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ABSTRACT

This paper presents a framework for the study of the guery
decomposition translation for heterogeneous record-oriented
database management systems. This .frameworkﬂié based on the
applied database logic representation of- relational, hierarchical
and network databases. The 1input to the query decomposition
translation is the query graph which is derived from the complex
to basic, external to conceptual and logical optimization
translations. Once the query graph is obtained the objective of
the query decomposition translation is to break up a query
expressed in terms of the actual or conceptual databases into its
component: parts: or subgueries and-findva-strategyﬂindicatinthhe;
sequence of primitive or fundamental operations and their
corresponding processing sites in the network necessary-td‘answer
the query. The query processing strategy is usually chosen so as
to satisfy some performance criterion such as response time
reduction. 'The choice of a query prbcessing strategy is
contingént on- the successful estimation of intermediate results
after each primitive operation. The pre-query decomposition
translation, the query decomposition translation and the size
estimation issues are presented through an example_based on the
current implementation of the Distributed Access View Integration
Database  (DAVID) : currently being built at NASA's Goddard Space

Flight Center (GSFC).
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I. INTRODUCTION

The primary objective of this paper is to propose a generic’
framework“fbr:thevstudyﬂoﬁ*queryf decompcsitidn~ﬁcr?Heterogeneous~'
distributed. database management systems (HDDBMS). We- define.
query processing in a heterogeneous distributed database man-
agement system as that sYstem feature where the user has both
local and global query pProcessing dapabilities over any database/
file management system in the network. We assume in ocur presen-
tation that the resident database management systems are based on
one of the three most popular record oriented déta models, i.e.,
the_relationalJ[ll], the hierarchical [12,31] and. the network. .

(12,3111,

The purpose of the query decomposition proceés is to break
up a query expressed in terms of the actual or conceptual data-
baée ih the neﬁwork into its component parts or_éubqueries and
find a”strategy=indicating the sequence of primitive or funda-
mental”operationswandwtheir-corresponding processing sites in the
network.necessary to answef the query. Wwhat is meant by primi-
tive or fundamental operations 1is the set of system dependent
built-in operations which define the manipﬁlations which can be
performedfon the records/files of the distributed database. The
query processing strategy is usually chosen so as to optimize or
satisfy some performance criterion such as, for example, response

time minimization or reduction. The phrases ‘'query optimization'




and ‘'best Strategy' indicate that the Strategy selected by a
query optimization algorithm is that for which the global optimum
w1th respect to some performance crlterlon such as, query pro-
cessing;cost~minimizatiom, is attained. Since. the problem aof
query decomposition is in general computationally 1ntractable or
NP hard [27] and is further hampered by the lack of Precise
statistical information about attribute values in the database,
the term 'query optimization' is misleading. Especially since
most strategies pfoposed are based on heuristic bProcedures. For
these strategies, good but not necessarily globally optimum
solutions with respect to some performance criterion are-

attained.

In the past, most of the reeearch ‘'work in query &ecom-
position has been carried out for. homogeneous distributed
relational database systems. The first algorithm fof query
decomposition for distributed relatlonal database Systems [33]
translated the query into a sequence of move .and process opera-
tions. This algorithm moved all the relatlons referenced by the
query to an initial site, selected apriori, for processing. The
final distribution strategy was obtained by improving upon_this
initial.solution with a sequence of move and process commands
until the iewei cost sequence was found. a number of refinements
of this algorlthm followed, notably those which avoided the need
for an initial apriori Processing site and enhanced both the

basic algorithm and the cost estimation techniques [1,4,10,18].



Most of the algorithms whlch followed, for example those reported
by Hevner and Yac [18] and Bernstein, et al. [4], emphasize the
minimization of transmission costs. More recently, Ceri and
Gottlob [6T studyiHow7to*optimfze“theﬂsequencing* of joins for &
distributed relational DBMS: for which horizontal fragmentatlon is:
assumed. They propose a method which includes a semantic optimi-
zation on joins, a semi-join reduction strategy and an integer
programming formulation which finds the physical sequence of
joins in the distributed network which minimizes the network
transmission cost. Chu and Hurley [10], Yu and Chang [34] and
Egvhazy [14] among others, describe methods for_generating'the
query processing policy by considering both transmissicon and

brocessing costs.

Queries can be first partitioned into subgueries, and these
can be represented by a query graph. Their serial and parallel
relationships and proceesing aequences are then represented by a
- query tree.,  For- a single query graph; .based'on permutabilit?
- properties, a- set of equivalent dquery trees can be generated as -
shown by Smlth and Chang [27] One approach which selects the
best query tree is based on .the maximum temporary relation size
reduction crlterlon El4] A recursive algorithm which traverses
the query ‘ tree by . ~computing and estlmatlng temporary relation
size is proposed by Chao and Egyhazy [817. Subsequently, EgYhazy
and Triantis [15] broposed a heuristic based algorithm which also

computes and estimates temporary relation sizes and determines



the sequence of relational operators and their corresponding
brocessing sites. They later modified the heuristic based
algorithm by incorporating an integer Programming formulation
which determineS‘the'relations-uin.the - network to be joined ang
their respective Processing sites so ag- to minimize the sum of
the network trahsmission and local brocessing costs [30] This

approach has been implemented by Stoler [28] using PASCAL.

A number of algorithms which determine a low cost sequehce
of semijoins have also  been Proposed. Bernstein and chiu [3]
were the first to introduce the idea of the semijoin operation asg
a way of solving tree- queries?, The value of the semijoin
'operator is that it can reduce the amount of effort reQuired to
~do a later expensive join, while the semijoin itself is often
considerably cheaper. More recently, Cchin-Wan and Irani [9]
developed a heuristic algorithm which determines a low cost
sequence of semijoins supported by a method which estlmates the

intermediate resulting relation Sizes,

The. query decomposition Process for . heterogeneousr
distributed database environments has not been researched
extensively. According to Gliger‘ and Luckenbaugh [17], the
decomposition process “in principle does not differ whether it
applies to heterogeneous or_ homogeneous database systems.
- However, gquery decomposition algorithms for heterogeneocus dis—

tributed databases are dependent in part on - the specific data



representation of the various views which are defined by each
local DBMS. The decomposition algorithms for HDDBMS are also
Contingent upon the deflnltlon and 1mplementatlon of the

primitive operatlons performed on the records/files.

One of the first and best known HDDBMS is Multibase [24], a
prototype. developed at Computer Corporation of America.
Multibase translates the global query into the smallest possible
set of single site sub@ueries. Each site may process several
subqueries. All partial results are then collected and merged at
a single site. The final result'is subsequently sent to the .
query originating site. The Distributed‘ Databése.Testbed'System
(DDTS) built by Honeywell Corporation and reported in Dwyer {13]
is another early HDDBMS prototype. Its query Processing approach
- is based on the work of Hevner for distributed relational DBMSs

f18]. Also, the_ Integréted Manufacturing Database Administra-
tion System (IMDAS) for the Automated Manufacturing Resesgrch
Facility (AMRF) at the National Bureau of Standards (NBS) [2] is
currently being designed for heterogeneous distributed manufac-
turing environments. - IMDAS is based on the data representatlon
of the Semantic Association Model (SAM) [29]. There are a number
of more recent and less known efforts made at building quasi
.HDDBMS" prototypes, for example, the ISS at Arizona State

University [19], and MRDSM at INRIA, France [25].



The framework proposed in this paper for the study of the
query decomposition process for HDDBMS was inspired by the work
of Jacobs [20,21]. This approach is being implemented in the
DAVID (Distributed Access View Integration Database) system
currently being built at - NASA's Goddard Space Flight Center

(GSFC).

The rest of the pPaper is organized as follows. A sample
query is used throughout the bPresentation to pregent all the
relevant concepts and notation. Section II presents an example
©of a heterogeneous distributed database management environment.
The unified represéntation of the relational, hierarchical and
network data models is based on database logic [20]. The basic
building .block' of this representation 1is the cluster data
| structure, The query translation process is based on this data
Structure and other data Structures, such as the query graph and
execution tree [21]. It is assumed in this presentation that the
data is distributed across the network in a predefined way. This-
means-that the data is Stored in specific  DBMSs at each node.
The information on the data'distribution is found in the détabase.
aadministrator's - dictionary. Section III describes how the
original query is translated in terms of the conceptual databases
and ‘how ° the query' graph is generated. _The query graph is the
data structure representing the query before it is decomposed
into a Sequence of primitive operations. The tranSition of a

query graph to a particular execution tree 1is presented in



Section 1IV. This transition is based on the criterion of
maximizing the reduction of temporary cluster or subcluster sizes
and is analogous to the criterion of maximizing the reduction of
temporary relation sizes for the' relational  case. Section v
summarizes . and concludes by Presenting a: fiamework for-
1dent1fy1ng the most important factors when researching the query

decomposition brocess for HDDBMSs.



