active planning principle for control. Factual knowledge
describing the problem universe is maintained in external knowledge bases. These three
classes of objects correspond to three logical levels in the tasks: a Ievel of methods or
tactics used to solve sub-problems, a strategic level of task planning, and a level of domain
representation [STER 84]. Finally, a class of resource managers structures the interfaces
between the system and its users, Objects of these foor tlasses, together ‘with the
environment provided by the knowledge representation administrators and communication
paradigms, make up the entire system.
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Fig. 4.2: CODER object classes.
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4.3.1. Blackboards

A blackboard is an area for communication between experts (see Fig. 4.3). This
communication takes place through the medium of posting and reading hypotheses in
specialized subject areas. In CODER blackboards, a specialization of this process provides
a means for asking and answering questions, which are contained in their own special area
of the blackboard. The importance of this type of communication was noted convincingly
m [BELK 84]. In addition, the CODER blackboards provide a special area, maintained by
a blackboard management expert called the srrategist, containing a small set of consistent
hypotheses of high certainty. This pending hypothesis area is available for read access by
all experts and thus, indirectly, by the outside world. It provides an instantaneous picture
of the “consensus” of the blackboard; i.e., what the system as a whole hypothesizes about
the problem under consideration at any moment.

An hypothesis is represented by a five-tuple: the fact hypothesized, the expert
hypothesizing it, the confidence that the expert-has in it,-a.unique identifier. for the
hypbthcsis (used in subsequent references to it), -and its dependencies on other
hypotheses. This additional information, besides providing motivating information for the
distillation of the set of pending hypotheses, allows truth-maintenance functions [DOYL.

77, DOYL, 80] to be performed. within. the. blackboard subject areas. “If an-expert -

withdraws an hypothesis, for instance, or radically changes the confidence level with
which it proposes it, this information makes it possible to schedule reconsideration of the
hypotheses depending on it. '

Monitoring the blackboard for this sort of event is one function of the blackboard
strategist. Since the rules governing truth maintenance are independent of the particular
predicates involved in the facts hypothesized, this function is independent of the
application task of the blackboard community. The strategist also monitors the blackboard
for task-specific events and conditions that trigger new processing. These two categories
of function are kept separate in the strategist, so that the truth maintenance function can be
transported to other tasks. Nonetheless, they have both been designed as rule interpreters:
neither the strategies involved in truth maintenance nor those involved in -analysis -or
retrieval are yet well-understood. Consigning these strategies to a rule base allows them to
be changed easily without the entire blackboard needing to be re-implemented [AIKI 80,
RYCH 84].

The final component of the strategist is a scheduler for the tasks identified by the
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other two components. Acting on rules of its own that relate static concerns of how many
experts of what type should be active at the same time on which machines to the mix of
tasks scheduled by the truth-maintenance and task-oriented ‘components, the schedoler
issues commands to the experts in the hlackboard community. The scheduler may call for
an expert to perform a specific task or to attend to the current state of 2 given area of the
blackboard, or it may simply call for it to awaken and attempt all the tasks it knows. This
allows different groups of experts to be active at different phases in the community task,
but allows experts outside the currently active group to be called up to answer a question or
to reconsider an hypothesis.

4.3.2. Experts

An expert is, conceptually, a specialist in a certain restricted domain pertinent to the
task at hand. Experts are designed to be implemented in relative isolation from .one
another: no expert has knowledge of the other experts in the community, and all experts
communicate with the community strictly through the construct of the blackboard.
‘Isolation,” of course, is a relative term here. Part of the specification of an individual
expert is the set of predicates that it may view in a blackboard area and the (possibly
overlapping) set of predicates that it may post back. Obviously, there must be agreement
among the expert implementors on the structure and bounds of those predicates if the
experts are to work together. What each expert does with those 'predicatcs, however, and
what internal knowledge and processes it uses to produce new hypotheses, are left to the
implementor of the individual expert. Each expert can therefore be built in the way that
best takes advantage of the characteristics of its particular domain of expertise.

An expert has only two requirements for its operation: it should be
knowledge-driven, and it must recognize the appropriate commands from the strategist
scheduler. The first is philosophical in nature: it is part of the CODER design that the
complexities of the system tasks be realized in the knowledge required for their execution,
rather than the process of execution itself, In the case of experts, this implies that expertise
be represented as explicit knowledge, separate from whatever en gine manipulates it. The
knowledge in the expert, moreover, s constrained by system design to be general
knowledge: either rules for finding and manipulating factual knowledge in one of the
external knowledge bases, or facts that can be applied to classes of objects in the problem
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universe. The second requirement is pragmatic: for the strategist to schedule their activity
properly, experts must go through a canonical cycle of operations.

Assigning an expert to a small area-of specialization and -decoupling it from the
remainder of the system has several advantages. First, the development of the expert is
separated from that of the surrounding system. Interaction problems, normally a plague-of
artificial intelligence systems, are thereby kept to 2 minimum. In addition, the experts are
kept small, so problems of rule interaction within the expert are minimized. Tasks which
are found to require too much complexity can be further subdivided along the lines of the
areas of expertise required to solve them, until they are reduced to manageable size.

The canonical expert consists of a communications interface, a local knowledge
base, and an inference engine (Fig. 4.4). The interface provides for communication with
the blackboard and with an optional external knowledge source, such as a resource
manager or external knowledge base. The local knowledge base contains the particular
expertise necessary for the proper execution of the expert's tasks; the inference engine is
chosen to best execute those tasks. Possible engines include both forward-chaining and
backward-chaining rule interpreters, frame-based classification engines, and
pattern-matching engines. These generics would then be associated with different rule
bases, classification trees, and similarity measures, respectively, to produce specialized
experts in a variety of disciplines. Recent research supports the view that it is possible to
build engines that cover a broad range of problems wiﬂloilt.faﬂing into the corputational
trap of general inference. Examples include the structure-and-function engines pioneered
by Randall Davis [DAVI 82] and the heuristic classification engine designed by William

Clancey [CLAN 84, CLAN B85]. Other experts may not use inference per se, but may
mterpret knowledge written in a procedure representation language such as advocated by
[ERMA 84] or [MILL 86]. Itis, in fact, entirely possible that some experts, such as the
morphology expert, may be written entirely in a procedural langoage soch as C+. This
approach, however, is discouraged, -as the semantics .of knowledge in these languages is
difficult or impossible to separate from the semantics of its interpertation.

-4.3.3. External Knowledge Bases

An external knowledge base (or "fact base") is an object for storage and retrieval of
factual world knowledge (see Fig. 4.5). The Document Knowledge Base, the Lexicon,
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and the User Model Base are all specializations of this class: others can be created as
needed during the development of the system. Each maintains knowledge about a
particular class of objects in the form of specific statements of fact. This is in direct
contrast to the internal knowledge bases of the specialist experts, which are composed of
high-level knowledge and meta-knowledge.

Formally, propositions entered into a fact base are requn‘ed to be ground instances of
logical relations known to the system; that is, to involve neither unbound variables nor
meta-terms. These propositions are added to an external knowledge base as single
statements, but may be retrieved in either of two ways. The knowledge base may be
quericd with a skeletal fact, that is, a fact containing one or more variables, and will return
the set of all facts in the knowledge base that match the skeleton. Alternately, the
knowledge base may be queried with an object (either an elementary term, a frame, or a
relation) and will return the set-of all facts involving that object. (Note bere that, smce
facts are simply instances of logical relations, querying with a skeletal fact is a special case
of querying with a skeletal relation. Restricting the search for matching relations to those
that occur as the head of the fact is, however, sometimes advantageous.) In addition, an
external knowledge base can be called with a frame object to find frames referenced in the
base that match the frame. Finally, a knowledge base may be queried about the number of
facts that match an object-or a skeletal fact: this information-can be used by the-querying -
entity for statistical purposes, or simply to avoid receiving excessively large sets of facts.

All knowledge in an external knowledge base is associated (explicitly or implicitly)
with the source of the fact and with the date, time, and session of its entry into the
knowledge base. Knowledge can be entered by individual modules during system
operation, in which case each fact is individually and explicifly stamped, -or it may be
entered by the System Administrator, in which case the information is implicit in the names
of the fact predicates entered. This information, available to the System Administrator
only, allows suspect facts to be traced and updated. A function is provided to the System
Administrator to delete facts from the knowledge base and to add facts en masse from
sources external to the system; in addition, the System Administrator has access to all of
the functions described above.
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4.3.4. User Interfaces

There are three points at which users interact with the CODER system. The System
Administrator interacts directly with the Spine to define new types of knowledge to the
system and to fine-tune the system knowledge bases. Thisis a classical, command-driven
terface: the Administrator is assumed to be sufficiently sophisticated to mteract directly
with the modules being managing. The other two interfaces (one for document entry
sessions and one for document retrieval sessions) are more complex, since the entities
communicating are more complex. On one side, the users are expected to be less
sophisticated and have less precise formulations of their tasks. On the other, the interfaces
relate the users not to functionally discrete modules, but to the blackboard-moderated
communities accomplishing these tasks. The interactions moderated by these interfaces are
less sequences of commands and command executions than dialogues seeking consensus
on the nature of the task to be executed.

The interfaces for the Analysis and Retrieval Subsystems thus require a large amount
of built-in expertise. They also, of course, require a large amount of good old-fashioned
device management and presentation ability, this last somewhat complicated by the desi en
decision to distribute CODER over several computer systems, and the unfortunate reality
that these systems make use of different interface devices. These two requirements inform
the architecture adopted. |

Basically, the user interface to 2 CODER blackboard community consists of an
Interface Manager and a set of translation experts (see Fig. 4.6). The Interface Manager is
a hardware-specific module that maps logical display areas to and from physical
representations such as windows, screens or voices. Translation .eprr.ts moderate
- between these logical areas and the local -blackboard. The Retrieval Subsystem user
interface, for Instance, consists of an Interface Manager together with three ‘translation
€Xperts, one transiating the internal representations of the Pending Hypothesis Area into
representations comprehensible to humans and the other two monitoring the user's actions
and translating them to hypotheses posted to the blackboard.

