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Abstract

Since thé inception of software engineering, the major goal has been to control the development
and maintenance of reliable software. To this end, many different design methodologies have
been presented as a means to improve software quality through semantic clarity and syntactic
accuracy during the specification and design phases of the software life cycle. On the other end
of the life cycle, software quality metrics have been proposed to supply quantitative measures
of the resultant software. This study is an attempt to unify the concepts of design
methodologies and software quality metrics by providing a means to determine the quality of a
design before its impiementation, By knowing (quantitatively} the quality of the design, a
considerabie amount of time and money can be saved by realizing design problems and being able
to correct these problemé at design time. All of this can be accomplished before any effort has
been expended on the implementation of the software. This paper provides a means of allowing
a software designer to predict the quality of the source code at design time. Actual equations

for predicting source code quality from design metric values are given.
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[. introduction

in the fast decade, the field of computer science has undergone a revolution. It has started the

move from a mysterious art form to a detailed science. The vehicle for this progress has been

the rising popularity of the field of software. engineering. This innovative. area of computer. .

science has brought about a number of changes in the way we think of {and work with) the
development of software. Due to this renovation, a field that started with little or no design
techniques and unstructured, unreliable software has progressed to a point where a plethora of
techniques exist to improve the quality of a program design as well as that of the resultant
software. The popularity of structured design and coding technigues prove that there |s
widespread belief that the overall product produced using these ideas is somehow better,
Statistics seem to indicate that this belief is true. Until recently, however, thera existed no
proven technique for quantitatively showing that one program is better than its functional
equivalent. In the past few years, the use of software quality metrics seems to indicate that

such a comparison is not only possible, but also valid.

A typicai software life cycle consists of requiremenis definitions, program design,
implementation, testing, and ﬁnélly maintenance [15]. The portion of the cycle that is of
inferest to this research is that of design and implementation with the inclusion of software
quality metrics. Figure 1 contains a diagram of this part of the software life cycI;a using

complexity metrics.

DES!GN—> IMPLEMENTATION % METRIC ANALYSIS

RE-DESIGN {

Figure 1. Diagram of Currently Used Software Lite Cycle With Metrics
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First, a design is created and implemented in software. At that point, software quality
metrics are generated for the source code. If nhecessary, as indicated by the metrics, the cycle
returns to the design phase. Ideally, the software life cycle can be “reduced” to that in Figure
2, where the same metrics are generated during the design phase, before code implementation,
This modified cycle eliminates the generation of undesirable source code, since it is possible to
use the metrics, exactly as before, only earlier. The goal of this study”is to indicate the
plausibility of using the "reduced" cycle to increase the efficiency of the software development
process by implementing metric analysis as early as possible. In this research, PDL code s

used to analyze designs [17].

DESIGN—> IMPLEMENTATION 9 METRIC ANALYSIS

RE-DESIGN

Figure 2. Diagram of Proposed Reduced Software Life Cycle With Metrics

The goal of shortening the loop in the life cycle is highly debendent on the ability to perform the
analysis on the design, along with the need for evidence that the metric values produced from
the design refiect the quality of the resultant source code. To facilitate this ability, a software
metric generator (which for purposes of this study may be considered a "black box™ is
provided that takes either the design or the source code as input and produces a number of
complexity metric values as output. A diagram of the metric generation process is shown in

Figure 3. For a more dstailed explanation of the metric generator, see [10].

Many software quality metrics have been developed in recent years [5] [6] [13] [14] [19] [21]
1o name just a few. Some of the existing metrics are gqualitative and therefore non-
automatable. These types of measures are not considered in this study. Here the focus is on

metrics that are both quantitative and automatable. Metrics of this type can be put into three
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general categories: code metrics, structure metrics, and hybrid metrics. In gensral, code
metrics are those that measure an atfribute such as length, number of control statements,
number of tokens, etc. That is, code metrics produce a "count” of some featurs of the source

program. Structure metrics attempt to capture the logic or semantics of the source program.

Finally, hybrid metrics consist of one or more code metrics combined with one or more
structure metrics. Although both code and structure metrics result in a number that somehow
represents the "goodness” of a program, it has been shown that the two types of metrics are

measuring different features of the source systems [8].