II. CONCEPTS AND NOTATION

Let's assume there is one or*morewresidént-DEMS?at~each-node
in a network system of interconnected heterogeneous_databases.
The example given in Figure 1 consists of five nodes: Nodés_l
and 5 have student registration information running under re-

- lational DBMSs. Node 2 has infofmation about registration,
coufses, instructors and Studehts running under a hierarchical
DBMS, while node 3 has faculty information running under a net-
work ‘DBMS. At node 4 student information is stored as a hier-

archical DBMS. This environment is depicted in Figure 1.

The unified représentation of heterogenecous record oriented
'.data_models and the underlying canonical data structure cf the
distributed DBMS is based on the work by Jacobs [20]. He models
databases in terms of '"tables": and "rows"' in tables.‘l This
representation is; called a cluster. It is comprisedﬁofia'single
table or multiple embedded tables. The cluster representation

can be depicted as follows.

NE-CNO#) (Ty€ag,evs,To(a5,.00), .0, Tolap, . on),.nn)) .
Tf(ae,...,(Tg(am,...),...)),...,To(an,...)} ANAME
| o | o



N1.REGISTRAR
(Relational)

e

N2.RCIS
- (Hierarchical)

N4.STUDINFO
(Hierarchical)

Figure 1. & Sample Hetero

- Management System

N3.FAC
(Network)

N5,REGISTRAR
(Relatiocnal)

geneous Distributed Database




Where, N# is the node number, CN(#) is the cluster name and
its instance number and ANAME is the alias name for the cluster
CN(#). T; 4is the 4ith table of the cluster CN and éj is the jth
attribute name of the table T For each cluster definition one
can have more than one instance of this cluster. Thig depends on
how many different sets of data values are used for the same

cluster definition.

Using this notation, the cluster representations of the

distributed DBMSs of Figure 1 are as follows.

N1.REGISTRAR(1) {REG(sémester,year, dept,course#,sec#,id#,

instruct,studid,studname,grade)} R1

N2.RCIS(1) {REG(semester,year,COURSE(dept,course#,sec#,
INSTRUCTOR(id#,instruct),STUDENT(studid,studname,

grade)))} RCIS

N3.FAC(1) {SYSTEM (DEPARTMENT (dept, chair,office, FACULTY
(id#,name,salary,degree)),SENIORITY(acadrank,
FACULTY(id#,name,salary,degree)),FACULTY(id#,

name,salary,degree)})} F

N4.STUDINFO(1) {STUDENT(studid,studname,ADDRESS(streetno,street,

city,state,zipcode),birthdate,dateadm,CREDITS

(dept,nocredit),gpa,major,minor)} S

10

(2)

(4)



N5 .REGISTRAR(1) {REG(semester,year,dept,course#,sec, id#,instruct,

studid,studname,grade)} R5 (6)

The data~-manipul&tion'language~ which can be used to define:
and manipulate clusters is Generalized SQL(GSQL) [211. GsQL is a
generalization of relational standard SQL [26]. Since GSQL is
€asy to understand and is based on standard SQL, it will be used
subsequently to present the main concepts of this paper. For ex-
ample, the GSQL cluster definition for the hierarchical database

residing at node 2 of Figure 1 is as folows:

Define Cluster NZ2.RCIS(1) RCIS

REG TABLE
(SEMESTER CHAR [6];
YEAR CHAR [4];

COURSE TABLE)
KEY SEMESTER, YEAR
COURSE TABLE
(DEPT CHAR [10];
COURSE# CHAR [6];
SEC# CHAR (5];
INSTRUCTOR TABLE;
STUDENT TABLE) :
KEY: DEPT,COURSE#,SEC#
INSTRUCTOR TABLE
({ID#4 CHAR [101};
INSTRUCT CHAR [30]) -
KEY ID#
STUDENT TABLE
(STUDID CHAR [107];:
STUDNAME CHAR [30];
GRADE - CHAR {51])
KEY: STUDID :
STORE AS DBASE (IMS):; - (7)

-In this definition, the schema for the cluster RCIS and each
table in this cluster is given as well as the keys and any

additional functional dependencies for each table. The last

1T



statement of the definition indicates how the cluster instance is
to be Tepresented, i.e., the cluster N2.RCIS(1) is to be stored
in the IMS DBMS. The GSQL definitions for the remaining clusters

of Figure 1 are foung in Appendix 1.

The format of a basic GsoL query which is used subsequently

is as follows:

SELECT <SCHEMA>
FROM <SOURCE CLUSTER>
WHERE <BOOLEAN CONDITION> (8)

The user c¢an query an existing cluster Or create a new.
cluster.using the above format. The schema definition represents
how the result will be reported or stored. The from part of the
GSQL query indicates the source cluster "definitions. In ther
where part the usér specifies boolean conditions. Jacobs [21]
illustrates_how a GSQL query can be represented- in terms of

database~logic3.”_

12



III. EXTERNAL TO CONCEPTUAL MAPPING

For ﬁhe sample HDDBMS of Figure 1, it was assumed that the
cluster N2.RCIS - is’ hierarchical ™ and maintained ét% node” 2.
Supposevthat-some:users-prefer;tozviewftheadatanstored'asaNZ.RCISJ
in terms of a relational database. A way to achieve this is to
build the relational database as an eXternal view (ocutside view)
of the wunderlying conceptual (actual) hierarchical database.
This means that some users can pretend that their view is
relational even though in reality it is hierarchical., The
external-to conceptual mapping problem can be stated as follows:
How can . ocne bPrecisely express the relationship between Two
databases so that one can be maintained as an external view of
the second conceptual _database. The " exte:nalf'to éonceptual
mapping problem c¢an be exXpressed in terms of database logic [20]
.or GSQL (21]. Brodsky [5], among dthérs, has discussed its-
sclution and implementation. The subsequént example queryjénd
the external to conceptual mapping prdblém is presented in GSQL.
In addition, the database logic representation of the external to
conceptual mapping problem for this_éxample query is presented in

Appendix 2.
Along with the GSQL definitions of the conceptual clusters

outlined in section II, assume that the user has defined the

following external databases,

13



CREATE EXTERNAL CLUSTER N1.REGISTRAR(2) ER1
SELECT * R1
FROM NI1.REGISTRAR{1) R1
N4.STUDINFO(1) & ' :
WHERE R1-REG.STUDID = S-STUDENT.STUDID (9)

CREATE“EXTERNAD*CEUSTER”NZ;RCIS(Z}:ERCIS“
SELECT * * RCIS
FROM N2 RCIS(1) RCIS
N3 FAC(1) F
WHERE RCIS—REG-COURSE—INSTRUCTOR.INSTRUCT =
F-SYSTEM~FACULTY.NAME (10)

The external clusters ER1 and ERCIS are relational and
hierarchical external views of R1 and RCIS respectively. In the
case of ER1, the user views only a subset of the data found in
Rl. The cluster rows viewed by the user are those for which the
STUDID values of the REG table of Rl equal.the STUDID values of
the FACULTY table of §. Notice that in the WHERE clause' of the
GSQL command the table paths aré identified so that each field is
uniquely identified. -Fbr ERCIS, the user views only a subset of
the data found in RCIS. Again, the user views oniy those cluster
rows of RCIS for which the INSTRUCT values of the INSTRUCTOR

table of RCIS equal the NAME values of the FACULTY table of F.

Suppcese the wuser is at nede N1 and expresses a query based
on the external clusters ER! and ERCIS. The guery requests the
list of course numbers and grades in each départment for each
student name and student id number from the ER1 database. Each
student id number should represent a student who is found in the

ER1 database and has received a B for courses taken in the MATH

14



department and is also found in the ERCIS database and has
received a B for courses taken in the ART depatment. The data of
the result database is to be Sstored as a hierarchical database.

This query can be represented by the following GSQL command .