This architecture leaves a great deal of room for experimentation. Different styles of
query input can be investigated, for instance, ranging from Boolean o extended Boolean to
term-vector to natural language. In each case, only the query understanding expert need be
changcd; the other experts and the Interface Manager are unaffected. Similarly, the range
and subtlety of user monitoring can be changed without effecting any module except the
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responsible expert. Finally, the system can be adapted to an electronic mail front-end by a
local adaption of the Interface Manager, in which case the dialog becomes very slow, bat
the operation of the remainder of the system does not change. The Analysis Subsystem
Interface is structured in a similar way, with display areas for document text, unknown or
suspect words discovered, and interpretations formed. Wherever possible, the interfaces
are structured for the ease of the user. CODER is, after all, designed to be an experimental
system. Sophisticated user interfaces are thus required to provide as much information as
possible during incremental development, and to keep data collection on system versions,
if not a pleasant, at least not an excessively painful process.

4.4. Engineering Considerations

Faced with the problem of providing hardware support for artificial intelligence,
Daniel Hillis has argued for the use of fine-grained concurrency [HILL 85]. Such
concurrency, however, reflects a model of an Al system as a single functional block, with
the knowledge required for its mtelligent operation distributed relatively evenly throughout.
In contrast, the CODER system is made up of relatively few, functionally discrete
modules, each specialized both by the type of functionality it provides to the system as a
whole and by the problem area in which it has knowledge. This model has encouraged us
to implement based on a coarse-grained concurrency, where each fun-ctibnal ‘module 15
resident on a single virtual machine, and the system is distributed across a few physical
machines, éach typically providing support for a few functional modules. |

This cozirse—grained model has the advantage of conceptual simplicity. Each module
can be conceived of as a single process (or set of processes) executing in isolation on a
single machine. The process is begun when the module receives a message and is (at least
conceptually) allowed to run to completion without any required synchronization with
- processes outside the module. Similar models of concurrency have been proposed by
Bernard Witt [WITT 84] and James ‘Gray {GRAY 86]: both advocate the model as
efficient in machine use and easily comprehensible to humans.
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4.4.1. Communication Model

Communication among modules occurs as 2 variant of the client / server
relationship. Each class of system modules is defined 1o Tespond to cerfain callg by
performing certain tasks. During the execution of a task a module may, of course, request

Tesource managers, and the passive principle of the blackboard -- are considered atomic
transactions. They are queued, executed serially on a first—come-fust—served basis, and are
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may be triggered by events o1 the blackboard, by-experts completing their assigned tasks,
or by the passage of time. Control, however, returns t0 the strategist immediately upon
awakening an expert, and eventually to an expert from a call to & passive module. This
ensures a high degree of concurrency in the system at the level of task-oriented knowledge
manipulation while maintaining a strict control at the level of goal-oriented planning.

4.4.2. Call Model

Inter-module communication in CODER is patterned after rule invocation in Prolog.
When a client module requires service, it executes a predefined ask predicate, passing it
the name of the desired server and one of the external calls defined on the server's module
class. The arguments of the call will either be unbound variables in the source language of
the client module, sentences in the CODER factual repreresentation language, or skeletal
facts. A skeletal fact is a sentence in the factual representation language where CODER
variables have been substituted for one or more of the arguments of some relation,
typically the head relation. These variables are not variables in the source language of
either the client or the server, but particular syntactic forms that can be recognized by both
without invoking, for example, 2 Prolog unifier. Skeletal facts are used in calls to external
knowledge bases, experts and blackboards to refer to a range of acceptable facts. For
instance, a question is posted to the blackboard as a skeletal fact describing what
knowledge the questioning expert needs in order to complete processing.

CODER variables used in external calls are not bound. Variables in the source
language of the client module, however, may be. An execution of the ask predicate in a
Prolog client, for instance, will either fail (if the server cannot accomplish the task
requested) or will return in the fashion of a local Prolog clause, with potentially some of
the Prolog variables used in the call bound to knowledge structures provided by the server.
Likewise, in a C++ client, the knowledge structures built to pass to the server will not be
overwritten, but some local variables may.

Failure of an external call is not typed. Untike the return-code facilities provided by
languages like C, where the value returned by system functions can be coded to describe
the reason for failure, the failure of an external call in CODER, like the failure of 2 clause
in Prolog, is simply failure. This is a weakness of the model, as a client cannot tell on
call failure whether the call was inconsistent with the server's knowledge base, whether it
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was syntactically incorrect, or whether the server simply crashed during execution through
no fault of the client. The CODER module classes have been carefully designed so that
failure of a syntactically correct call to a functioning module can only mean one thing for
each call, and programming conventions for the CODER project attempt to compensate for
this weakness by making good use of the UNIX stderr channel, but the weakness
remains, and will remain in any system modeled on the Prolog call.

External calls differ from ordinary Prolog predicates in that they cannot be
resatisfied. The most natural way to specify the functionality of, for example, the external
knowledge base class in Prolog would be to describe it as returning a single fact on each
call and an additional fact each time control backtracks across the call until either the rule
- calling the knowledge base succeeds or the knowledge base runs out of matching facts.
This model of execution would integrate well with standard Prolog, would place less of a
burden on servers than the current model, and would keep communication overhead down.
Unfortunately, it would require the system to either commit a server to a client until the
client could guarantee that no backtracking would occur (either because the goal containing
the service request had succeeded or because a cut had been passed) or to violate the
principle of atomicity of transactions. The first alternative re-introduces the possibility of
deadlock, as a single rule in z client may include external calls to more than one server; the
second jntroduces pure chaos. If servers had to commit to clients until the client finished
an entire rule, then it would be possible for two experts, each of whom need both the
Lexicon and the blackboard, to each hold one indefinitely while preventing each other (and
the rest of the system) from calling the other. If, on the other hand, servers are freed in
between backtracking calls, then it possible for another client to call the server and change
its state in such a way that the new bindings are inconsistent with the old, that the new call
fails, or, worse, that it never fails, violating the requirement that every system call
terminate. Deadlock is even possible here, too, with two clients flipping the state of a
server back and forth between a state that causes one -and a_state that causes the other to
fail.

To avoid these pitfalls, the ask predicate is built as a function that cannot be
resatisifed, and external calls in the system are specified to always return complete sets-of
possible bindings. Thus, the blackboard retumns all hypotheses in an area, and an external
knowledge base retumns the full set of facts matching the object with which it was called.
This allows every external call to be regarded as an atomic transaction and keeps the
system analytially tractable. As noted above, it does not prevent conceptual deadlock in the
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and resolved.

4.4.3, System Model

wherever they reside (Fig. 4.8). In the Computational environment, use. of

Ianguage-mdependent knowledge Tepresentations and call predicates allows modules to be
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the system Can benefit from many things being done Qnce. At the bottom jeye of the
calling hicrarchy are moduleg whose Purpose ig handling factual 'lmowledge. -Concmrency
is useful at this leve] in that it allowsg fesources that cannot pe duplicated to be shareg
among the clientg that need them,




5. Organizing Principles

At my present rate of working I produce about a thousand digits of
programme a day, so that about sixty workers, working steadily
through fifty years might accomplish the job, if nothing went intg
the wastepaper basket, Some more expeditious method seems
desirable, .

- AM. Tun'ng, on the possibility of AL

developing production-quality expert systems.

5.1 The Principle of Modular.ity
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5.2. Knowledge-Driven Design
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necessary for the experts 1o Communicate “op the knowledge level.” In otherwords, it 15
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Iepresentation langauge pyt We submit ig represented precisely by the get of statements -on
the blackboard at any given time. Finally, note that the language wip also serve to
Tepresent tasks in the Strategists' messages to the cxperts. This is trivially trpe i the cases
where the message is “attempt hypotheses of such-and-sych form” or “consider alj
hypotheses of such-and-such form currently on the blackboard,” but js also.tfrue, with 4
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A language ig called Strongly typed when user-defined computational ohecty in the
languagc must be given g type, and the types of valueg assigned to thoge -objects .are
checked for correspondence with the declaration, an CITOr occurring if the types do not
agree. Strongly typed convénﬁonal languages include Pascal, Ada and (to a lesser extent)’
C: provisions are generally made to allow “user-defineg” types (actually IEStrictions of
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frame frame_name { slot_name: slot_filler }*

0

frame =
elementary jtem *

slot_filler

i (|

75]. Frames in CODER, in contrast, are divided into frame types and frame objects. The
frame types are required to be defined ip terms of other frame types (except for
frame_bottom, the root frame type with no slots) and 1o have new slots specified as to
the permissible types for their fillers, The frame objects are required to be instances of a
recognized frame type, and to agree in all thejr slots with the types declared for that slot in
that frame type. . :

Ina groundbreaking study [BRAC 84], Brachman and Levesque showed that small
changes in a frame-based language can make large differcnces in the tractability of decision
problems for sentences in the language. In particular, they considered the problem of
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determined in O(log m) time, where m is the number of frame types in the system. The
problem in the CODER system that corresponds most closely in terms of computational
difficulty to Brachman and Levesque's, is frame matching among the knowledge objects in
the external knowledge bases.

_ In a knowledge base including » frame objects, some may Occur as slat fillers for
others, but all are in the final analysis grounded in elementary data objects. This is a
consequence of the requirements on facts -- that they be finite, grounded instances of
relations -- and assures us that, while the matching operation is defined recursively, the
recursion must terminate. In the worst case, it is possible that the recursion may run
through every frame in the knowledge base (in the worst case, through every slot of every
frame in the knowledge base) and thus will add a factor of O(n) to the complexity of frame
matching. Actually, the recursion factor will be O(kn) where k is the maximum number of
slots per frame in the knowledge base, but we will assume here and in the remainder-of
this analysis thatk « n. We are guaranteed, howevér, that the recursion will end, so that it
is sufficient to consider what must be done at a single step. We will also assume that any
two elementary data objects can be compared in O(1) time. This is not strictly accurate, as
elementary objects may include lists and sets, but again, we expect that the complexity of
comparing these sets and lists will be trivial compared to the number of frame objects in the
knowledge base. We will consider two cases: the untyped case, where any frame may
have any slot attached to it, and that slot may take any value, and the typed case, where
each frame object is identiﬁe'c_l_ by type and each frame type constrains the slot signature of
the object. In both cases, ,‘we will consider the basic matching operation to be this: a frame
object is provided to the knowledge base and the knowliedge base must find all frame
objects that match it. “This is the function frames_matching provided by the definition
of a CODER external knodge base; note that it is also an-operation that must be performed
in the facts_with_frame, facts_with_rel and facts_matching functions, the latter
two in the case where a frame object is provided as part of the skeletal relation or fact.