DESIGN CODE ~————
SOFTWARE
METRIC ——> METRICS
GENERATOR
SOURCE CODE—————)

Figure 3. Diagram of Metric Generation Process

The next section briefly describes the software quality metrics used in this research. Section
Il presents the data used in this experiment. ~Analysis of the daia as wall as the equations
generated to predict source code quality are given in section IV. - Finally, a summary of our

conclusions are given in section V.




ll. Description of Metrics

This section contains brisf descriptions of the metrics used in this research. Readers wishing

greater detail should see the references,

A. Code Metrics

Many code metrics have been proposed in the recent past. An effort has been made to limit this
discussion to a few of the more popular ones that are typical of this type of measure. They
include lines of code, parts of Halstead's Software Science, and McCabe's Cyclomatic
Complexity. Each of these metrics is widely used and has been extensively vafidated [2] [4]

[1e] [17].
Lines Of Code

The most familiar software measure is the count of the lines of code with a unit of LOC or, for
large programs, KLOC (thousands of lines of code). Unfortunately, there is no consensus on
exactly what constitutes a line of code. Most researchers agree that a blank line should not be
counted but cannot agree én'comments, declarations, null statements such as the Pascal
"begin," etc. Another probiem arises in free format languages which allow muitiple sfatemen!s

on one textual line or one executable statement spread over more than one line of text,

For this study, the dsfinition used is the following: A line of code is counted as the line or fines
between semicolons, where intrinsic semicolons are assumed at both the beginning and the end
of the source file. This specifically includes all lines containing executable and non-executzble

statements, program headers, and declarations.



Halstead’'s Software Science

A natural weighting scheme used by Halstead in his family of metrics {commonly called
Software Science indicators [5)) is a count of the number of "tokens,” which
are units distinguishable by a compiler. All of Halstead's metrics are based on the following

definitions:

Nt = the number of unique operands.
ng = the number of unique cperators,
Ny = the total number of operands.

Nz = the total number of operators.

Three of the software science metrics, N, V, and E, are used in this research. The metric N is

simply a count of the total number of tokens expressed as the number of operands piug the

number of operators, ie., N = Ny + No.

V represents the number of bits fequired 1o store the program in memory. Given nas the

number of unique operators plus the number of unigue operands, i.e., n = Nt +np, then log» (n)

is the number of bits needed to encode every token in the program. Therefore, the number of

bits necessary to store the entire program is:

V=Nxfog2 {n)

The final Halstead metric examined is effort (E). The sffort metric, which is used to indicate
the effort of understanding, is dependent on the volume (V) and the difficulty (D). The difficulty

is estimated as:

D1, Ne
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Given V and D , the effort is calculated as:
E: V)( D

The unit of measurement of £ s elementary mental discriminations which represents the

difficulty of making the mental comparisons required to implement the algorithm.
McCabe's Cyclomatic Complexity

McCabe's metric [14] is designed to indicate the testability and maintainability of a procedure
by measuring the number of "linearly independent" paths through the program, Te determine
the paths, the procedurs is represented as a strongly connected graph with one unique entry
and exit point. The nodes are seguential blocks of code, and the edges are decisions causing a
branch. The complexity is given by:

VIGh = E-N+2 where

E the number of edges in the graph

]

n

N the number of nodes in the graph.
According to McCabe, V/G) = 10 is a reasonable upper limit for the complexity of a single
component of a program, Throughout this baper, McCabe's Cyclomatic Complexity is often

abbreviated as CC,



B. Structure Metric

within a program, there is a great deal of interaction among modules. Code metrics fgnore
these dependsnciss, implicitly assuming that each individual tomponent of a program is a
Separate entity. Conversely, structure metrics attempt to quantify the module interactions
using the assumption that the static inter-dependencies involved contribute to the overal|
complexity of the program units, and ultimately to that of the entire program. In this study,

the structure metric examined is Henry and Kafura's information Flow metric.