CREATE ACTUAL CLUSTER N1.INFO(1} INF
- SELECT (STUDID,STUDNAME,COURSES)-AS STUDENT
(DEPT, COURSE#,GRADE) AS COURSES
FROM N1 REGISTRAR(2) ER1
WHERE STUDID IN
{SELECT STUDID
FROM N1.REGISTRAR{Z2) ER1
N2.RCIS(2) ERCIS _
WHERE ER1-REG.STUDID = ERCIS-REG-COURSE-STUDENT.
STUDID
AND ER1-REG.DEPT = 'MATH'
AND ER1-REG.GRADE = 'B!'
AND - ERCIS-REG-COURSE.DEPT = TART! :
AND ERCIS-REG-COURSE~STUDENT.GRADE = 'B! (11)

This is a nested query since the appropriate STUDID values must
be found first and subsequently ﬁsed to find the student name,
department, course #, and grade -valges requested' by thé user.
Therefore, the first step of the query translation prdcess is to
generate two gueries from the above nested query, i.e.,

CREATE ACTUAL CLUSTER Nl.TEMP;FRESULT(I} FR
SELECT STUDID AS RES

FROM N1.REGISTRAR(2) ER1
N2. RCIS(2) ERCIS
WHERE ERL1-REG.STUDID = ERCIS-REG-COURSE~-
~STUDENT.STUDID
AND ER1-REG.DEPT = 'MATH'
AND ER1-REG.GRADE = 'B'
AND ERCIS-REG-COURSE.DEPT = 'ART'

AND ERCIS-REG-COURSE—STUDENT.GRADE = 'B! {12)

CREATE ACTUAL CLUSTER N1.INFO(1l) INF

SELECT (STUDID, STUDNAME, COURSES) AS STUDID
(DEPT,COURSE#, GRADE) AS COURSES

FROM N1.REGISTRAR(2) ER1

WHERE STUDID IN N1.TEMP FRESULT(1) (13)

15



For brevity of the subsequent Presentation the subsequent
translation will concentrate on the nested component of the

original query expressed by the GSQL command of expression (12).

The next step in the translation process is to express the.
GSQL gquery of expression (12) in terms of the conceptual or
actual databases. This means that the resultant cluster
N1.TEMP_FRESULT(1) FR will be attained ffom the actual databases
N1.REGISTRAR(1) Rl, N4.STUDINFO(1) S, N2.RCIS(1) RcCIS andg
N3.FAC(1l) F. The relationships among the resultant, external and

conceptual databases is depicted by'Figure 24

Let Q(CN1;..,CN2,...) be a GSQL dgquery in which cluster
instance CN1 is defined in terms of a  set of . cluster instances
which = contains cluster instance CNZ2. Similarly,
Q(CN2;...,CN3,..}) is a GSQL query in which cluster instance CN2
is expressed in terms of .a set of cluster instances which
contains CN3. ‘The composiﬁion of Q(CN1;...,CN2,...) with

Q(CNZ}..;,CNB,...)'can"be“represented as follows {211+
Q(CN1;...,CN3,...) = Q(CNL;...,CN2,...) o Q(CN2;...,CN3,...) (14)

- where; 1) The FROM clause of Q{CN1;...,CN3,...) is obtained from

the FROM clause of Q(CN1;...,CN2,...) by replacing the cluster

name CN2 by the cluster name CN3; 2) The SELECT clause of

_ Q(CNl;...,CN},...} is obtained from @{CN1;...,CN2,...) by

16



N1.TENP_FRESULT(1) FR"
I

—-—-—-.-.....—————.

i
NZ2.RCIS(2) ERCIS
Nl.REGISTRAR(Z) ER1 '
I

- = -
i
I

_— e —
]
|
1

|
- [
1 {

[
N2.RCIS(1) RCIS

!
N3.FAC(1) »

N [ ,

Nl.REGISTRAR(l) R1 N4.STUDINFO(1) F

Figure 2. Relationshi

ps Among The Result
External an

d Conceptual'Databases
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replacing  the attributes fronm CNZ2 by the defined transformation
functions of Q(CNZ;...,CN3,...) applied to the corresponding
attributes  of  Q(CN1;...,oN2,...); 3)  The WHERE clause of
Q(CN1;...,CN3,...) is obtained from Q(CNL1;...,CcN2,...) by replacing
attributes from CN2 by the defined transformation functions of
Q(CN2;...,CN3,...) applied to the corresponding attributes of

Q(CNl;..,,CNZ,...).

Therefore, for our example, g possible first composition can be

"defined as:

'Q(Nl.TEMP~FRESULT(1); N1.REGISTRAR(1), N4.STUDINFO(1},
N2.RCIS(2)) = |

= Q(N1.TEMP-FRESULT(1); NI. REGISTRAR(2), N2.RCIS(2))o
Q{N1.REGISTRAR(2); N1.REGISTRAR(1}, N4;STUDINFO(1)) | (15)

Following the steps outlined previously the GSQL gquery of

expression (12) can be written as,

CREATE ACTUAL CLUSTER Nl.TEMP_FRESULT(l) FR
SELECT STUDID AS RES
FROM Nl.REGISTRAR(l) R1
N4. STUDINFO(1) s
N2. RCIS(2) ERCIS
WHERE R1-REG.DEPT = "MATH'
AND R1-REG.GRADE = 'B'
AND ERCIS4REG—COURSE.DEPT = 'ART'
AND ERCIS-REG*COURSE-STUDENT.GRADE = 'B!
AND R1-REG.STUDID = ERCIS-REG-COURSE-STUDENT.STUDID
AND R1-REG.STUDID = S-STUDENT. STUDID (16)

18



Lastly, N2.RCIS(2) is translated in terms of N2.RCIS(1) and
N3.FAC(1l). This gives the GSQL query of @Xpression (13) in terms

of the conceptual (actual) databases, i.e.,

QFNI.TEMP;FRESULT(I}:-NI;REGISTRAR{IJ,N@;STUDINFO(I),
N2.RCIS(1),N3.FAC(1)) =

= Q(Nl.TEMP_FRESULT(l); Nl.REGISTRAR(l),N4.STUDINFO(1),
N2.RCIS(2}) o Q(N2.RCIS(2); NZ2.RCIS(1), N3.FAC(1)) (17)

Thus,

CREATE ACTUAL CLUSTER Nl.TEMPﬁFRESULT(l) FRES
SELECT STUDID AS RES
FROM N1.REGISTRAR(1) R1

N4.STUDINFO(1) g

N2.RCIS(1) RecIS

N3.FAC(1) F
WHERE" R1-REG.DEPT =" "MATH"*
AND R1~REG.GRADE = 'R’
AND RCIS~REG-COURSE.DEPT = 'ART'
AND RCIShREGFCOURSE*STUDENT}GRADE’=;'B’ o
AND R1-REG.STUDID = RCIS-REG—COURSE-STUDENT. STUDID
AND' R1-REG.STUDID = S-STUDENT. STUDID
AND RCIS*REG—COURSE-INSTRUCTOR.INSTRUCT =

= F-SYSTEM—FACULTY.NAME {18}

19



IV. QUERY DECOMPOSITION

At this point,  the  tramslation: of the example-query: has: -
resulted;in:accdmplishingrtwo‘tasks. First, the original complex
(nested) quéry'has been decomposed into two basic dueries, Second,
each of these basic queries has been translated in terms of the
conceptual databases in the distributed network. The outcome of
such a translation can  be graphically depicted by a query graph.
In our example, the basic query representing the nested component
of the original query is depicted by the guery graph of Figure 3.

Thisﬁquery,graph Corresponds to the GSQL query given by expression. .