In the untyped case, the incoming frame must be matched against all frames in the
knowledge base. We can speed this up by assigning -each slot name in the entire
knowledge base a unique identifier and lexically ordering the slots in each frame
description. Then for each slot in the incoming frame we can get a.set of the frames with
the same slot (though not necessarily the same slot filler) in O(1) time. Let us assume that
the frames are lexically ordered as well; we are still left with the task-of finding the frames
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that have (at least) all the slots in the incoming frames, which requires the union of k
(ordered) sets. Comparing the slot values in order to discard non-matching frames is also
an O(n) operation, but this is additive with the complexity of the union operation. Thus
each step of the recursion is of O(n) and the process as a whole is 0m3). _

In the typed case, by contrast, the incoming frame can be constrained to a point on
the frame type lattice. This point, it will be noted, is the type of the frame object only if all
the slots of the object are filled. Rather, the particular combination of filled slots in the
frame object determines a weakest (most general) frame type for the-object, such that all
matching frame types must be stronger than that type. Call this the weakest consistent
description (WCD) of the incoming object, and note that it must be somewhere between the
announced type of the object and frame_bottom. Finding the WCD is an O(log m)
operation, and can be dismissed from our analysis under the wholly reasonable assumption
that m < n. Further, let each frame object in the knowledge base be indexed under its
WCD, and let the WCDs be ordered as we ordered the slot names above, so that all frame
objects with a given WCD can be found in O(1) time. Now, by the characteristics of the
lattice, the types of the WCDs stronger than the incoming object, and thus the sets of all
frame objects with those WCDs, can be found in O(log m) time. And unlike the sets of
untyped frames with a given slot, these sets are disjoint. No union need be taken, so the
comparison time dominates. In the worst case the incoming frame matches all the frames
in the knowledge base and n comparisons must be made, but if we assume that the
classification hierarchy has been well engineered and that the distribution of frame objects
matches that of frame types, then there will only be O(log n) objects to check, and the
overall time complexity will be O(n log n).

The relation level of the FRL is also typed, but similar gains in performance are not
expected here. Relations, after all, lack the orientation of frames, which is what makes it
possible to use typing to exclude large parts of the frame type hierarchy or knowledge
base. Some computation can, of course, be saved by constraining relation operations by
type signature, but unless each relation has a unique signature -- and this is unconscionably
constricting to the knowledge engineer -- this can only help by allowing the algorithm to
discard possible solutions earlier than it otherwise might. The gains in error-checking and
project control, however, still oceur.

There is reason to ask whether strong typing should be used only as a-development
tool, or whether it also has a place in a finished product. This is the issue underlying, for
instance, whether or not run-time type checking is a worthwhile feature of a language
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environment. In a system that will always be, in some sense, interpreted, the issue of
Tun-time versus compile-time type checking is less important than the issue of life-cycle
phase: a system based on inference will always be covering new ground at run-time, so
any diagnostics appropriate during compilation are still ‘appropriatein the run, 1t is less
clear that type checking should be enforced at all in a product that is “out the door.” In a
general expert systems development environment, one might reas onably expect to be able
to turn type-checking on and off. CODER, however, is an experimental system. While it
is true that there will be times, mostly during benchmarking experiments ‘and System
evaluations, where the system will be run without change, most-of its lifetime it is expected
to be under either development or modification, Thus where strong typing has been
adopted in the system, it has been adopted indefeasibly.

5.4. Levels of Problem Solving

In the last section bﬁt one (8§ 5.2), we discussed two dimensions in which the
knowledge required in an expert system such as CODER can be categorized. First, it can
be categorized by type. Hypothetical knowledge is different in type from factual
knowledge, which is in turn different from descriptive knowledge. This is true at both the
knowledge level, where different types -of knowledge require different sets-of -operations
and induce different problem-solving behavior, and at the symbol level, where different
representational structures are required to facilitate the appropriate functionality for the
type. Second, knowledge can be categorizéd by inference. Obviously, not.all types of |
knowledge structures can be wsed with -all forms of -inference, but meither 15 ‘the
correspondence one-to-one. Hypothetical knowledge, for instance, can be nsed to reason
forward from a given situation to its consequences, or backward from the desired
consequences to a situation that could produce them. Descriptive knowledge can be used
to classify an individual as a member of a kind, 'orit can be used to elicit the relevant
features of an individual whose kind is known in advance. These two dimensions provide
Important guides in the engineering of expert systems, as they allow the designer to clarify
what knowledge is important to ‘what task ‘and ‘when 2 task 1s ‘best decomnstructed into
separate subtasks. Yet there is a third dimension of knowledge engineering that has
provided an important organizing principle in the design of CODER.
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When a human discusses how.a given set of problems is to-be solved, he-or she will
often organize the discussion in terms of tactics and strategy. Strategy involves selecting
and ordering the tasks that are to be accomplished in solving a problem (winning a game,
findihg a document); tactics involve how those tasks are to be accomplished. Tactical
knowledge involves reacting to the specifics of the situation in order to accomplish a
specific objective, and is relatively world-driven. Strategy, in turn, is relatively
goal-driven: strategic knowledge is knowledge that informs which tasks are chosen to
accomplish a given goal and how the success of those tasks is evaluated. Leon Sterling,
who originated the phrase “logical levels of problem solving,” adds to these layers of
problem solving knowledge a ground layer of world knowledge [STER 84]. Sterling
suggests that all three levels of knowledge are needed by a problem solving system and
suggests that the different levels be reflected in different representations and inference
capabilities used by each level’ This tripartite division along, so to speak, a dimension of
planning has been adopted in CODER and is reflected in the hierarchical organization of the
three classes of knowledge-based entities in the environment: the strategists, the experts, -

and the external knowledge bases.
Adopting this principle in CODER has had two advantages, one concepinal :and one

- computational. Conceptually, it provides another dimension along which to organize the
knowledge needed by the system to function. It allows us to say “this is strategic
knowledge; it belongs in the strategist” or “this is ‘world knowledge; it belongs m an
external knowledge base.” And by putting these divisions of problem-solving knowledge
in opposition to each other, it helps the system designer clarify the function of the modules
at each level. Itis, for instance, more useful to say “an expert is a cluster of tasks” than to
say “an expert is a specialist in some domain of discourse:” it tells more about both what
knowledge belongs properly to -an expert and what the expert must do withit. On 2
different level, it has been helpful n the tmplementation of the retrieval strategist to contrast
the knowledge proper to the module -- the knowledge rcquiréd for recognizing problem
states and choosing tasks to be performed — with knowledge that properly belonged to

1 Specifically, he suggests that each level use a language that is a metalanguage of the level below, in the
sense that the metalanguage is capable of representing the axiomatisation of and thus in some way
simulating the lower-level language. If followed exactly, this approach would take us into deep waters
indeed, as we would like to use languages with the power of first-order logic even at the tactics level. We
have, however, followed his plan to the extent that the languages of the experts and strategists are built on
top of and have more power than the world representation language.
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experts in the community.

Computationally, separating knowledge into levels has enabled us to specialize
modules in CODER by their functionality. Specifically, those modules which deal with
knowledge at the level of describing the world -- the external knowledge bases and the
(passive) blackboard -- can be fully described using only the factual representation
language and a limited set of operations (including relation isomorphism and frame
matching) defined on statements in that language (see Appendix). Not only do the
modules thus inherit the tractability of these operations, but they have been sufficiently
well defined to be coded in a procedural fashion. This saves us from having to use weak
methods on the vast amount of knowledge that makes up the system's picture of the world.
The subset of facts appropriate to a given situation can be isolated by strong methods, and
then turned over to the more powerful but less efficient inference methods of the experts.

Many experts in CODER will take full advantage of the power of the Prolog prover.
It is expected, for instance, that experts in- document parsing or related term identification
will be written in unrestricted Prolog. Other experts, however, for instance those in

morphological decomposition of words or in certain fypes of query processing, will not

require as much power, and these experts can make use of more computationally efficient

- methods. In addition, CODER gains computational advantages at the tactical level by
limiting the search space of those experts that do require powerful inference mechanisms.
This is accomplished by limiting the knowledge -available to the mechanisms, which-is-in
turn accomplished by preselecting the ‘world knowledge imported for ‘4 task using strong
methods and by limiting the local knowledge base to knowledge of how the task is done.

5.5. The Paradigm of Communicating Objects

In any large programming project, some discipline must be taken to break the project
into modules small enough to be addressed by individual programmers and understood by
others. In CODER, this modularity is achieved in a knowledge-driven fashion along"ﬂre -
three dimensions sketched above. Working in this way has allowed tasks in-document
analysis and retrieval to be isolated and analyzed independently, and a system of some
complexity designed (see Fig. 4.1). To the reader who has followed this far, however,
this apparent compléxity should not mask the essential simplicity of the system. Each
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Type of Knowledge

Mete-facts about frame types
slots, and expected values.
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If-then rules.

How procedures can be
accomplished,

Type of Inference
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Unknown.

Relational
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Metaknowledge about relation
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Hard-coded.

Relation-following — — -
and/or cluster-seeking.

None.

Fig. 5.1: A beginning taxonomy of experts.
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module in CODER is a specialization of one of a limited set of object classes, and most are
instances of either external knowledge bases or experts.