Henry and Kafura's information Fiow Metrie

Henry and Katfura [6] {7] developed a metric based on the information flow connections between

a procedurs and its environment called "fan-in" and "fan-out” which are defined as:

fan-in the number of local flows into a procedure plus the number of global data
structures from which a procedure retrieves information
fan-out the number of local flows from a procedure plus the number of global data

structures which the procedure updates,

To calculate the fan-in and fan-out for g precedure, a set of relations g generated that reflects
the fiow of information through input parameters, global data structures ang cutput
parameters. From these relations, a flow structure is built that shows alj possible program

paths through which updates to each global data structure may propagate {11].



The complexity for a procedure is defined as:

Cp = (fan-in * fan-out)?,

In addition to procedural complexity, the metric may be utifized for both a module and a level of
the hierarchy of the system. Module complexity is defined as the sum of the complexities of
the procedures in the module, and the ieval complexity is the sum of the compiexities of the

modules within the level,

C. Hybrid Metric

Since, as stated above, code and structure metrics appear to be measuring different aspects of
program complexity, it seems reasonable that a metric be comprised of both types of metrics
in order to capture the complexity of the procedure as much as pessible.  This is what s
termed a hybrid metric, More succinctly, a hybrid metric is composed of one Cr more code
metrics and one or more structure metrics. This study examines the hybrid form of Henry and

Kafura's Information Flow metric.

Henry and Kafura's Information Flow Metric

The hybrid form of Henry and Kafura's Information Flow metric which was used in an aciual

study on the UNIX Operafing system is described in [7). The formula is:

Co = Cip x (fan-in x fan-out)?  where

C,-p is the internaj compiexity of procedure p.

The metric usad for the internal Complexity Cip may be any code metric,
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i, Description of Data

academic environment, they are substantially more realistic than those generally obtained

under these cond itions.

and the University of Wisconsin-LaCrosse. The Project-oriented class is designed o teach

Students the basics of softwarg engineering Ia].

thousand fines of source code. This design includes hierarchy charts and module specifications

they *hire" classmates to implement the modules in Pascal, Finalty, the design team must

integrate the modules into the completed program.

The Completed projecis that have heen furnished by the ciasses are varied. Thay range from

two thousand 1o eight thousand lines of code, Enﬂ'icatfng the students inability o accurately
9



predict program size. Program function is also widespread. In an attempt to ensure that the
completed designs and source are usabie as data, students are given minimal design
requirements. It is impossible to monitor all of the designs of all of the students; in fact, the
students alone decide on "English-like" specifications, "code-like” specifications, or somewhere

in-between.

After the PDL and Pascal code have been processed by the analyzer and metrics have been
generated, procedures must be combined into modules. This is necessary because there must be
& one-io-one correspondance betwesn the design and source. The method used is simple. A
single PDL procedure may be a definition of the function performed by several Pascal
procedures. In order to equate the design and source, it is necessary to add the complexities of
each of the Pascal routines. Combining procedures into modules is easily accompiished by using
the module definition feature of the analyzer. in this way, the design complexity is directly

comparable 10 the source complexity on a functional jevel,
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IV. Analysis of Data

The first step in the statistical analysis of the data is the elimination of outiiers. In order 1o
effectively eliminate invalid data while maintaining the overall integrity of the data, there are
IwWo major considerations. First is the effect of a change in the design that is not reflected in
the given specifications but does appear in the resultant source code, and second is when
specifications are not developed at a detailed enough level tc make measurements meaningful.
Note that the intent here is not to imply that a good design requires code-like specificaiions, but
that a minimal amount of detaif is necessary in order to have useful measurements. The first is
evident when the complexity of the specifications for a procedure is larger than that of the
source. It seems obvious that the complexity of the des;’gn should always be less than or, at
best, equal to that of the source. When this is not the case, a design modification must have
besen made that does not appear in the source code. So as to ﬁot eliminate cases where the
specifications are oniy siightiy larger, oniy cases where the Information Flow complexity of
the design is more than twice that of the source are eliminated. The second case appears when
the source complexity is substantially larger than that of the specifications. For purpeses of
this study, "substantially” is defined o be source Information Flow complexity more than .one
~hundred times greater than the values for the design. Afier elimination of outliers using the
above criteria, there are 081 modules left to analyze from 27 projects.  Figure 4 shows the

correlations of PDL 1o Pascal for all of the modules and metrics after the outlier elimination,
A. Analysis by Project