The‘querY;graph‘of"Figure 3' indicates that' selections and
semijoing are to be eXecuted on four conceptual databases. Each
conceptual database is represented by a node on the query graph.
Attribute hames ™ for which selections are performed on clusters are
represented«byﬂdoubIeAcircles. For example, the rows of: table REG
of cluster :Rl~for; which GRADE. - 'B'  need to be seiected. This
ihformation is depicted on the arcg :connécting the attribute value:

('B"} and the cluster node N1.REGISTRAR(1) R1. In general the arc ..

notation depicting this information is given as follows:

Alias Cluster Name-Tablel~-Table2-

-+..-Tablen. Attribute Name = "Attribute Value' ‘ C(19)

20
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This notation is important for clusters representing
hierarchial and network databases since the attribute name is
defined’in?terms*oﬁLthe*tab&etto“whichfrt'beiongsz- Additicmahly;;
thisg tahleﬂis-defined'in.terms of a group . of embedded.tables
represented by the subcluster row or table path. The arcs
connecting cluster nodes define the joins or semijoins which need
to be performed. For example, in Figure 3, N1.REGISTRAR is to be
semijoined with N2.RCIS on STUDID.. The notation for such join or

semijoin operations is given as follows:

Alias Cluster.Namel—Tablel;;.-Tablen.Attribute Namel =
= Alias Cluster Name2-Tablel-...-Tablem.Attribute

Name2: | (20)

Usually the attribute names on which join or semijoin operations
are performed are identical. However, this need not always be
the case. For example, the clusters N2.RCIS(1) and N3 FAC(l) are '
to be jOlned or--semijoined on attributes INSTRUCT anduNAME;- It
is assumed .that these attributes represent - the same logical

entity.

The objective of the query decomposition process is to take
the representation of the query expressed by the query graph and
flnd an executlon strategy which answers the query. Thls exe-
cution strategy is expressed as a sequence of primitiwve opera-
tions. The primitive operations which are considered in this
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paper are the select, project, semi-join, join, transfer and
establish operafions. These operations are described explicitly
in Section IV.A. In Section. IV.B. an execution strategy is
preseﬁted'which answers the guery depicted by the gquery graph of

Figure 3.

In most cases, there. are a number of execution_strategies
which answer any particular dguery. It is 1mportant that an
execution strategy be chosen which reduces the query processing
costs (both local and network transmission costs) and/or the
query processing response time. The selection of such a strategy
is usually accomplished before the actual execution of the query
takes place and 1is based on  the capabiiity of estimating
{forecasting) the result tempbrary clustér sizes after each
primitive operation. Since the magnitude of both the response
time and processing costs depend primarily wupon the result
- temporary cluster éizes,_ the effectiveness of the query de-
compoSitionIprocess in.responding to qﬁeries in a timely and coét
effective fashion is contingent upon the accuracy of the cluster
size estimation methodqlogy.- A  discussion  of cluster size
estimation .techniques for each ‘of the primitive operations is

presented in some detail in Section IV.C.
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A. Primitive Cluster Operations

The discussion of this section is motivated by the current
implementation of the DAVID. project at NASA. Examples:of.how_
these primitives are used are presented 1in the ensuing discussion
concerning the generation of the execution tree from the query

- graph.

The first operation is that of a projection query'where the
DBMS traverses a specific source cluster instance and projects
out those attribute values specified'by_the result cluster schema
definition from every table row of each source cluster row.
These values. are then placed in a cluster according to the result
cluster schema definition. The general format of the GSQL query

for a projection operation is given as follows:

CREATE ACTUAL CLUSTER < N1 CN(i) ANAME>
SELECT <SCHEMAL>

FROM  <N1.CN'(j) ANAME'> (21)

In this case, the cluster instance Nl.CN(i)'ANAME is created and

contains the data which are projected. Let's denote the schema
of the result cluster N1.CN(i) as SCHEMAI. SCHEMA]l is defined in
the SELECT Statement. The data are projeéted from N1.CN'(3)
ANAME', thch is the source cluster. Notice that this is a local

operation, since both the source and result c¢lusters reside at
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node Nl1. Also, it is possible for the source and result clusters
to represent different types of databases. For example, our
source cluster may represent a network database whereas, the

result:cluster a relational one.

The selection operation occurs when cluster rows are
se;ected from a source cluster instance. For these cluster rows,
~specific attribute values satisfy certain boolean conditions.
For this primitive operation the source and result clusters have
the same cluster schema definitions. The GSQL query representing

this operation is given as follows:

CREATE ACTUAL CLUSTER <N1.CN'(i) ANAME>
SELECT < * ANAME'> |
FROM < N1.CN'(j) ANAME')

WHERE < BOOLEAN CONDITICNS> (22)

The cluster instance NL.CN'(i) is created and 1in this case

contains the data for which the boolean conditions are satisfiéd.

The-simultaneous.selection.projection operation occurs when
cluster rows are selected. from a source cluster instance. For
these cluster rows, specific attribute valuesr satisfy'ceriain
boolean conditions. Concurrent with the selection coperation, is
the projection of those attribute values specified by the result
schema definition. The general format .of the GSQL query for'a
_selection projection operation is.given as follows:
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CREATE ACTUAL CLUSTER < N1.CN(i) ANAME>
SELECT <SCHEMAl>
FROM- <N1. CN'{j) ANAME'>

WHERE <BOOLEAN CONDITIONS> (23)

The cluster instance N1.CN(i) ANAME 1s created and contains the
data which satisfy the boolean condition specified by the WHERE
Statement and are projected according to the SCHEMA1 definition
of the SELECT statement. The sourgce cluster Nl.CN'(j) ANAME' is
specified by the FROM statement. Again, this 1is a local
operation since both the result and source clusters reside at

node N1. -

The objective of the semijoin operation is to have the DBMS
run through two cluster instances N1.CN(1) and N1.CN'(3) and
select the' cluster rows of Nl.CN(i) which satisfy specific
boclean conditioﬁs;' The result of this operation is a cluster
instance .Nl.CN(k)' which 1is comprised of those cluster rows of -
N1.CN(i) which matched rows of N1.CN'(j) according to the booiean _
conditions. This match occurs for specific attribute values of
each cluster row for both clusters Nl.CN(i) and N1.CN'{(j). These

attributes are defined in the WHERFE statement of the GSQL query.

In order to minimize the data manipulated by the semijoin

operation, those attributes necessary to answer the guery and to
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perform the semijoin operation are projected from
N1.CN'(J) ANAME'. The result cluster is defined as a table

centaining. these essential attribute values. Thus,

CREATE ACTUAL CLUSTER <N1.CN'1{J) ANAMELl'>
SELECT <TABLEl>

FROM <N1.CN'(j) ANAME'> (24)

Tablel contains the attribute values necessary to answer the
query and those necessary to perform the semijoin operation aé
well as the virtual addresses of each tabie row of TABLEl. = It is
necessary to keep track of the table row addreéses because they
will subsequently beéome part of a map table:which will be used
to bring.together all the attributes necessary to answer thé ”

query.

During the semijoin operation each cluster row of Nl;CN(i)
is traversed. The DAVID DBMS .then'goes through all the table
rows of TABLEl and searches for possible matches.of.specific
attribute values for each cluster and table row. If a match
occurs, the cluster row 1is inserted in the result clustér
definition. Also, the virtual addresses of the_ inserted cluster
row and_ of the matched table row are inserted in the MAP table.
'The MAP table 1is created since it facilitates the temporary
representation of a clustef (TEMP) described in section IV.B.

The TEMP representation has been created in order to facilitate
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the manipulation of the data stored in the various clusters and
the final assembly of data in order to obtain the result
reguested by the user. The general format of the GSQB query for

a semijoin operation . .is: given as follows:.

CREATE ACTUAL CLUSTER <N1.CN{k) ANAME1>
<N1.MAP(m) MAP1>
SELECT <SCHEMAl>
<SCHEMA2> AS <TABLE2>
FROM <N1.CN(i) ANAME>
<N1.CN1'(j) ANAME1l'>

WHERE <BOOLEAN CONDITIONS> (25)

In the above definition, SCHEMAl represents the schema for both
the source and result clusters N1.CN(i) and N1.CN(k), whereas,
SCHEMAz defines the schema of the map table N1.MAP(m). Also,
N1.MAP{m) is. comprised'of the virtual addresées of the cluster

rows of N1.CN(i) and N1.CN1'(j) for which the boolean conditions

are satisfied. The implementation of a virtual or symbolic
address is not trivial. Currently in the DAVID project the
semijoin 'operation uses physical addresses. This creates

however, serious difficulties in keeping track of the data
especially when these data are transfered from one node to

another.
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Since in some cases the clusters which are to be semijoined
reside in two different nodes in the distributed netWork, it is
necessary to determine which one of the clusters is to be
transferred across the network. If the obhjective is to minimize
the amount of data transfer, the performance of the execution
algorithm will depend mostly on the accuracy of the resulr
temporary cluster size computations and/or estimations. Some
sample estimation techniques are discussed in more detail in

section IV.C.