This concept of building a system from objects drawn from a limited number of
classes is derived from the principles of object-oriented programming. Object-oriented
programming, which has had much success both as a tool for system prototyping and
(pethaps because of this) as an artifical intelligence tool, is .a particularly appropriate
paradigm to use in designing an experimental expert system such as CODER. The
* available implementations of the paradigm, however, are computationally insufficient for
the project, as they typically run on a single machine and spend much of their time in
overhead. In addition, they are incompatible with the logic programming paradigm
required by our approach to implementing the experts. (The one possible -exception to this
is the LOOPS environment, which runs on a class of machine neither locally available nor
obviously adequate to the project's needs). The MU-Prolog language and the UNIX™
environment are computationally adequate, permit a multi-processor implementation, and
provide an efficient implementat'ion of the logic-programming approach. It was thus

deemed desirable for the project to graft the relevant features of the object-oriented
paradigm fo the MU-Prolog / UNIX environment, '

~ Three principles are important to the object-oriented paradigm. First, objects are
defined as instances of classes. Second, classes are defined as sets of methods, or
operations that they can perform. Objects inherit these methods from their parent classes.,
Third, objects use these methods in reaction to messages sent them by other objects. Ina
- mature object-oriented programming systems like Smalitalk, the inhéritance of methods can
go several levels deep, and can include both additions and deletions -of methods from
parent classes. CODER does not reach this level of ‘sophistication. In-CODER, there 1s
only one level of classes, and objects inherit all and only the methods of the class to which
they belong.” CODER does, however, use both the class/method system of definition for
system modules (objects) and the message-passing paradigm-of system operation.

The method of defining a system module by its class and a class by its functionulity
have proven very useful in CODER. Initial designs for the system had much the same
overall structure as the final design, in that they included an analysis subsystem, a retreval
subsystem and a spine of knowledge bases. Much of the sophistication of the final design
over those earlier versions has come from a recognition of groups of modules as being
members of the same group and from narrowing the functionality -of those ~groups to those
methods required by all members. Thus the object-oriented paradigm has contributed to
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the design of the system. It is also contributing to the implementation -of the system by
providing a vocabulary for communication among project members. It has been useful in
project control to say “this is an expert; it responds 1o these messages by doing these
_things” or “no, that's an external knowledge base; it can only do those things.” The
framework of classes and methods promotes understanding among the developers by
providing an organizing principle for the system modules.

Restricting the modules to communication by message passing has also been fruitful
in the CODER design, particularly in view -of the concurrency implicit in the system.
Concurrent operation seems to be a natural way to understand blackboard-based systems,
yet it raises issues of atomicity and consistency [ENSO 84]. In CODER, each message to
an object is regarded as a primitive transaction that always terminates with a reply. Thus
an expert, for instance, cannot lock the blackboard for several operations, but must rely on
a sequence of messages to accomplish its-ends. And by modifying the message passing
paradigm to always include a reply, we have been able to structure the communication
primitive of the system in a way that mimics the proving of a Prolog subgoal :(see §4.4).
This means that the flow of execution of a Prolog module is (conceptually) uninterrupted
by inter-module communication, allowing us to treat calls to-external modules in the same
way as references to the internal knowledge base and to maintain a natural sharing .of
knowledge between modules without the difficulties of inferential interaction.

5.6. Further Research

"The CODER environment is built from a set of communicating modules drawn from |
a restricted set of functionally defined classes of computational objects and set in a
three-dimensional hierarchical structure defined by the type of knowledge each module
uses, the Way in which it uses it, and the logical level at which the knowledge occurs in a
description of the overall system task, The factual representation language, the lingua
Jranca of CODER, includes facilities for representing two different types of knowledge
(descriptive and factual) that together structure the ground level of representation for
knowledge about the world. This is a reasonable start, since it assures us that the modules
of the CODER system will be able to communicate among each other and to store and
retrieve the knowledge which they are able to extract about documents, terms.and users in



101

the problem universe. There are several directions, however, in which the treatment of
knowledge in the CODER environment could be strengthened.

First, the representation language itself can be both strengthened and extended. The
typed frames of the langunage are both flexible and computationally fractable, Relations
sacrifice tractability for a greater representational power, yet much of the power is not used
most of the time. Specifically, there is a middle ground involving what we have here
called facts: finite relations involving only ground terms. Can these be specified in such a
way as to be more tractable then general relational structures? How tractable? Two
approaches seem possible here. One is to limit what counts as a fact syntactically. :One
might, for instance, limit facts from relations to functions from domains of either names or
partial descriptions of individuals. An alternative approach, which if successful could be
applied simultaneously with any worthwhile syntactic refinements, would be to limit the
functionality of facts: to specify a set of tractable operations and let those be all that could
be done directly with them. This might require specifying different classes of facts and
defining a different functionality for each class, possibly in consort with different
inference processes appropriate to the classes. To do this, however, one would somehow
need to demonstrate that the (sets of) operations were sufficient for, at least, creating and
maintaining all necessary knowledge about the world.

An important extension to the knowledge representation language would be-a-good
formalism for production rules constructed-on top of the-existing formalism. This was not
seen as an important precursor for the CODER project becanse of the ease with which
MYCIN-like production rules can be set up in a Prolog environment [LITT 84]. Our
design decision for CODER was to allow each expert to be crafted separately,
concentrating on maintaining consistency only at the level at which the experts interact. A
unified representation for hypothetical knowledge, however, would allow a wider
programming community to work on system production, particularly if generic inference
engines were provided that could be parameterized to the individual expert tasks. A more
challenging extension would be to add some sort of reflective procedural representation
that could be used in reasoning about which sort of task steps were appropriate In a given
situation. Both these extensions should to as great an extent as possible be built on top of
the factual representation language. If needed, the syntax and semantics 'of'the FRL should
be modified accordingly so that statements in the FRL could continue to serve as the
primitives in the task-level languages.

Concurrently with this work, the concept of generic inference engines should be
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explored more fully. A great deal has been written in the AI literature about inference,

what can be done and what would be nice to have done, but most is in the form of

conjecture. There has been a smaller amount of research (e:g., fTCLAN 83)) -on what sort

' of inference is actually used in functional expert systems. In this work, we have suggested
three types of inference engine -- classificational, hypothetical, and procedural - that we
have found to be essential in the CODER project; Randall Davis and B, Chandrasekaran,
working in different application ‘areas, have identified different needs. Further work
should concentrate, first on collecting a reasonable set of such engines, second on
providing (preferably functionally).a clear.and concrete semantics for their operation, and
third on implementing them within the community-of-experts model. This is a Targe job
but one which, in conjunction with the design of a unified knowledge representation
language, would liberate CODER experimenters and expert systems builders in general to
focus on the knowledge engineering tasks of the system.

The need for generic, parameterized modules is easiest to Tecognize among the
experts, but is equally important throughout the system. As detailed in Chapter 4, the
blackboard and external knowledge base classes have been designed as generic modules,
and some steps have already been taken to conmstruct the truth-maintemance and
question-handling segments of the strategist class independently from spectalization of a
strategist to any particular domain (see Appendix). This progress should be continued and
coordinated with the design of a represcntation for procedural knowledge so that the
problem of constructing the domain-dependent segment of the strategist 1s Tedored to
constructing a knowledge base of problem-solving strategies. Since the best form for
representing and manipulating planning knowledge is.as yet unclear, this might involve
providing several alternate tools to the system builder. Stﬂl,. even providing a simple
state-action planner as an inference engine for the domain segment would be preferable to
leaving the low-level construction to system users. _

To return to the subject of knowledge representation, the factual representation
language is currently built on a relatively simple lattice-theoretic account .of types. Further
research should investigate the possibility of relating the work done on the semantics of the
FRL to a more sophisticated theory of types, such as Milner's theory of polymorphism

[MILN 78] or Martin-L6f's intuitionistic approach [TURN 84]. This would allow us,
first, to treat FRL types on a par with the knowledge objects in the environent. Thus we
could express facts about classes of objects directly in the FRL, and store them with other
world knowledge in the external knowledge bases, instead of treating them as special
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metaknowledge kept under privileged access by experts in that class. Possible further
benefits might include a more dynamic type structure, where the type hierarchy could be
modified by the system on the fly instead of being under the sole control of the system
administrator, and a better treatment of defaults and defeasability. Second, .2 more
sophisticated type semantics would make it possible to extend an automatic typing scheme
@ la ML and HOPE throughout the entire environment. Mishra and Reddy have
demonstrated that such a system of type checking, which infers the (Milnerian) type of
cach argument in a function based on use, can be adapted to recursive data structures of the
sort used in the FRL [MISH 85, cf, also MISH 84]. Mycroft and O'Keefe have developed
an experimental type system for Prolog programs [MYCR 84], which differs from
Mishra's work in that it requires explicit type declarations but permits polymorphic typing,
Implicit typing of this sort is extremely attractive in symbolic programming, as it provides
much of the error-recognition capacity of classical strong typing without requiring the
programmer to constrain variables intended to be polymorphic. As a bonus, Mycroft and
OKeefe observe that inference en gines which make use of type information can be more
powerful than those without access to type information: this is consistent with the results
of Christoph Walther [WALT 84a], who showed that problems can be solved using
many-sorted resolution that are beyond the reach of conventional resolution
theorem-provers.

Type-checking of knowledge structures and inference code is only one of a set of
tools that would need to be provided in order to do production-scale engineering of expert
systems. These include the standard range of development tools (syntax checkers,
debuggers, test generators) as well as tools specialized for knowledge acquisition and
knowledge engineering. There are many questions open in the design, -or even the
selection of such tools, before a full Tange ‘will become -available for the knowledge
engineer. In this thesis we have treated only the basics of an expert system production
environment: the languages and computational structures that allow a group of developers
to work together to produce a large-scale knowledge-oriented system. It is our hope that
these basics will prove sufficient to the needs of the CODER project, and it is our hope that
through observation of the CODER project we will become more aware of what the needs
of expert system development truly are. This sort of interplay is essential, however, for
only by marrying the techniques of programming in the large to the high-level tools of
artificial intelligence research will we be able to produce truly expert systems.



6. Summary and Conclusions

The CODER project is a multi-year, multi- -person project to apply the techniques of
inference- and knowledge-based programming to the problems of information storage and
retrieval. The emphasis in the prOJect is on experimentation. Of research interest are both
the techniques that may be helpful to the system tasks and comparisons between different
combinations of those techniques and between CODER itself and more classical
information retrieval implementations. This need for the System to be reconfigured, .as
well as the multi-person nature of its development and use, motivates -2 substantial amount
of control over the system development environment.