It is informative to note that in general, the Information Flow Metric in both its structure and
hybrid form performs beter than the code metrics. In fact, ning of the projects (2, 7, 11, 18,
18, 23, 24, 28, 27} have substantially lower correlzations for the code metrics. A rezson for

this phencmenon is that the specifications are not wall refined, but inciude these elemsnts
11



necessary to the Information Flow Metric including procedure declarations, procedure calls,
and updates to global variables, Project 23 is a good example of this general category of
projects. The specifications for thig project consist almost exclusively of those elements
listed above. This type of design gives no clues as to the final form of the module, Therefors, it
is impossible to predict the procedure compiexity with the code metrics. There simply is nat

enough information in the design.

Project Correlations
NUM LCC N V E | cC | INFO INFO-L {INFO-E INFO-CC
1 0.781 | 0.828 | 0.891 0.753 | 0.670 | 0.94¢0 0.992  0.981 | p.8gog
2 0.325 | 0.335 | 0.412 0.117 | 0.524 | 1.000 1.000 | 0.999 0.999
3 0.364 | 0.3587 0.357 | 0.019 0.390 | 0.523 | p.o54 -0.005 | p.508
4 0.631 | 0.868 0.922 [ 0.777 | 0.117 0.999 | 1.000 { 1.000 0.951
5 0.913 | 0.794 0.829 ! 0.829 | 5.707 0.992 | 1.000 0.e62 | ¢.977
8 0.876 | 0.880 C.928 | 0.901 | 0.057 0.882 | 1.000 | 1.000 0.895
7 0.151 1 0.092 | 0.075 0.033 { 0.008 | 0.507 0.728 | 0.698 { 0.752
8 -0.059 {0,014 -0.015 {-0.008 0.220 | 0.238 0.135 |-p.035 -0.008
g 0.700 | 0.668 0.650 { 0.717 | 0.33g 0.785 1 0.801 | 0.700 0.o38
10 0.483 | 0.456 ] p.4p09 0.765 | 0.149 | ¢.438 C.143 1 0.138 | 0,002
11 0.313 1 0.171 0.182 -0.040 | 0.631 0.954 | 0.827 { 0.108 0.859
12 0.583 | 0.511 | 0.557 0.007 | 0.421 | 1.000 1.000 { 1.000 | 1.p00
13 -0.797 1-0.376 -0.562 |-0.008 ~0.500 § 0.120 |-0.183 0.648 |-0.198
14 -0.075 |-0.019 0.034 |-0.058 | 0.053 0.306 {-0.043 }-0.088 -0.008
15 0.275 | 0.128 0.151 | 0.014 | 0.338 0.255 { 0.238 | 0.005 0.170
18 0.683 ) 0.813 0.824 { 0.575 | 0.554 0.912 1 0.927 | 0.064 0.808
17 C.804 | 0.758 0.7687 { 0.475 | 0.813 0.593 | 0.605 | 0.728 0.753
18 -0.135 |-0.254 -0.162 1-0.062 [-0.120 0.639 { 0.718 | p.ge3 0.852
19 0.324 | 0.329 0.301 { 0.081 { 0.218 0.766 | 0.326 | 0.598 0.562
20 0.799 | 0.681 0.722 | 0.635 NA | 1.000 | 1.000 1.000 | 1.000
21 0.383 ] 0.481 | 0.511 0.536 | 0.610 | 0.428 0.483 1 0.877 | 0.704
22 0.216 | 0.190 0.313 | 0.563 | p.435 0.371 1 0.304 | p.072 -0.017
23 0.821 { 0.548 0.615 | o.202 0.573 [ 0.997 | 0.90s 0.984 | 0.907
24 0.348 | 0.595 0.764 | 0.548 0.574 { 0.837 | 0.780 0.687 | 0.855
25 0.800 | 0.897 0.818 | 0.948 0.857 1 0.717 | 0.741 0.841 | p.828
28 0.177 | 0.340 | 0.344 0.37¢ | 0.392 0.704 | 0.839 { 0.8¢9» 6.807
27 -0.244 {-0.281 1-0.275 lo.172 -0.?49J 0.854 | 0.458 | n.357 0.539