When using ~the semijoin operator'in the execution tree, it
is frequently necessary to join MAP tables so as to ensure that
all the required attributes are part.of the final result cluster.
The join is preformed in general on commoﬁ virtual addresses.
The GSQL command for the join operation involving MAP tables is

as follows:

CREATE ACTUAL CLUSTER <N1.CN3(k) ANAME3>
SELECT <SCHEMAl> AS <TABLEL>
FROM <N1.CN1(i) ANAME1>

<N1.CN2(j) ANAME2>

WHERE <BOOLEAN CONDITIONS> {26)

. In this case, N1.CN1(i) and N2.CN2{j) represent the MAP tables

which need to be joined and the result MAP table is N1.CN3(k).
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In general, one can define the join operation on two
clustefs. The DAVID DBMS runs through two cluster instances
N1.CN1(i) and N1.CN2(j) and selects those cluster rows of
N1.CNI(i}) and  NL1.CN2{3j) which satisfy specific boolean
conditions. The result of'tHiS‘operaticn’iS'asciuster“instance
N1.CN3(k) whose schema is defined by SELECT Statement of the GSQL
:query, i.e., the DBMS must choose those tables and attributes
specified by the SELECT statement and insert the appropriate
attribute values from the ciuSter rows of both clusters'Nl.CNl(i)
and N2.CN2{(j) which matched. The GSQL query representing this

primitive is given as follows:

CREATE ACTUAL CLUSTER <N1.CN3(k} ANAME3>
SELECT  <SCHEMAL>
FROM <N1.CN1{i) ANAME1>

<N1.CN2(j) ANAME2>

WHERE <BOOLEAN CONDITIONS> (27)

From the current implementation experience, it . should be noted
that this operation is expensive especially if one considers

large clusters.

When building on execution tree, the analyst has two -
options. The first option is to use the semijoin operation and
to subsequently perform the appropriate joins on the MAP tables

S0 as to ensure that all the attributes necessary to answer the
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query are in the final result cluster. This final result cluster
is attalned through the use of the ESTABLISH primitive whlch is
descrlbed subsequently. The second option is to find a seguence
of join operations. In this case, the analet'dces - not need to
join any MAP tables nor use the ESTABLISH operatlon to attain the
final result cluster The relative importance of each option
needs to be investigated for different types of queries aﬁd

distributed databases.

If the first option is chosen, the DBMS muét Create the
final result cluster. Once a MAP table isg created which serves
‘as a link for all the attributes necessary to answei the query
and-their respective clusters, the ESTABLISH operation is used to
bring together all the relevant data in a final result cluster.
The ESTABLISH command uses the MAP table (MAPT) and the clusters
associated with that MAP_ﬁable to define the final result cluster
N1.CNR{k). The schema of the result cluster is defined by the
ESTABLISH statement of the GSQL command. For the current
implementation of the ESTABLISH operation, - the SCHEMA of théj_
result cluster is based on the schema of the résult cluster
requested by the user. The GSOL command for the ESTABLISH

cperation is given as follows:
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CREATE ACTUAL CLUSTER <N1.CNR{k) ANAME>
ESTABLISH <SCHEMAl>
WITH <N1.MAP(t)} MAPT>
USING <N1.CN1(i) ANAMEl>
<N1.CN2(j) ANAMEZ>

<N1.CNg(n) ANAMEqg> (28)

Finally, the operation which transmits data across the
distributed network is the TRANSFER operation. The GSQL command

is given as:

TRANSFER <Nk.CN1(i) ANAME1L>

TO <Nm.CN1(i) ANAMEZ2> (29)
For each cluster transfered across the network there is a new
cluster created at the node to which the daté is transmitted.

The cluster definitions Nk.CN1(i) and Nm.CN1{i) are identical.
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B. Execution Strategy

Starting with the query graph ie Figure 3 and ueing the
primitive . operations. described. in. the,previaue: sectieng-qne;canz
build an execution strategy which answers the query. ThiS'means
finding the sequence of primitive operations and their respective
processing sites in the distributed network S0 as to answer the
query. Due to the fact that for each query one can £ind many
execution strategies it is important to select a performance
crlterlon which the DBMS will attempt to optimize or satisfy. 1In
order to 1llustrate the generation of an execution tree, let us
assume that the DBMS is interested in reducing the,amount of data
transmitted across the distributed network and that the semijoin
primitive,will'be-usedﬁas.a primitive operation as part of the
execution strategy. There are a number of heuristic based rules
which can be appiied when generating an execution tree.  The
following rules are in part formulated from the experience gained

with the relational case.

&) It is -important to meve the projection and selection
operatiens as far up the execution- tree as possible.
This reduces the amount of data which is subsequently
wanipulated by the database. This heuristic based rule
has been documented by a number of researchers (Ullman
f311, Ceri and Pelegatti ([7], Egyhazy and Triantis
[15]).

b) Combine whenever possible, the adjacent selections and

33




c)

d)

projections over the same cluster instance. This
enables the DBMS to fetch each cluster row once and
perform both operations simultaneously, reducing the
local processing costs.

Isolate the maximum common. - select operations . over: the
same cluster instance. What is meant by a common se-
lect operation is the selection on identical attribute
fields and identical attribute values for multiple
occurrences of the same cluster instance. This enables
the DBMS to fetch each cluster row once and perform the
common select operation first and subsequently perform
any -additional projection .or selection operatioﬁSJasa
specified by'the query. This rule enables the DBMS to
reduce’its local processing costs. The_implementation
of this rule is discussed b? Welch [32]._

Seduence semijoins so as to reduce the amount of data
transfer in the distributed network by means of heur-
istic based rules or math_programming"algorithms;'Thel
effectiveness of either one depends, for the most part, -
on. the capabiiity of estimating the result temporary
cluster sizes - after each_primitiye operation. This is

discussed in more detail in section 1IV.C. Examples of

math programming formulations for distributed homoge-

nous relational DBMS for the sequencing of joins are
presented by Gavish and Segev [16], Ceri and Gottlob

[6] and Triantis and Egvhazy [30].
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e) The sequence of joins for fhe result MAP tables should
be such that the DBMS can access the data reguested by
the user through the final MAP table. It is assumed
that the sizes of the MAP tables are relatively small

as compared to the résult cluster sizes.

The result clusters created during the execution
process are stored as temporary (TEMP) clusters. The concept of
a temporary cluster is that of a group of data tables correspond-
ing to the tables found in a cluster row and a "glue" table which
describes the schema of the cluster or more specifically how each
table row is associated Qith the remaining table rows of each
cluster row. For example, Figufe 5 portrays a'temporary cluster
instance of a cluster instance for the hierarchical data RCIS of
Figure 4. One notices that for each data tablé row, there is a
unigue identifier and that the "glue" table is comprised of these
unique identifiers indicating the relationships among data table
rows. The temporary cluster representation facilitates the data
‘manipulations as far as the primitive operations are concerned.
Operations.on.clusters can  be translated to operations on data
tables aﬁd the respective "glue" tables. It is important,
however, to define the general conditions under Which clusters
can be represented in the temporary cluster form. It is not
evident that clusters representing special types of network
databaées, for example, recursive network databases c¢an

necessarily be depicted by the temporary cluster formé.
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GLUE TABLE RCIS

## RCIS #REG #COURSE #INSTRUCT #STUDENT
17 1 3 6 9
18 1 3 6 10
19 1 3 6 11
20 1 4 7 9
21 1 4 7 12
22 1 4 7 13
23 1 4 7 14
24 1 5 8 15
25 1 5 8 16
26 1 5 8 14
REGISTRAR. _ COURSE
#REG  SEMESTER YEAR #COURSE DEPARTMENT COURSE# SEC#
1 FALL 1979 3 ART 101 001
4 ENG 103 001
5 HIST 103 001
INSTRUCTOR STUDENT
#INSTRUCT  ID# INSTRUCT #STUDENT STUDID STUDNAME GRADE
6 2124 CARTER L 9 2143 SMITH © A
7 3024 GARNER B 10 7143 JONES. H B
8 1023 ALLAN R 11 8143 BROWN T A
12 7143 JONES H C
13 8143 BROWN T B’
14 4123 TAYLOR R B
15 2143 SMITH ©Q B
16 7143 JONES H - A