The work described in this thesis has been a design for the CODER project that both
ensures such an environment and provides a framework for both the problems that the
system has been planned to address and new problems encountered along the way. As
such, there are three points to the work: the knowledge representation language described
in Chapter 3, which provides the grounding for both storage and manipulation of
knowledge in the system, the architecture described in Chapter 4, which provides .a
skeleton within which the system as it is now specified can be built and run, and a set of
principles described in Chapter 5 that have guided the current architecture and can be used
fo extend and adapt it throughout the system lifetime. We begin this chapter with a
discussion of one of the most imporant of these principles, then move from that to describe
the factual representation language, and finally the system architecture.

CODER has been designed to bring three levels of knowledge to ‘bear on the
problems of information storage and retrieval. At the topmost level, strateyic knowledge is
used to tailor the process of document analysis to different types of documents, and the
process of document retrieval to different users. It is one of the project hypotheses that
flexible retrieval strategies will provide better recall and precsion measaurements than can
be achieved by a system with a fixed, algorithmic strategy. In addition, it is hoped that a
knowledge-based strategic principle will be better able to adapt the system's behavior to
individual users. The pertinence of a given document to a given subject varies from user to
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user: by designing into the system the capacity to form and react to user models at the
strategic level, we hope to provide the individual user with information better tailored to his
or her needs.
| The middle Ievel of knowledge designed into CODER is the level of ractical or task
knowledge. This is the ‘how-to’ knowledge needed to-accomplish the tasks selected at the
strategic level. A great deal of such knowledge goes into the task of information refrieval:
knowledge of how to parse sentences, decline words, or recognize bibiographic entries on
the analysis end and of how to elicit a user's needs, recognize concepts and perform
searches on the retrieval end. In order to facilitate the encoding and use of this knowledge,
system design has partitioned it into small clusters determined by which tasks (or sets of
tasks) make use of it, Programming these tasks on the level of knowledge and inference
should allow us to do some tasks better than have been done with conventional information
| storage and retrieval systems, and other tasks that have not even been attempted by such
systems. (Those tasks that can he done well conventionally can still be accomodated in the
system in procedural implementations, due to the separation and clustering of tasks). It is
a project goal to experimentally determine which of these tasks have the greatest impact on
the IS&R process. . .

The ground level of knowledge in CODER is knowledge of the problem universe
itself. On this level are the descriptions of documents, natural language terms and users
that are the raw material with which the system works. Creating knowledge-based
descriptions of these entities, and representing these descriptions in a powerful factual
representation language, allows the system to achieve subtle descriptions invelving such
refinements as document sections and aspects, word senses and subsenses, and classes
and categories of users. It is -another project hypothesis that this subtlety of representation
alone will be beneficial to the process of information storage and retrieval. Knowledge is
more than representation, however, and the functionality inherent in the factual
representation language promotes the creation and retrieval of representations as parts of
consistent, structured interprétations. In addition, this langauge serves as a lingua franca
for the more complex knowledge-based modules in the system, in which they can share
knowledge, hypotheses and questions about the world.

These three levels of knowledge are mirrored architecturally in three different levels
of knowledge-handling constructs. Each class of object in the system has a limited
functionality, determined (in part) by the knowledge level -on which it operates. Classes at
the world knowledge level require only relatively low-powered -operations -of knewledge
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entry, comparison and recall. The functional definition of these classes -- the external
knowledge bases and blackboards - is such that they may be implemented in.a procedural
language if system efficiency requires it. Modules at the task knowledge level, by
contrast, are generally expected to be written declaratively, and to use inference techniques
to solve their tasks. The functional definition of this class of modules -- the experts or
domain specialists -- makes no presuppositions about their inferential power, but does
require that each terminate with certain behavior at the completion of each task. In
addition, development guidelines ensure that the tasks remain short and single-purpose.
Modules at the strategic knowledge level, appropriately enough called straregists, are
required to react to problem states represented in the factual representation language by
scheduling new tasks. It is virtually certain that these modules will use inferential
methods.

The modules at the upper two levels of this classification may use a variety of types
of knowledge representation systems, specialized for a variety of types of inference. The
primitives for any of these systems, however, should be drawn from the factual
repesentation language, as the FRL is the language in which they communicate with the
remainder of the system. Thus the factual representation language comes with a minimum
of its own inferential baggage, but uses a broadly flexible syntax capable of modeling
many other représentation langauges. Statements in the FRL are finite, grounded relations
over frames and elementary data items, where relations correspond roughly to logical
predicates taking relations, frames, and data items as arguments, frames are structured
descriptions with named attributes filled by frames and data items, and elementary data
items are the usual primitives such as integers, atoms and so forth. A statement in the
factual représentation language, a fact, is always a predication that tells something about an
object.

The semantics of the language are defined within a strong type-object distinction and
a lattice-theoretic approach to types. Statements in the language (and the component parts
of those statements) are knowledge objects, each of which is seen as the instantiation of a
particular rype. Frame types and elementary data types form tangled subsumption
hierarchies that are navigated by classification experts to determine, for instance, ‘which
document class best describes an individual document in the process of being indexed or
what definition of a word fits most closely with the evolving parse of a sentence.
Relational structures, such as those occurring among terms in the lexicon, may also be
navigated, based on type information about the algebraic properties of the relations. Frame
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and relation objects further submit to operations of matching and isomorphism,

respectively, which use the type information in the objects to determine their semantic

consistency. Due in part to the typing mechanism, operations on statements in the
“language can be implemented with relative efficiency for their structural classes.

Architecturally, the CODER system can be thought of as two separate subsystems
sharing a central spine of common resources and knowledge. On one hand, the analysis
subsystem 1is responsible for cataloging new documents; on the other, the refrieval
subsystem is responsible for retrieving documents or portions of documents that satisfy a
givén user's information need. Actually, any number of analysis and retrieval sessions
may be running at a given time (see Fig. 4.8). ,

The CODER spine is made up of the central knowledge bases of the system and a set
of type managers that support the knowledge representation structures used throughout the
system for representation of facts in the problem world. The knowledge bases are
comprised of the lexicon, which includes the system’s knowledge about individual words,
the user model base, which includes knowledge about users and classes of users, and the
document database, which handles knowledge about individual documents, Type
managers for frames, relations, and elementary data types support the uniform use of these
representations throughout the system. Associated with the spine is that portion of the
expert community that specializes in manipulating the knowledge available from these
- external knowledge bases and type managers. These satellite experts, like the modules of

~ the spine proper, can be thought of as resources available to any session, either analysis or
refrieval, ongoing at any time, |

Any ongoing session is moderated by an active blackboard. A blackboard [NITH
86] is a repository for communication between experts, usually divided into a2 number of
subject posting areas. In addition to these subject areas, each CODER blackboard includes
a question-and-answer area and a single pending hypothesis area, which are accessible to
all experts in the community. The question-and-answer area provides a structure through
which an expert can request information from the other experts in the community ‘before

-continuing processing; the pendin g hypothesis- area contains 2 consistent set of
high—conﬁdence hypotheses, accessible not only to the-experts in the-community but to the
outside world. CODER blackboards are considered to be active since each is managed by
a strategist, which carries out the main planning and control operations for the session.
The strategist initiates the participation of each expert in the commiunity ‘using a
knowledge-based model of the expert's area of competence. It is also responsible for
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selecting the contents of the pending hypothesis area from the hypotheses proposed by the
community of experts, combining evidence supported by suitable levels of confidence
through a related set of rules.

The analysis subsystem includes a specialized user interface that allows for easy
document enﬁ‘y and on-the-fly correction. With sufficient permission, the user of the
analysis subsystem may also add knowledge to the portion of the lexicon dedicated to
specialized knowledge in the problem domain, for instance-in defining technical terms new
to the system. Coupled to this interface is a blackboard that coordinates the experts
involved in natural language processing and document cataloging. During an analysis
session, the system accepts input documents of various types, arranges for.as-is storage,
and constructs a set of interpretations describing document structure and content. Each -
interpretation is itself a set of facts (ground instances of logical propositions) that can be
stored in the document knowledge base.

The retrieval subsystem uses these facts along with the knowledge about words
stored in the lexicon and a specialized fact base of knowledge about users, to match
documents or portions of documents to a user's information need. The user interface for
the retrieval subsystem is designed to be adaptable to different styles of query presentation,
including Boolean or extended Boolean logic queries and natural language descriptions of
information needs. User behavior is monitored by specialized sranslation experts, and the
resulting feedback can be applied to sharpen the retrieval. The-entire session is-coordinated
by a strategist whose local knowledge base contains a model of the search process relating
user models and search approaches to stages of query refinement,

Communication among modules is restricted to a message primitive modeled on the
Prolog subgoal satisfaction paradigm. The UNIX™ socket construct provides a means by
which even modules that service many clients (on one or many machines) can appear to be
- serving a single input stream. Vagaries of individual machines, such as the means for.
implementing this communication policy and the exact interfaces presented to users, are
shielded within resource managers that map invariant abstract operations into code that can
be reimplemented differently as the system is transported to different environments. These
Tesource managers can be written in a lower-level language, such as Co+, provided only
that it has the requisite networking and interprocess communication primitives. The entire
- CODER system, thus, is a set of concurrent modules, executing on -one or several
machines, and connected together using the socket construct and the TCP/IP protocol.
Some of these modules are procedural, some rule-based, and some coupled tightly to large
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databases, but all use a common interface paradigm, and all use a unified representation of
the knowledge that the system applies to the task of information storage and retrieval.
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Blackboard / Strategist Complex:

Functional Specification

There are five functional modules within the blackboard/strategist composite. In the
blackboard proper, the posting area manager maintains the integrity of the posting
arcas while responding to the external post, retract, and view commands. The other four
functional modules are considered parts of the strategist. The logic task scheduler is
responsible for scheduling new tasks necessary to maintain the validity of the hypotheses
on the blackboard, while the domain task scheduler schedules new tasks based on
domain-specific blackboard events. The question / answer handler uses
domain-specific knowledge of which experts -are able to answer what questions to schedule
the tasks involved in the question/answer process. Proposed tasks from these three
sources are picked up by the task -dispatcher and passed fo the experts in the local
community. The external calls wake, attend, and abort actually originate from the
dispatcher, and the done and checkpoint communications from the -experts are received
by it.