Figure 4. Carrelations for a)| Moduies Using all Nine Metrics

Seven of the projects (3, g, 10, 14, 15, 21, 22) have poor correlation values for all of the

metrics.  This is prebabiy due 1o paor design.  Examinztion of the design code shiows that ths

«y



designers consistently did not include any detail in the procedures. Not enough detajl is
provided to predict the code metric values, and the elements necessary for Information Flow
are not available. In fact, within the above named projects, most of the PDL procedures closely
resemble the one shown in Figure 5. Unfortunately, this is syntactically correct PDL code even
though the semantic vatue is practically nonexistent, Once again note that a high levet design is
not necessarily a poor design, but it is much mere difficult, if not impossilbe, 1o obtain useful

Mmeasuress,

PROCEDURE Exampie;
(This is an example of a peorly specified procedure.);
BEGIN Example:

- A comment explaining the function of the procedure.

END Exampie:

Figure 5, Example of a Peoorly Specified Procedure

Two rows of Figure 4 that are of particular interest are rows 12 and 20. Row 13 contains
values that appear to show an extremely high negative correiation. Obviously this is an
undssirable resuit since it implies that the more complex the design code becomes, the simpler

the source code is and vice-versa. Upon inspection, the reasen for the unusual correlations

Row 20 is of interest because one of jts entries in the Figure is "NA" This is due to the fact
that after outlier elimination, all of the McCabe values in the design that are left have g
complexity of 1. It is not possible to de correlations on a constznt vector, and therefere that

correlation is "Ngt Available.”
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The simple use of correlations on a project-by-project basis is not very informative as far as
the ability to predict source code complexity is concerned. Many of the design teams typify a
problem in software development. Given a choice between doing a job well and doing the same
job with as little effort as possible on their part, they choose the latter. This problem
reinforces the belief that the specification phase of a project must be closely monitored 1o
ensure that a useful design is the end result, The ability to measure the designs shouid improve

the performance of the designers.

B. Analysis by Level of Refinement

Since the results of the above correlations give so little useful information, it is informative to
look at the data as a single entity as oppesed to 27 difierent segments. It is hoped that by doing
S, the projects that are not well spacifisd will be offset by those that are. it is also desirable
10 examine the data as a whole in order to develop predictors for each metric. Preliminary
results indicate that the cede metrics are strongly dependent or the level of the refinement
while the structure metrics are independent of refinement level [17]. A highly refined module
would contain code-like specifications, while a low refinement level indicates the predominance
of natural fanguage specifications, This should not be confused with the concept of high vs. low
level design where 3 high level design indicates very little (if any) actual code. To
determine the validity of this hypothes-is, the routines are divided into three categories; jow,
average, and high levels of refinement. Each jevel js analyzed individually, where the analysis
consists of (1) correlations lo determine the overal trends of the data, and {2) simple iinear
regression analysis to obtain the predictors. in addition to the prediction of the source quality,
it wouid be convenient if an sstimate of the amount of error invoived in the prediction could be
T

ctalculated. To this end, the extra statistics necessary to calcuiaie g 3% coniidence intarva!

SN
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for a predicted source complexity are determined. Finally, several scatter plets are presented

that allow a graphic representation of the data.

As mentioned above, it is informative to examine the metric values based on the level of
refinement of the specifications,  In order 1o accomplish this purpose, it is necessary to
determine the refinement Jevel for each routine to be examined. It seems reasonable that as
the refinement ieve! increases, the length of the module also increases, but more importantly,
the number of control structures will increase as well, Also, it appears necessary to consider
normalized complexity values as opposed to examining the raw data, since, for example, the
semantic difference between 1 ang 5 s greater than that between 41 and 45. The normalizing

function used in this study is:

Metric - Metri 7
Metricnomm = {Metr ! Source - Metric Desjgn)
(Metric soyrea+ Metric Desigr/

Note that the nermalizing function tomputes & value between zers and one as long as design
complexity is less than or equal to the source complexity, and that the value approaches zero

as the design metric valye approaches the source metric value.