Figure 5. A Temporary Cluster Inétance’RepreSentation for RCIS
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Figure 6 presents a possible execution strategy for the
query represented by the query graph of Figure 3. Additionally,
Appendix 3 pictorially depicts the TEMP representation of this
execution tree.: The first*four~oper&tions~of~thi5’execution=tree~
indicate that adjaceht selection projections are performed on the

four cluster instances Nl.REGISTRAR(l),N2.RCIS(1),N3.FAC(1) and

N4 ,STUDINFO(1). These four operations were chosen in adherance
to the rules a and b presented earlier. As a result of each
adjacent projection selection, the temporary clusters
.NI*TEMP.REGISTRAR(I), N2.TEMP_RCIS(1}, N3.TEMP_FAC(1) 7§nd

N4_TEMP.STUDINFO{1l) are created. 'These operations result in the

query graph of Figure 7, where for each node there exists a
result temporary cluster. Notice that we: have cfeatEd the
temporary cluster representations N3.TEMP_FAC(1) and
N4.TEMP_STUDINFO(1) which represent relationél_databases from the
clusters N3“FAC(1) and N4_STUDINFO(1l) which represent network and
_hierarchiqal databases respectively. This - is done under the
assumption that we are achieving the greatest' data  reduction and -

that this will facilitate the subsequent semijoin operations.
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(1)
CREATE ACTUAL CLUSTER N1.TEMP_REGISTRAR(1) R11
SELECT (STUDID) AS REG

FROM N1.REGISTRAR(1)} R1

WHERE" RI-REG.DEPT" "MATH"

R1~-REG.GRADE 'B'

(2)

CREATE ACTUAL CLUSTER N4.TEMP_STUD1NFO(1) S1
SELECT {(STUDID) AS STUDENT

FROM N4.STUDINFO(1l) S.

.(3)

CREATE ACTUAL CLUSTER N2.TEMP. RCIS(1) RCIS1

SELECT (COURSE) AS REGISTRAR
(INSTRUCTOR,STUbENT) AS COURSE
(INSTRUCT) AS INSTRUCTOR
(STUDID) AS STUDENT

FROM N2.RCIS(1) RCIS

WHERE RCIS-REG-COURSE-STUDENT.GRADE = 'B’

RCIS-REG-COURSE.DEPT = 'ART'

(4}
CREATE ACTUAL CLUSTER N3.TEMP FAC(1) F1
SELECT (NAME) AS FACULTY

FROM N3.FAC(l1) F
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(3)
TRANSFER N4.TEMP_STUDINFO(1) S1

TO N1.TEMP_STUDINFO(l} S2-

(6)
TRANSFER N3.TEMP_FAC(1) F1

TO N2.TEMP_FAC(1l) F2

(7) |
CREATE ACTUAL CLUSTER N1.TEMP_REGISTRAR(2) R12
N1.TEMP_MAP1(1) M1
SELECT * R11
(# S, # R ) AS Map1
FROM N1.TEMP_STUDINFO(1} S2
Nl.TEMP_REGISTRAR(l) R11
WHERE S2-FACULTY.STUDID = R11-REG.STUDID

(8) _
CREATE ACTUAL CLUSTER N2.TEMP.RCIS(2) RCIS2
| N2.TEMP MAP2(1) M2
SELECT * RCIS1
(#F,.#RCIS} AS MAP2
- FROM N2.TEMP_FAC(1) F2
N2.TEMP_RCIS(1) RCIS1

WHERE F2-FACULTY.NAME = RCIS1-REG-COURSE~INSTRUCTOR . INSTRUCT
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(9)
CREATE ACTUAL CLUSTER N2.TEMP&RCI31(1) RCIS3
SELECT'(#RCIS)STUDID"AS.REG

FROM N2 TEMP RCIS(2) RCIS2

(10}
TRANSFER N2.TEMP_RCIS1(1) RCIS3

TO N1.TEMP-RCIS1(1) RCIS4

(11)
CREATE ACTUAL CLUSTER N1.TEMP RESULT(1) RES
N1.TEMP_MAP3(1) M3
SELECT * RI12 |
(4RCIS, #R) AS MAP3
FROM N1.TEMP_RCIS1(1) RCIS4
N1.TEMP_REGISTRAR(2) R12

WHERE RCIS4-REG.STUDID = R12-REGISTRAR.STUDID

(12)

CREATE ACTUAL CLUSTER N1.TEMP FRESULT(1l) FRES
ESTABLISH (STUDID) AS RES.

WITH:MAP3

USING N1.REGISTRAR(1) R1

FIGURE 6. Execution Tree for Sample Query
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After +the selections and projections have been performed,
the DBMS will select the sequence of semijocins such that the
amount .of data transfer across the network is minimized or
reduced. In our example, N4.TEME__STUDINFO(1} was transfered to-
node N1 to be semijoined with N1.TEMP.REGISTRAR(1) whefeas,
N3.TEMP FAC(1) was transfered to node N2 to be semijoined with
NZ.TEMP_RCIS(Z); These transfer operations assume that the
smallest temporary.clusters were transferred acrogs the network._
Once N2.TEMP_RCIS(2) was Created, a projéction operation resulted
in the creation of the cluster N2.TEMP“RCISI(1). This was done
in order to achieve additional data reduction. Finally,
N2.TEMP RCIS1(1) was transferred to node NI to be semijoined with
Nl.TEMP_REGISTRAR(2) to obtain the final answer to the quéry.
Since both N2.TEMP_RCISI(1) and N1.TEMP_REGISTRAR(2) have the
same size 1in this example, it dees hot matter which cluster is

transferred across the network°
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C. Result'Temporary Cluster Size Estimation Issues

The choice of an execution Strategy which may reduce for
€Xample both the local:processing and network_transmission costs
is contingent upon the capability’ of estimating the result
temporary clusterrsize after each Primitive operation. This

assumes that these Costs are dependent °n the number of bytes

In geﬁeral, there are tyo approaches which can be used when
estimating temporary cluster sizes.' The first dpproach assumes.
that the eXecution Strategy will _be chosen by the DBMS using
statistical information on thé original source clusters of the

query .graph, As the exXecution Strategy is denerated, eéch
primitive_operation is simulated and the result temporaryrcluster
size is estimated and used as input for the size estimation
methodology of the subsequent primitive operations in the
executiqn tree. As one moVes furthér down the execution tree,
the accuracy of the result temporary cluster size estimates
decreases. Thig simulated or compiled approach {Jacobs [21]) is
used by Egvhazy and Triantis [15] to'derive. execution Strategies

for distributed relational DBMSs.

The second approach is +to actually execute each primitive
operation as the execution tree is being generated. This assumes
that the exXecution Strategy is being built in g Stepwise fashion

using the Statistical information of the result temporary
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clusters obtained from the €Xecution of the Previous primitive
operations. In thig approach, the dccuracy of the result
temporary cluster Size estimates does not decrease ag one moves

down the execution tree since the estimation lmethadology of each

the executiqn of the previous Primitive Operations. An'example
of this 'approach would. be to execute the.original selection,
Projection operations of an execution tree and use ‘the actual

sizes of the result temporary Clusters to find the sSeguence of
the semijoin operations. Thisg approach can be 1labelled as a
dynamic size estimation methodology ang has been discussed
briefly by Stoler [28]1 and vy and Chang [31} for the relational
case. Jacobs [21] refers to thig approach as the interpretive

approach.

In order to calculate the’ actual size of 3 cluster, one
needs to. know the number of cluster rows and the length of each
Ccluster row.=-In;'general, it is not necessary for different
.cluster Iows to have 'identicai iengths; This becomes apparent
‘when one eXamines the hierarchical and network - Cases. Far
example, the length of the cluster row registrar-course-
instructor ig different from that of the cluster row registrar-
: course-sﬁudent of  the hierarchical cluster RCIS of Figure 4,
sihce each cluster row is defined by different sets of
attributes. Therefore, the result size of a temporary cluster

after each primitive operation is determined ipn general by
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finding the expected number of rows of the result cluster as well
as the expected length of the result cluster row. The expected
number of cluster rows in turn depends on the boolean conditions
stated in the WHERE clause of the GSQL primitive, whereas, the
€xpected length of a cluster row: depends on. - the schema of the
result cluster defined by the SELECT clause of the GsQL

primitive.