0.1. Common Data Structures

Hypothesis -- A 5-tuple
<fact, confidence, expert, id, dependencies>

where:
‘fact’ is a CODER fact, _
‘confidence’ the confidence the expert has in the fact,
‘expert’ the ID of the specialist making the hypothesis,
id' a unique identifier for the hypothesis within the session, and
'dependencies’ is a list [or possibly, a p-norm expression] of id's for the
hypotheses used by the expert in producing the current hypothesis.

When a fact is posted by an expert, 'id' is passed as an unbound variable. A value is
supplied for the variable by the blackboard and returned. All other elements of the tuple
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should be supplied by the posting expert: in the event that the hypothesis depends on no
previous hypotheses, 'dependencies’ may be bound to the empty list [p-norm expression].

Question - An skeletal fact, i.e., a-set-of CODER variables coupled to a fact, one

or more arguments of which are replaced by the variables. Each question is posted to the
| reserved Question area of the blackboard until it accumulates an adequate set of answers,
upon which it is returned to the specialist that originated it. A question has an expert-id,
dependency information and an id of its own, but no confidence.

Answer - A binding list that partially instantiates the question with which it is
associated (ie, a subset of the variables in the question together with CODER knowledge
structures with which they can be replaced) signed, confidence-rated and justified by the
answering expert. (In other words, an answer is exactly like an hypothesis, except that the
fact is replaced by a binding list of variables from the question).

Task -- A 5-tuple
<expert, command, scheduler, priority, time>

where:

expert' is the ID of an expert in the local community,
command’ one of the expert entry points (wake, attend &c.),
scheduler’ either logic', ‘question’ or 'domain’,

'priority’ the priority assigned by the scheduler, and

'time' the date/time when the task was entered.

L]
1
1

1. The Posting Area Manager

All interactions with a posting area of the blackboard, either by the external
community or by the other modules of the blackboard/strategist complex, occur through
the posting area manager. Each area of the blackboard, whether a subject posting area, the
pending hypothesis area, or the question/answer area, can be directly accessed only by the
‘posting area manager. The area manager thus must provide the functionality for all post,
retract, and view commands. In addition, it must notify the two task schedulers when
events occur on the blackboard that may have scheduling repercussions. Specifically,
whenever an hypothesis is posted to a subject area, both task schedulers must be notified;
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logic task scheduler when a hypothesis is retracted or replaced. The exact syntax of these
calls is defined below under the headings for the two schedulers,

Still more specifically, the following lists the activity required by each of the calls to
the posting area manager;

post_hypothesis (Hyp, Area). -- The hypothesis Hyp' is added to the
subject posting area ‘Area’, and its id ig bound o a new identifier. The
hypothesis is time—st_amped, and the logic task scheduler is bassed its

post_question (Quest). -- The question 'Quest' is added to the question
posting area, and the question/answer handler notified.

changes, as no hypotheses can be dependent on answers still in the

retract_answer (Quest_id, Ans_id). -- The answer with 'Ans_id' is
removed from the set of answers to question ‘Quest_id' in the question
posting area,

view_area (Area, Hyp_set). .- Al hypotheses currently in the subject

Posting area 'Area’ ate collected into Hyp_set' and returned.

view_questions (Quest_set), - Ajj hypotheses currently in the question
posting area are collected into 'Quest_set’ and returned,

view_answers (Quest_id, Ans_set). -- The current set of answers for
 question Quest_id™is returned ag ‘Ans_set',

view_pending (Hyp_set). -- The current set of hypotheses in the pending
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hypothesis area is returned .as Hyp_set'.

All of the calls provided in the external view of the blackboard are available to the strategist
scheduling modules. In addition, the posting area manager provides-certain further calls to
the strategist modules only. These are:

post_pending (Hyp). -- The hypothesis 'Hyp' is added to the pending
hypothesis area, and its id is bound to a new identifier. The hypothesis i8
time-stamped, and the logic task scheduler is passed its dependency
information. If 'Hyp' involves a fact already posted to the area, then the
earlier hypothesis is removed from the posting area, and the logic task
scheduler 1s notified of this as well.

retract_pending (Hyp_id). -- The hypothesis Hyp_id' is removed from the
pending hypothesis area, and the logic task scheduler notified.

retract_question {Quest_id, Ans_set). - The question with 'Quest_id" is
removed from the questlon/answer area, and the (possibly empty) set of
answers accumulated up to the time of call returned as 'Ans_set'.

2. The Logic Task Scheduler

It is the responsibility of the logic task scheduler to maintain the consistency of the
deduction trees implicit in the hypotheses on the blackboard under the conditions of
possibly changing premises. The knowledge represented on the blackboard is
non-monotonic: hypotheses may be retracted or replaced at any time. When this vccurs,
the hypotheses dependent on the retracted or replaced fact must sometimes be retracted or
replaced themselves. The logic task scheduler accomplishes this by scheduling
reconsiderations of hypotheses that may be effected: i.e., by scheduling tasks of the form
artempt_hyp (Rel) for the expert hypothesizing the suspect fact.

In order to perform this scheduling, the logic scheduler draws upon dependency
information and maintenance knowledge. The information is received from the posting
area manager, and the knowledge is represented in a rule base relating the stimuli of
retractions and changes of confidence together with the closeness of the dependency, to
responses in terms of task postings at various priorities. For example, one rule might be:
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IF

The confidence level of Hyp A has decreased Amount 1 AND
Hyp_B is dependent on Hyp A with level Amount 2,

Schedule <Expert B, attempt hypthead(Hyp_ B))> with priority of
'~ Base_level*Amount 1*Amount 2

QOther information available for triggering rules includes the age of the hypotheses-and the
number of dependenceis an individual hypothesis has. Note that reconsiderations will
propagate natuarally through the deduction tree above the replaced or retracted hypothesis
as the logic-maintenance tasks result in the suspect hypotheses themselves being changed
or withdrawn. It is the responsibility of the rule base creator to ensure that such
propagation is damped appropriately and does not always result in every hypothesis in the
tree being reconsidered. ' .

The logic task scheduler reacts only to the operations of the posting area manager, to
which it provides the following calls:

new_dependencies (Hyp_id, Rel, Dependencies). -- Hypothesis
'Hyp_id' has just been posted It has head-relation 'Rel' and is
dependent on the hypotheses in 'Dependencies’. This call should initiate
no scheduling activity, but the information must be logged so that
dependencies can be traced.

hyp_retracted (Hyp_id, Change_in_conf). -- Hypothesis "Hyp_id' has
just been retracted. The dependency graph must be updated, and
reconsiderations may need to be scheduled.

hyp_replaced (Hyp_id, Change_in_conf). -- Hypothesis Hyp_id' has
just been replaced by an hypothesis which differs in confidence by
'Change_in_conf'. Note that 'Change in. conf' may be either positive, if
the new hypothc31s has a higher confidence level than the old, or
negative, if it has less confidence. The dependency graph must be
updated, and reconsiderations may need to be scheduled.

3. The Question/Answer Handler

Of the two application-specific schedulers in the strategist module, the
question/answer handler is the more straightforward. Based on a set of rules associating
each type of question (canonically, each head-relation) in the set of all questions that may
be posed throughout the community with the set of experts possibly able to answer them,
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the question/answer handler reacts to postings of questions by pasting tasks of the form
attend_quest to the task posting area. When answers are posted to questions, the
question/answer handler evaluates them for adequacy based (at least) on the confidence of
the answer and which experts of those capable of answering the question have made an
attemnpt. If the answer set is judged inadequate, new answering tasks are posted;
otherwise, the question is removed with its answer set from the question/answer area and
sent to the originating expert in the form of an answers task.

Answers to questions must be evaluated for adequacy in the context of what other
experts are available to attempt answers. Each type of question may have an expert ora set
of experts that are best fit to answer it, but other experts may need to be called in if the first
attempt to provide an adequate answer fails. An inadequate set of answers might
alternatively cause the process of searching for an answer 1o be restarted, if conditions on
the blackboard have changed suffiiently in the meanwhile, or might cause the task that
produced the question to be restarted in hopes that a better formulation of the guestion
might be obtained.

The question/answer handler is thus the only module in the system that makes use of
the retract_guestion entry to the posting area manager. It uses, in additron, the
view_answers and possibly the view_questions entry. In return, it provides the
posting area manager with the triggers:

new_guestion (Quest_id, Rel). -- Question 'Quest_id' with head-relation

Rel' has just been posted. Experts capable of answering questions with
this head-relation should be scheduled. :

new_answer (Quest_id, Ans_id, Conf). -- An answer ('Ans_id") to
question '‘Quest_id' has just been posted with confidence level 'Conf. If
the answer produces (either alone or with previously received answers) an
adequate answer set, the question should be retracted from the
question/answer area and consideration of the answer posted as a task for
the originating expert. Otherwise, other pracessing should be undertaken
to obtain an answer. '

4. The Domain Task Scheduler

The domain task scheduler is responsible for proposing new tasks based on the
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progress of the current session and the mix of hypotheses currently on the blackboard. Jt
is also responsible for selecting the hypotheses to be posted to the pending hypothesis
area, again based on what has happened on the blackboard and what is happening at the
moment. The domain-specific strategies for these two types of actions are represented in a
set of rules, the antecendents of which are combinations ‘of events-within -contexts, and the
consequents of which are expert tasks to be posted -and/or types of hypotheses to be moved
to the pending area. For instance, a rule in the retrieval strategist might run:

IF
An hypothesis establishing the document type has been posted
AND

It has a confidence larger than Min_level AND
(There is no other hypothesis of document type posted OR

The new hypothesis is a refinement of the former pending hypothesis)
THEN

Move hypothesis to pending hypothesis area AND
Schedule <doc_type_expert, attempt_hyp(fill missing_fields)>
with priority of K.

Rules need to be provided in building this local base to-deal with reactions to individual
hypothesis types, to questions and to answers to questions, all in the context of the phases
of the overall task in which the community is engaged. At different phases of the process,
different hypothesis postings may require different actions by a different mix of experts.