Using these ideas, an algorithm to automatically determine the completeness of the design has
been created. 1t s interesting to note that the algorithm is completely dependent on code
metric vaiues, yet, as will be demonstrated, the Information Flow metric performs better than
the code metrics. This again indicates that structure metrics are probably independent of

refinement leve!.

The algorithm that determines the cempleteness of the design procedes zz follows: First 2

normalized value is caloulated for the McCabe Cyclomatic Complexity (CC) and Halstead's N

meirics for each moduie.  n the next siep of ihe aigerithm, the jevsl of refinement s

15



determined using the normalized values. If the CChNorm value is 0.0, then it can not be used to
determine level, and the metric N is the sole determiner, |f NNorm is <= 0.333, then the level
of refinement is high. i the value is between €.333 and 0.687, then the refinement jevel is
middle. Otherwise, the refinement level is low. If CCNorm is not zero, the CCNorm value is

checked first, and it it appears fully refined (<= 0.333) the level is either high or middie,

depending on NNorm. H'NNorm <= 0.333, then the level of refinement is high and if it is » -

0.333, the refinement level is middie. if the CCNorm value is of middle refinement, the leve) s
either middie or low, again depending on the vaiue of NNorm using 0.667 as the cutoff point,

Finally, if CCNorm indicates a fow leve! of reflinement, the module is determined to be fow.

in order to determine the validity of the results of the aigorithm, seven brojects were
examined and module refinement determined by hand, Comparison of the results of the hang-
gensrated levels and those determined by the algorithm indicate that this method of selting a
level of refinement was extremely accuraie, being the same more than 99% of the time. Due
10 the strong rasults of the algorithm, it was Used o generate the refinement level of all of the
modules. Thes resuits of the algorithm indicate that of the 881 modules in the study; 422 have a
High level of refinement, 283 have a Middle level of refinement, and 278 have a Low level of

refinement,

The analysis results in Figure 6 show that the above expectations are generally true. |In the
Figures, Henry and Kafura's Information Flew metric is abbreviated INFO. The Information Flow
metric performed consisiently well, with its Jowest correlation value being 0.792. This result
shows expliciity that the metric is independent of refinement level. The code metrics reactag
as predicted. They do not periorm well at a low tevel of refinement, and their correlations
increase as feval of refinement becomes greater. An interesting result is that the metrics
perform quite weli at even a middie refinement tevel. This indicates that after a minimum

amount of detajl e included in the specifications. the code matrics become usefyl mEasures,

i6



Figures 7, 8, and 11 show the regression lines for each of the metrics at a Low, Middie, and
High level of refinement, respectively. As discussed above, the information in these Figures
may be used to form an environmentally specific prediction equation, given that the level of
refinement can be determined, with a 95% degree of confidence. Figures 8, 10, and 12 give
the extra statistics needed to predict a confidence interval for a specific design complexity

value and refinement level using the formula;

X- Xpse
Slope x X + Intercept™ 2 X,\/ MSE x (l L.*?i)
n SSy

where
X s the independent variable or design compilexity

Slope is the siope for the regression line

Intercept is the intercept for the regression line

MSE i the Mean Squared Error from the mode!

n s the total number of data paints employed in the regression
XMsan s the average value of the design complexities

SS8x is the sum of squares over X and is given by:

n 2
SSX= ¥ (Xi- XMear)
i=1

[18].
Low Leve!
LOC N v E oS INFO

0.610 | 0.512 | 0.552 | 0.211 | 0.405 | 0.903

Middie Level

LCC N v E cC INFO
0.701 j0.731 C.756 { ©.577 | 0.867 | 0.804

High Level
Tee N | v | E CC | INFO
1 08101 0.830 1 0.867 | G.706 g.e02 | 0.782

Igure 8. Correlations by Leve! of Refinement



Using the above equation and the prediction line for LOGC as given above, the 952, confidence

interval for a design complexity of 100, and a jow level of refinement is given by:

1.126 X 100+ 29.224 ¥ 5 « V1.785E+5 X (—_ 4 {100~ 11.388),
276 1.490E + 5

141,824 %55 1p0

In other words, the actua value associated with the complexity 100 for the metric LOC will be

in the range 88.724 . 196.824 95% of the time.