The framework bProposed by Jacobs [21] is to Calculate the

following relationship after each primitive Cperation:

TCLSIZE = (CART) * (RF) = (ROW) {30)
where, |

TCLSIZE : Expected Temporary Cluster Size

CART : Cardinality of the Source Cluster(s}

RF : Reduction Factor

ROW : Expected Cluster Row Length

The cardinality Of the source cluster (CART) times the reduction
factor (RF) associated with each primitive operation glves the
eXpected number of rows of the- result cluster. The reduction
factor for each prlmltlve operation can be expressed in terms of
the probablllty of the boolean conditions being satlsfled 1n the
WHERE clause. If the GSQOL ‘bPrimitive operation has a number of

additive boolean conditions the RF may be expressed as:
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{31)

The expected result cluSter row length (ROW) defined by the
SELECT statement of the GSQL primitive query will be the sum .gf

the lengths of €ach record associated with the result cluster

Where, n ig the total number of records associated with the

result_cluster. LRj is the length of record j . angd PRLj is the

Given the above framework, the accuracy of TCLSIZE is

_ dependent on obtaining accurate estimates of PRB; and PRLj. This

to the Specific records and their OcCurrences for each source
cluster table ang for each source cluster row. However, the

collection and maintenance of Such statistices will increase the
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overhead of any DBMS. Therefore, given the original cluster
sizes, the types of gqueries requested by the user and the local
processing and network transmission costs, one must assess ﬁhe
necessity of: a. sopnisticated astimation methodology: Versus &
crude one. One approach which is currently under investigation,
is to maintain a statistical file or log file which contains the
number of occurrences of each attribute value other than key
attributes, for each source cluster table and for each source.
cluster row. Given the current implementation of +he TEMP
cluster structure the use of a 1log file 1is. feasible. This.
approach has been implemented. for the relational case by Stoler
[2817. However, alternative estimation approaches and their

associated methodologles need to be further investigated. -
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5. SUMMARY AND RESEARCH ISSUES

The' query decomposition framework as presented  in this
paper, i1s contingent on two major factors. As depicted by Figure
9, the first factor is the data modeling approach Which is based
on database lecgic énd suppoerts a uniform view of the relational,
hierarchical and network models. The second factor is the pre-
guery decomposition translation which is comprised of three
principal traﬁslations:. complex to basic, external to conceptual
and logiéal optimizaticn. The complex to basic translation takes
an original complex gquery and geherates basic quéries. Coﬁplex
queries can be union, nested and tree gueries... In the example
given in thié raper,  we translated a 'neSted'Queryrintcrtwo
separate basic queries. The external to conceptual mapping
translation generates basic queries which referenCE'conceptuél
instead of external d&tabases.. Finaily, the logical'optimization
trahslation which:- - was not referenced in our example, is used to
replace GSQL queries with smaller but logically equivaleht GSQL
queries. The sﬁrategies involﬁed in accomplishing_ this
translation are based on the database logic representation of a
cluster as giﬁen in Jacobs [20]. A first implementation of this
approach is being contémplated by the DAVID project at NASA's

Goddard Space Flight Center.
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The gquery generated by the logical optimization translation
brocess becomes the input to query decomposition, As a first
approech to QUery decomposition,certain heuristic baged rules, as
cutlined:in Section 1IV.B., may be followed ip generating an

execution Strategy. These rules in conjunction with temporary

result size estimation algorithhs will determine the query 1local
bProcessing and hetwork transmission costs. These costs are
assumed to be direetly releted to size of 3 temporary cluster
being manipulated. The cluster size and total query processing
costs can be subsequently used to model the sequencing of
semijoins or joins. The algorithms for estimating the Sizes of
temporary result Cclusters as weill as determining the sequencing

of semijoins or joins are currently under investigation, The

After the initial optimization and siée estimation
algorifhms are implemented and tested for specific gueries and
database, refinements ef these algorithms-will beineceseary for
€ach of the above described translation Processes.. However, the
major challenge will involve finding methods to improve the
global query translation, i,e., from the. complex to basice
Eranslation ﬁo primitive query sequencing. In order to approach
this challenge, Procedures need to ke investigated which will

improve the overall translatien Process and not be ag concerned



FOOTNOTES FOR TEXT

'lRelational databases are databases ip which data are

represented by one or more separate tables. These tableg

hierarchies of records. In a hierarchy, & specific record

can have subsets of records called children. Each of the

record cannot be used anywhere else in the hierarchy.- This
means that-'a.childarecordvcan-have.onlyfone*parent; On the
other hand, in a network database g child record can have
many parents. Thus, in a network database data appears to
the user as sets of recorde where each record may have many

children ang itself be the child of many parents.

2Relational’ queries can be partitioned into two classes
called-treeaqueries and cyclic queries based on 5 canonical-

graph representation of the query f31.

3Database logic is used to represent both language and viey
interpretations. These interpretations can be used to

construct mappings between database views,

4Recu_rsive network databases are not Supported by the

current implementation of the DAVID Project,
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APPENDIX 1
GSQOL: Cluster: Definitions.

The remaining clusters of Figure 1 are defined as follows.

Define Cluster Nl.REGISTRAR(l) R1

REG TABLE |
- (SEMESTER  CHaR [ 61;
YEAR - CHAR [ 4],
DEPT CHAR [10];
COURSE #  cHaR | 61;
SEC # CHAR [ 5],
ID % CHAR [10],
INSTRUCT  CHAR [30],
STUDID CHAR [10],
STUDNAME  CHAR [30],
GRADE CHAR [ 5])

KEY SEMESTER,YEARFDEPT,COURSE#,SEC#,STUDID :
FD SEMESTER,YEAR,DEPT,COURSE#,SEC#;STUDID--)GRADE”
FD SEMESTER,YEAR;DEPT,COURSE#,STUDID-*)SEC#

STORE AS DBASF (ORACLE); ' :

This ig also the definition for NS.REGISTRAR(l) R5.
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Define Cluster N3.FAC(1) F

SYSTEM Table

(DEPARTMENT_TABLE;
SENIORITY TABLE;
FAaCULTY: TABLE)
DEPARTMENT: TABLE

SENIORITY TABLE

FACULTY TABLE

STORE As DBASE:(SEED);

(DEPT CHAR [101;
CHAIR CHAR [307;

OFFICE CHAR [10];

FACULTY TABLE)

KEY DEPT

FACULTY TABLE
{ID#
NAME

SALARY NUM
DEGREE CHAR

KEY ID#

(ACADRANK CHAR [107];

FACULTY TABLE

KEY ACADRANK

FACULTY TABLE
(ID#
NAME

SALARY NUM
DEGREE CHAR [

KEY ID#

(ID# CHAR [10];
NAME CHAR [30];
SALARY NUM [10];

DEGREE CHAR [207)

KEY ID#
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Define Cluster N4.STUDINFO(1) s
STUDENT TABLE

(STUDID CHAR [101;
STUDNAME CHAR [30])
ADDRESS  TABLE;

BIRTHDATE CHAR [20]; -
DATEADM - CHAR [20];
CREDITS TABLE;

GPA NUM [161];
MAJOR CHAR [10];
MINOR CHAR [20])
KEY STUDID

ADDRESS TABLE ‘
(STREETNO CHAR [10];
STREET CHAR [20];
CITY CHAR [20];
STATE CHAR [20];
ZIPCODE CHAR [101])
KEY STREETNO, STREET, CITY, STATE
_ FD ZIPCODE --> CITY, STATE
CREDITS TABLE .

(DEPT CHAR [10]
NOCREDIT NUM [ 4})
KEY DEPT

STORE AS DBASE (DAVID);
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Before we c¢an describe how to arrive at the answer to the
duery on the exXternal clusters, wermust define a Cconceptual View,
V{Dcon), which includes a1] of the relevant conceptual clusters,
an external view V(Dext), which includes the external clusters,
and an interpretation of the eXternal view in the conceptual view

I(Dext:Dcon).

In the conceptual view, there are several icldsters'which
have tables of the same hame. To avoid having to prefix a1} of
the table names With their cluster names, the table names wil]
have a number corresponding to their node appended to the name,
For example, the REG taple ip NL.REGISTRAR will pe called REG]
and the REG table in RerIs will be calleqd REG2,

of views, excluding al1 issues pertaining to the transformation
of character sets (i.e., from EBCDIC to ASCII or vice versa) and

the interpretatiop of constraints.