The domain task scheduler is informed by the posting area manager whenever a new
hypothesm is posted. This is the primary stimulus for triggering rules:

new_hyp (Hyp_id, Rel). -- Hypothesis Hyp id' with head-relation Rel'
has just been posted

In addition, domain scheduling may be triggered by the task dispatcher, for instance when
the task queue is empty, or when no tasks in the queue have priority greater than some
particular threshhold.

5. The Task Dispatcher

The task dispatcher coordinates the tasks proposed by the three-scheduling units and
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sends the actual commands to the requested experts. It maintains a priority queue of tasks,
which may, however, not necessarily be executed in priority order. As well as by the
priority assigned by the scheduling unit to the task, order is determined by the availability
of resources (experts, for instance, execute tasks serially, so a task for a given-expert may
have to wait until the expert is finished), by the location of system modules (tasks for
modules resident on different machines may be allocated at a different priority levels,
depending on the demands for those machines), and by heuristics balancing how crucial
tasks proposed by the three experts are relative to one another,

The task dispatcher is triggered by two sorts of events. First, it is triggered
whenever a new task is proposed by one of the scheduling units:

new_task (Task). - 'Task' should be added to the gueue. If desirable
according to the above heuristics, it should be dispatched.

Second, the dispatcher is also triggered whenever an executing task is completed:

done (Expert). -- Expert' has completed its current task. Based on the task
mix in the queue and the scheduling heuristics, another task may now be
dispatched.

The task dispatcher maintains a history file of the progress of all the tasks executed
during a session. When each expert signals successful receipt of a task, the dispatcher
notes the time the task has begun in the history file. It notes the time of completion of each
task at the receipt of each done. It uses the information in this file to determine which
experts are running at any point. The file is also used by the domain task expert, and
possibly the question/answer handler.
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Canonical Expert:
Functional Specification

A CODER expert is a specialist in some cohesive domain of discourse capable of
executing a set of tasks within that domain. To do this, it draws upon a local knowledge
base of tactics, world knowledge and metaknowledge for the domain. It also has access to
currently activated blackboards, and may have access as well to an external knowledge
source such as a resource manager or external knowledge base. An expert is invoked by
the strategist of one or another blackboard community to perform a specified subset of its
proper tasks for that community. Successful completion of these tasks will generally
mvolve both reading hypotheses from and posting new hypotheses to the blackboard
associated with the invoking strategist. The hypotheses already on the blackboard at the
time of invocation represent the current state of the problem task; any new inferences that
advance the task are posted to the blackboard as new hypotheses. All state information is
thus maintained on the blackboard, releasing the expert to respond to calls by strategists
managing other sessions, and providing a centralized record of the problem state for the
purposes of planning, history and crash recovery.

Each expert provides an entry point to the task strategists for each task in its
repertoire:

attempt_hyp (Relation). -- Expert begins a processing cycle limited to
attempting to produce hypotheses with the head relation Relation.

“FAILS just in case Relation is not a valid CODER relation or expert has
no tasks in its repertoire producing hypotheses based on Relation.

These tasks are collected into sets of related tasks by the blackboard subject area to which
they relate. All processing relevant to a given blackboard subject area may then be invoked
through the call:

attend to_area (Area). -- Expert is to begin a processing cycle limited to
examining the hypotheses in and posting new hypotheses to the subject
area Area. FAILS if either Area is not a valid area on the local
blackboard or the expert can perform no tasks relevant to the subject area.
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Finally, all the tasks of which the expert is capable can be-invoked at once:

wake. - Expert is to begin an unrestricted processing cycle. All tasks relevant
to the current state of the local blackboard are to be attempted in arbitrary
order. Failure of any one task will not prevent all others in the expert's
repertoire from being attempted. Between each task, the expert is to use
the checkpoint report to inform the strategist of its progress. Only
when every task has been aitempted once is it to report done.

attend_to_quest (Relation). -- Expert begins a processing cycle limited to
attempting to answer questions in the question/answer area ‘with head
relation Relation.

answers (Quest, Ans_set), -- Quest is a question previously posted by the
expert and Ans_set is a set of answers deemed worth acting upon by the
strategist (either a complete set or one with one or more high-confidence
answers). Expert is to begin a processing cycle that completes the task
begun before Quest was posted,

Each of the foregoing entry .poigtspcfging).af.timc,Qf,.proccssing,.byf.ther.exper.t.f The—
- processing may succeed or fail, but the call should be returned to-the calling module gs an
immediate success as soon as the task is recognized as valid. Probessing by the expert
then proceeds independent from the calling strategist. The expert makes use of two
functions to inform the strategist of the progress of its cycle. Both functions are treated as
external calls to the strategist, but involve no unbound variables and will never fail barring
a system catastrophe.

checkpoint (Expert_id, Ckpt_id). -- Expert has reached a previously
identified point in its cycle. For instance, in a full cycle (initiated by a
wake command) there might be checkpoints for compieting atl operations
in the question/answer area and in each subject area to which the expert
had access.

done (Expert_id). -- Expert is done with the task assigned.

Every normal cycle terminates with a done report. In case the expert enfers a
non-teminating process, however, or Jjust in case the processing cycle is no longer needed
for external reasons, a call is provided whereby the strategist can terminate the processing
cycle before it has completed,
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abort. -- Expert is to terminate its curr
processing cycle will begin from the b

ent processing cycle, The next

eginning, without prejudice,
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External Knowledge Bases
("Fact Bases"):
Functional Specification

External knowledge bases provide mechanisms for transparent storage, indexing,
and retrieval of large numbers of facts about individual entities in the CODER problem
universe (whence the nickname "fact bases"). By providing these mechanisms, they shield
the remainder of the system from problems of indexing and database sdpport. Individual
experts in the CODER system are freed to maintain only general knowledge on their
particular area of expertise in their local mle bases, relying on the various fact bases of the
system to store and recall the "gratuitous complexity” of the problem universe. This
distinction is akin to that between necessary and accidental knowledge: the experts
maintain derived knowledge about the general nature of the weorld; the fact bases,
knowledge about the particular composition of the world at the moment.

The facts that the external knowledge bases manage are ground instances of the
CODER logical relation data type. This data type has been designed to parallel the syntax A
of propositions in the Prolog lanaguge, so CODER facts can be mapped directly to Prolog
facts. Specifically, each fact can expressed as a Prolog proposition that includes no
variables. The proposition may have other :propositions nested within it arbitrarily-deeply,
but eventually the tree formed by such propostions will terminate in objects of the other
two CODER data types: frames and elementary data objects. '

A fact base supports a single function for storing new facts

enter (fact, source_id).

and three functions to retrieve facts, one for each data type:
facts_with_rel (skeletal relation, [ fact [ D
facts_with_frame (frame_type, frame_object, [ fact | _D

facts_with_value (data_type, data_object, [ fact| _ .

Specialized functions provide for the-case where the relation being matched is the head-of
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the fact:
facts_matching (skeletal_fact, [ fact| 1)

and the case where it is only required to know what objects in the fact base match a given
frame, rather than what facts are known about the objects: '

frames_matching (frame_typc, frame_object, [ frame_obj| 7).

In addition, three parallel functions are provided which return the number of facts that any
of the primary retrieval functions would refrieve:

num_with_rel (skeletal relation, num).
num_with_frame (frame_type, frame_object, num).
num_with value (data_type, data_object, num).

These allow experts calling the fact manager to guard against unusably large retrieval sets.

0.1 Detailed Description of Functions

enter (fact, source_id). -- Where fact is a ground instance of a CODER
relation, every argument of the fact is a syntactically correct use of a
recognized relation, frame, or elementary data type, and source_id is an
atom specifying the source of the fact, succeeds while undating the local
fact base to include fact. This updating includes time-stamping the fact to
facilitate later knowledge maintenance and analyzing the fact so that later
retrieval can occur on any of its component relations, frames, or
elementary data objects. Fails if and only if fact uses unknown data
types, includes type violations, or is not syntactically correct.

facts_with_rel (skeleton, [ fact | _ D. -- Where skeleton is an instance
of a recognized relation and il the arguments of skeleton -are either
frame objects, elementary data objects, skeletal relations, -or CODER
variables, succeeds while binding the second argument to the list of all
facts in the iocal fact base containing ground instances of relations that can
be unified with skeleton. The order -of -clements in the Jist is
indeterminate, and may (or may not) vary from call to.call, If no facts in



145

the local base contain relations can be unified with skeleton, succeeds
while binding the second argument to the empty list. Fails if and only if
skeleton uses unknown data types, includes type violations, or is not
syntactically correct. _

facts_with_frame (frame type, frame_object, [ fact | _ ]). -- Where

, frame_object is a valid frame object of type frame_type, possibly
with some or all slots unfilled, succeeds while binding the second
argument to a list of all facts in the local fact base that include references
to frames of type frame_type with at least those slots filled with
matching® values. In other words, all facts that reference frames that are
exactly like frame_object and all facts that reference frames that are like
frame_object except that they have additional slots filled, but no facts
that have the same slots filled by non-matching® values, and no facts that
have unfilled slots where frame_object has filled slots. The order of
elements in the list is again indeterminate, and the list may again be
empty, but the function fails if and only if frame_object uses unknown
data types, includes type violations, or is not syntactically correct.

facts_with_value (data_type, data object, { fact 1 _ . -- Where
data_object is a valid elementary -object-of type data_type, succeeds
while binding the second argument to a list (in indeterminate order) of all
facts in the fact base that reference data_object at some degree of
recursion. May succeed while binding the second argument fo the £mpty
list if no such facts are available, but will fail only if data_object is not

- an object of type data_type.

facts_matching (skeletal fact, [ fact | _ 1. - Performs exactly as
facts_with_rel, except that the retrieved facts are constrained to be only
those whose head relations match the head relation of skelefal fact.

frames_matching (frame_type, frame object, [ frame_obj | _ 1). --
Where frame_object is a valid frame object of type frame_type,
possibly with some or all slots unfilled, succeeds while binding the
second argument 1o a list of all frames of type frame_type referenced by
facts in the local fact base that match? frame_object.

num_with_rel (skeleton, num),

num_with_frame (frame_type, frame_object, num).

num_with_value (data_type, data_object, num). Al function exactly
as their corresponding functions above, except that on succeeding they
bind their final arguments to the number of facts that the corresponding
function would provide in its list.