Regression Line Information
Coaf Sid Err t-Value
LoC Intercept 298.224 2.236 13.069
Slepe 1.128 £.088 12,737
N Intarcept 226.137 18.082 12.541
Siope 1.410 0.143 8877
V intercept 1235.805 104.8910 11.778
Slope 1.398 0.127 10.961
E Intercept 90760.893 183068.020 5.5865
Slope 2.570 0.719 3.573
(o8] Intercept 3.63¢ 1.288 2.823
Slone B8.117 0.833 7.341
INFO intercept 81740.175 | 105225 480 0.777
Slope 10.022 0.2886 35.108

Figure 7. Low Refinement Regression Line Equations and Statistics

Metric Statistics
n MSE SSy Xiean

Loc 276 | 1.785E+05 1.408E+05 11.388

N 278 | 7.024E+08 3.531E+08 56.127

i 278 | 3.227E+08 1.8657E+08 280.500

E 278 | B.709E+11 1.318E+11 68031.788

cC 278 | 7.690E+03 2.055E+02 1.27¢
1 INFO 278 1 3.7105+15 3.893F+13 45085200
Figure 8. Exua Statistics for Low Refinemant Level

18



Regression Line Information
Coef Std Err t-Value
LaC Intercept 4.800 1.241 3.948
Slope 1.242 0.075 16.498
N Intercept 49.247 8.553 5.758
Slope 1.440 0.080 17.937
v intercept 285.608 43.100 €.827
Slope 1.408 0.073 19.3586
E Intercept 24147.773 4525 805 5.336
Siope 1.459 0.123 11.851
cC Intercept 0.789 0.259 3.045
Siope 1.932 0.0686 29.218
INFC intercept -7258.697 14683.082 -0.434
Slope 5.231 0.148 35.447

Figure 9. Middle Refi

nement Regression Line Equations and Statistics

Metric Statistics
n MSE SSX XMeaﬂ

Lce 283 | 5.883E+04 | 3.820E+04 11.668

N 283 | 2.757E+06 | 1.812E+08 70.360

Y 288 |'1.285E+08 | 6.481E+07 349.226

E 283 | 78142411 | 3.578E+11 9348.640

cC 283 | 9.615E+03 | 2.577E403 2.502
1 N 283 | 7.530E+13 | 27505412 13747.350

Figure 10. Extra Statistics for Middle Refinement Leve:

Regression Line information
Coef Std Err t-Vaiue
Loc Intercept 1.284 0.547 2.348
Slope 0.810 0.028 28.304
N intercept 20.210 4.282 4.741
Slope 0.842 0.028 30.488
Vv Intercept 115.247 25.482 4.327
Slope 0.830 0.030 28.002
E Intercept 9522.41¢ 3647.288 2.611
Slope 0.758 0.037 20.458
Cc intercept 0.844 0.133 4.82¢
Slepe 0.791 0.018 42.840
iINFO iniercep’. -297874.630 | 95832%.540 -0.311
Sicos 43,602 1.527 28.582
Figure 11. High Refinemen: Regression Line Ecuations and Siztistics
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Metric Statistics
n MSE f SSX XMean
LoC 422 | 4.404E+04 | 8.717E+04 14.358
N 422 | 3.950E+06 | 5.580FE+06 102.960
v 422 | 1.345E+08 | 1.954E408 525.775
E 422 | 2.239E+12 | 3.916E+12 21439.980
cc 422 | B.218E+03 | 1.313E+04 4.583
NFO 422 1 2.719E+17 | 1.650E+14 52433.400
Figure 12. Extra Statistics for High Refinement Level

In addition to the numericai statistics, it s informative to examine scatfter plots as a means of

graphically demonstrating the difference between code and structure metrics.  To this end,
Figures 13 and 14 show plots of the LOC metric and the Information Flow metric respectively,
at a low levei of refinemant. The plots show the individua! data points, regression line and the

confidence interval. |t must be noted that due to the large value of the Information Flow

numbers, a log-log scale is used in the plots of that metrics' values. Figure 15 shows the LCC
metric at a middle level of refinement indicating the improvement of the prediction. Figure 16
shows the Information Flow metric at a middle leve! of refinement demenstrating that the

metric does equally well regardless of refinement.

This section has presented the statistical analysis for the data based on levels of refinement. It
shows that the structure and hybrid metrics perform much better than the code metrics, and
more impertantly, proves that structure metrics are independent of level of refinement.  With
a minimal amount of information (the calling structure and parameiers) the information Flow
metric can predict the quality of the resultant software. This facilitates a shorter life eycie
for the production of quality software. Regression lines allow the calculation of prediction

eguations for the resultant source code complexity values to be based on the design complexity.
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C. inter-metric Correlations

Figure 17 contains the inter-metric correlations for the Pascal code. This information serves
to verily studies previously done by (1] [2] 8] [12] [16]. The figure indicates that between
code metrics there is, in general, a high degree of correlation. When comparing the code
metrics with the structure metric (information Flow) however, it is seen that the results are
quite close to zero. This result indicates that the code and structure metrics are measuring

different aspects of the source code.,

The inter-metric correlations, with respact to the design, show the same relationships as those
using Pascal, and are. given in Figure 18. This is a desirable result since it indicates a
consistency of measurement when comparing the designs to the resultant source code. It also

lends credence o the usefulness of performing complexity measures at design time.

Pascal Source Code

Metric LOC N V E cC NFO
Lce

N 0.8a2

v 0.885 | 0.988

E 0.521 | 0.74% { 0.711

cC 0.629 { 0.776 | 0.781 | 0.492

INFO 0.044 | 0.028 { 0.0386 0.005 1 0.018

Figure 17. Inter-metric Correlations for the Pascal code

PDL Design Code

Metric LOC N V E C INFO
LoC

N 0.884

Vv 0.894 | 0,988

E 0.485 | 0.725 | 0.681

cC 0.541 1 0.702 |} 0.858 | 0.8582

INFC C.260 | 6.208 | £.249 | £.039 | 0.03Q

Figure 18. Inter-metric Correlations fer PDL code



V. Conclusions

The use of software quality metrics has become more common in the computer science
community.  Up to this point, however, their use has been mainly restricted to the
measurement of production software or, in the case of design, fimited to code metrics, This
research is an attempt to show that (1) structure and hybrid metrics are extremeiy useful at
design time, (2) automatic generation of metrics for design specifications is not only possible
with an analyzer similar 1o the one used for this research, but aiso desirable and (3) using the
prediction eguations presented in this paper and intimate knowlsdge of a design, a software
designer can determine the level of refinement of a design and determine the complexity of the

resuliant source code,

The results of this research clearly indicate several things:
« It is possible 1o generate meaningful complexity values at design time automatically,

= It is possible o predict the complexity values of the resultant source from the design

measurements.

= Structure metrics are independent of ievel of refinement.

« Code metrics are NOT independent of level of refinement.

There is still much wark to do with the idea of automatically analyzing designs. More daia

needs to be coliscted in order 10 verily ancd extend this work to incorporate more programs of

- + [ — < . e ala ¥
Sysiems, compliers, eic. B would &isy be

i 1 iy . S Ak =a nemtim
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interesting to include several other metrics in the Software Metric Generator and compare the
results with those of the metrics already generated [13] [20). A current research effort
under way at Virginia Polytechnic Institute is applying software quality metrics in a graphical

design environment.

New tools, such as the analyzer used in this research, must continue to be studied in an attempt
to make the design process both more structured and more reliable. The incorporation of
existing tools, such as software quality metrics, can be of great assistance in this undertaking
and should be examined to dstermine their rcle in the sofiware development process.
Hopefully, this research is one of the first steps in the on-going search for better design

methodologias.
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