NOTE: None of the retrieval operations succeed if called with their first
arguments unbound or their last argument bound.

T Two elemeﬁtary data objects match if and only if they are equal. A frame A is said to match a frame B if
and only if they are of the same type, the filled slots of A constitute a subset of the filled slots of B, and
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the value of every filled slot of A matches the value of every filled slot of B. Thus the function

facts_with_frame can be alternatively specified by saying that it retrieves all facts containing frames
that match the incoming frame.
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Knowledge Administration Complex:
Functional Specification

1. Elementary Data Type Manager

The elementary data type manager handles identification and coordination of EDT's.
Operations specific to any particular EDT and conversion operations between that type and
other EDT's must be defined at the time of its creation. The EDT manager does nothing to
ensure the completeness of those operations at creation time nor their validity during use.

Elementary data types are provided in the CODER environment primarily as a means
of modeling attributes. They may also be used to model very simple (or very abstract)
objects; other uses are left to the discretion of the CODER module designer. EDT's may
be primitive, in which case they are defined solely by their native operations, -or they may
be constructed from other EDT's by quantification (ie, by use of the constructors
"list_of", "set_of" or "[ordinal]") or by restriction to a subset of the allowed values for the
type. Restricted EDT's inherit the operations of their parent type without change;
quantified EDT's respond to the operators of their quantifiers by returning objects of their
parent type. Thus the two constructors together form a complex but well-behaved.
semi-lattice above each primitive EDT, and we can say that if EDT A is either a
quantification or a restriciton of EDT B then weaker (A, B) holds. EDT's may also be
constructed by juxtaposition, where ‘one typeis followed by another (possibly from a
different lattice altogether). In this case, the constructed EDT is defined to be weaker than
either of its parent types, and responds to the constructor operatians by refurning objects of
thé parent types.

The elementary data type manager provides functions for testing the type of an
object:

is_elt (elt_type name, elt object).
description (elt_type, [[ quantifier, parent_type, restriction] | _ ]).

and for navigation of the type lattices:
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weaker (weaker_type, stronger_type).
supertypes (weaker_type, [stronger type [_D.
Subtypes (stronger_type, [weaker type{ 7).

Functions for creating and manipulating primitive EDTs are part of the definition of each
new primitive. Functions are provided by the EDT manager, however, for creating, taking
apart and manipulating constructed types: for sets:

new_set (set_type, set_object),

is_empty (set_object).

member (element, set_object, remainder_set).

insert (element, set_object, new_set),

equal_sets (set_objectl, set_object2).

union (set_objectl, set_object2, union_set).
intersection (set_objectl, set_object2, intersection_set).
difference (set_objectl, set_object2, difference_set).

for ordinal collections:

new_ordinal (ordinal_type, [elt | _ 1, ordinal object).
is_at index (ordinal_object, index, element).

set_at index (ordinal_object, index, element).
equal_ordinals (ordinal objectl, ordinal_object2).

and for juxtapositions:

new_juxt (juxt_typ'e, [component | _ ], juxt_object).
is_component (juxt_object, parent_type, component).
set_component (juxt_object, parent type, component).
‘equal_juxts (juxt objectl, Juxt_object2).

No operations for lists are provided in the Prolog interface to the EDT manager since lists
are native to Prolog. Note that new_ordinal provides a list-to-ordinal translation
function.
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2. Frame Manager

The frame manager supports all functiong required for the creation and manipulation
of frames. Frames are defined to be typed objects with variable-sized sets of named

value,

As each new frame type is defined to the frame manager, it is automatically fitted
into a tangled subsumption hierarchy of types. The hierarchy is so defined that frame
type A subsumes frame type B just in case any frame that is an instance of type B can also
be regarded as an instance of type A. This classification 1s based solely on the
characteristics that the frame manager controls: the number and types of frame slots.
Defaults are not considered; nor are semantic constraints beyond the bailiwick of the
manager. The hierarchy is “tangled" in that a frame type may have more than one parent,
as well as more than one child,

The frame manager provides operatiomns for testing the type of a:frame vbject and for
creating new objects: '

new_frame (frame_type, frame_object),
is_frame (frame_type, frame_object),

and for comparing ob jects:
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matching frame (frame object], frame_object2).
equal frames (frame_objectl, frame object2).

as well as for testing and manipulating slots:

slot_list (frame_type, [[slot_name, slot_type]l| 1.
set_slot_value (frame_object, slot_name, value).
remove_slot_value (frame_object, slot_name).
has_slot_value (frame_object, slot_name, value).

Operations are also provided for navigating the subsumption hierarchy:

subframe_list (frame type, [ subframe type{ 1.
superframe_list (frame_type, [superframe _type | _b
subsumes (ancestor_frame, descendent_frame).

In addition, there is a suite of functions available to the system administrator's interface for
defining and deleting new frame_types.

2.1  Detailed description of Operations:

new_frame (frame_type, frame_object), -- With frame_type bound to
~ a recognized type designator and frame_object initially unbound,
succeeds while binding frame_object 10 an object of that type with
default values associated with slots that have a default and no value
associated with other slots, Where frame_type is unbound or is not a
recognized type descriptor for a frame data Type, or where frame object

is already bound, fails.

is_frame (frame_type, frame object). -- With frame_type .and
frame_object both bound, succeeds just in -case the -ebject
frame_object is of type frame_type. If frame object is bound and
frame_type is not, succeeds with frame_type bound to the type of
frame_object. If frame_type is bound and frame_object is not,
behaves exactly like a call to new_frame. If neither are bound, succeeds
with indeterminate results.
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slot_list (frame_type, [[slot_name, slot_type] | - . ~- With
frame_type bound to 2 recognized frarn_e type descriptor, and the second

remove_slot_value (frame_object, slot_name). -- With both arguments
bound such that slot_name is the name of a slot associated with the
frame_type of frame_object, succeeds while altering slot_name of
frame_object to a condition of having no value. If either of the
arguments are not bound, or are bound inconsistently, fails,

kas_slot_value (frame_object, slot_name, value). -- With the first two
arguments bound such that slot_name is the name of a slot associated
with the frame type of frame_object and the third is unbound,

bound, succeeds Jjust in case frame_object hag slot_name with value,
If either of the first two arguments are unbound, or if they are bound
inconsistently, fails.

both arguments bound, succeeds just in case the trame types in the
second argument constitute 4 subset of the children of frame_type.
Failg if the first argument i unbound.

superframe_list (frame_type, {superframe_type | _ D. - With
frame_type bound (5 a recognized frame type designator, succeeds
while binding the second argument to a list of all frame types that are
direct supertypes (parents) of frame_type in the frame hierarchy, With
both arguments bound, succeeds just in case the trame types in the

subsumes {ancestor_frame, descendent_frame). -- With both
arguments bound, succeeds just in case a path can be found linking
ancestor_frame to descendent_frame by parent-child links in the
frame hierarchy. If either or both arguments are unbound, succeeds with
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indeterminate results.

3. Relation Manager

The third data type is composed of logical relations over objects (or other relations).
A relation object can be thought of as a ground instance of a logical propostion, or as an
arc linking nodes which are themselves either objects or molecules formed of objects and

arcs,

new_relation (relation_type, [argument]| _ 1, relation object).
is_relation (relation_type, relation_object).

arity (relation_type, arity).
signature (relation_type, [argument type | i ER

argument_list (relation_object, [argument | _ ).
argument (relation_object, position, argument).

reflexive (relation_type).

transitive (relation_type, transitivity).
symmetric (relation_type).
antisymmetric (relation_type).



153

| Interface |
Manager:]

Constructor

Manager \

Supervisor's
Interface

Frame Type

Relation Type
/ Manager Manager \

Relation Object /

Frame Object
Manager [ Manager
N

Elementarg

Data Type
Manager

. Elementary

Data Object
Manager

Fig. A.3: Internal structure of the CODER
| knowledge administration complex
(arrows indicate internal calls).




154

InterModule Communication:
Functional Specification

Communication between CODER modules is handled by a set of predicates that

assure queuing and sequential execution of tasks. In Prolog modules, the principle aspect
of this process is the predicate:

ask (Module, Clause). -- Passes 'Clause’ to the module 'Module', where it
is dealt with locally. This predicate either fails (if the remote module
cannot satisfy 'Clause') or returns, in the manner of a clause proven
locally, while optionally binding any or all variables in ‘Clause’ to further
structures. ask behaves as a function call: if control backtracks across it,
no attempt to resatisfy it is made until control returns "moving forward",

Prolog modules typically receive ask calls as calls to the upper-level Pi'olog prover:
the receiving end of the communicaiton process, in this scenario, simply takes 'Clause’
and attempts to satisfy it using the rules and facts in the Jocal database. Alternatively,
specialized receiving interfaces may be set up using the lower-level structures.

In C modules, the ask function becomes a-procedure-call;

ask (module, call, arge, argv)
Moduie_id module; /* Where 'Module id'is a defined type ~ */

char *call; /* (probably a subtype of atom or int) ¥
int arge; /* restricted to symbolic constants */
char *argv[]; /* denoting modules in the environment. */

— Presents the predicate 'call' to the remote module 'module’ with the argument
vector specified by 'arge’ and 'argv'. The function returns -0 if the remote module
successfully executes the call, else itreturns 1. Arguments passed -as :CODER
variables may be replaced with values if they are bound in the remote module.

Remote calls into a C module appear as local procedure calls: the main() procedure
of a CODER C module is a uniform procedure that does nothing except repeatedly receive
remote calls, attempt to satisfy them, and send replies. Note that main() will always
expect the local procedures to return success/failure information as integer retumn values.
Thus any additional information returned must be through pointer parameters. This fits
well with the use of Prolog-style variables in CODER, as unbound variables can be



155

represented by pointers to NULL.
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. Application Level
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. replyQ)
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listen (String, Var_list) ,
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= Function ,
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Fig. A.4: Implementation levels of
intermodule communication .
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