The - Conceptual definitions of Nl.REGISTRAR(lJ,

N2.RCIS(1),N3,FAC(1)'and N4.STUDINFO(1) are given as follows:
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V(Dcon)

S{Dcon) i  SCHEMA DEFINITION

TABLE REG1 = (semester, year, dept, Course#, sec#, id#,
instnuct;‘studid,,studname,vgxadel= '

TABLE REG2 = (semester, Year, COURSE2) .

TABLE COURSEZ = (dept, Course#, sect, INSTRUCTORZ}STUDENTZT

TABLE.INSTRUCTORZ = (id#}_instruct)

TABLE STUDENT? = “(studid, Studname, grade)

TABLE SYSTEM3 = (DEPARTMENTB, SENIORITY3, FACULTYB)

TABLE DEPARTMENT3 = (dept, chair,'office, FACULTY3)

TABLE SENIORITY3 = (acadrank, FACULTY3)

TABLE FACULTY3 = (id#, name, Salary,degree)

TABLE STUDENT4 = (studid, Studname,_ADDRESS4, birthdate,

_ dateadm, CREDITSY, grpa, major, minor)

TABLE ADDRESS4 = (streetno, Street, City, state,.zipcode)

TABLE CREDITS4 = (dept, noncredit)

TABLE REGS = (semester, year, dept, courses, sec¥, idg,

‘ instruct, studid, Studname, grade) .
T{Dcon) TYPING DEFINITION

TYPE SEMTYPE = (semester) ASCII CHAR(6)

TYPE YRTYPE = (year) ASCII CHAR(4) :

TYPE DEPTYPE = (dept, major, minor) ascrr CHAR(10)

TYPE CSTYPE = (course#) ASCIr CHAR(6)

TYPE SECTYPE =  (sec#) ASCII CHAR(5)

TYPE IDTYPE = (id#, Studid)_ASCII_CHAR(IO)

IYPE NAMETYPE = (instruct, studname, chair) ASCIT CHAR(30)

TYPE GRDTYPE = (grade) ASCIT CHAR(5) .

TYPE.OFCTYPE = (offiCE) ASCIIT CHAR(10)

TYPE RANKTYPE = '(acadrank) ASCII CHAR(10)

TYPE”SALTYPE_H = (Salary) ASCII CHAR(10) .

TYPE SNTYPE = = (streetno) ASCII CHAR(10)

TYPE STRTYPE = (street) ASCII CHAR(20)

TYPE CITYTYPR = cleity)y ASCII’CHAR(20)

.TYPE=STATETYPE'= (state} ASCIT CHAR( 20}

TYPE ZIPTYPE = (zipcode) ASCII CHAR(10)

TYPE DATETYPE = (birthdate, dateadm) ASCII CHAR(20)

TYPE GPATYPE = (gpa) ASCII_NUM(IO)

TYPE_GRDTYPE = _(noncredit) ASCIT NUM({4)

TYPE DEGTYPE =

VIEW DEFINITTON

(degree) ASCII CHAR(20)



P(Dcon): PREDICATE DEFINITION

REG1 (semtype, Yrtype, deptype, Cstype, sectype, idtype,
hametype, grdtype) CLUSTER PREDICATE
T )

&semtype%-yrtypey COURSE&;-deptypey'cstypeg*sectypemz
INSTRUCTORZ, idtype, nametype,STUDENTZ, idtype&.nametype,
grdtype) CLUSTER PREDICATE :
SYSTEM3 -DEPARTMENT3 ~SENIORITY3-FACULTY3 .
(deptype, nametype, ofctype, DEPARTMENT3, ranktype
-FACULTY3, idtype, nametype, saltype, degtype) CLUSTER
PREDICATE .
SYSTEMB~SENIORITY3-FACULTY3 : _
' (ranktype, FACULTY3, idtype, nametype, saltype, degtype)
_ SUBCLUSTER PREDICATE
SYSTEM3-FACULTY3 ¢ {idtype, nNametype, Saltype, degtype)
ROW PREDICATE . ' . _
STUDENT4*ADDRESS4 : (idtype, nametype, ADDRESS4, sntype,

strtype, citytype, Statetype,. Z21ptype, datetype, datetype,

gpatype,deptype, deptype) CLUSTER PREDICATE
STUDENT4-CREDITS4 : (idtype, hametype, datetype, datetype,_

CREDITSY, deptype,.crdtypef gpatype,tdeptype, deptypey}. -

_ CLUSTER PREDICATE
REGS (semtype, Yrtype, deptype, Cstype, sectype, idtype,
nhametype, idtype, nametype, grdtype) CLUSTER,PREDICATE

In order to ascertain the eXistance or absence of ap
entire cluster,_'we evaluate cluster predicates. If we ere to
ascertain the existance or absence of component tables of a
cluster, we eValuate subcluster Predicates. If we are to
ascertain the existance or absence  of 4 row of a3 cluster, we

evaluate row Predicates.

and N2, RCIS(2) ERcrIs are given subsequently. Table REGI1?2
belongs to ER1, whereas; Tables REG22, COURSE22, INSTRUCT22 ang

STUDENT22'belong to ERCIS.

62



Similarly, we define V(Dext) asg follows:

V{Dext) VIEW DEFINITION

S{Dext)... . _SCHEMk;DEEENLTEQNJ

TABLE REGIZ2 = (semester, year, dept, course#;'sec#, idy,
instruct;'studid;Vstudname, grade)
TABLE REG2? = (semester, year,. COURSE22, STUDENT22)_
TABLE COURSE22 = {dept, Course#, sec#, INSTRUCTOR22)
TABLE INSTRUCTOR 22 = (id#, instruct)
TABLE STUDENT 22 = (studid, Studname, grade)
T(Dext) : TYPING DEFINITION

TYPE SEMTYPE
TYPE YRTYPE
TYPE DEPTYPE -
TYPE CSTYPE
TYPE SECTYPE
TYPE IDTYPE
TYPE NAMETYPE
TYPE' GRDTYPE -

(semester) ASCIT CHAR(6)

(vear) ASCIT CHAR( 4)

(dept) ASCIT CHAR(lO)

{courses) ASCII-CHAR(6);

{(secy) ASCII'CHAR(S)

(ids, studiqd) ASCIT CHAR(lO}
(instruct, Studname} ASCIT CHAR(30)
(grade) asc1t CHAR(5)

Wb gy

P(Dext) . PREDICATE DEFINITION
REG12 . (semtype,'yrtype, deptype, Cstype, sectype,
idtype, nametype, idtype, nametype, grdtype)
CLUSTER PREDICATE -
REG22—COURSE22—INSTRUCTOR22—STUDENT22 _
(semtype, VItype, COURSE22, deptypeh Cstype, sectype,
INSTRUCTOR22, idtype, nametype, STUDENT22, idtype)
CLUSTER PREDICATE : ' .
The mapping of-the eéxXternal View into the_conceptual view,
as defined above, refers to Specifying the Correspondence of
types and Structures among agn interpretation are the coding

section and the defining formulas sSection. For our example we
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I{Dext;Dcon} INTERPRETATION DEFINITION

EXTERNAL VIEW IS V{Dext)
CONCEPTUAL VIEW IS V(Dcon)

CODING SECTION

CODE FOR™ semtype  ig semtype”
CODE”FOR‘-yrtype" s yrtype

CODE FOR deptype is deptype

CODE FOR cstype is cstype

CODE FOR sectype is sectype

CODE FOR idtype is idtype

CODE FOR nametype is nametype

CODE FOR grdtvpe is grdtype

CODE FOR course2? is deptype, Cstype, sectype
CODE FOR instructor 22 is idtype, nametype
CODE FOR student 22 is idtype, nametype, grdtype

DEFINING FORMULAS SECTION

PREDICATE COURSE22
ARGUMENTS ARE (semester:1, year:1, deptal,.course#:l,
sec#:l)
15 DEFINED BY
(E) id¢: 1 (E) instruct:1 (E) id#:2 (E) salary:1
REG2—COURSE2—INSTRUCTORZ*STUDENTZ
(semester:l, vear:1l, dept:1, Course#:1, sec#:1,
id#:1, instruct:1, id:1, name:1, grade:1)
& SYSTEM3—FACULTY3(id#:2, instruct:1, salary:1)
PREDICATE INSTRUCTOR22 '
ARGUMENTS ARE {semester:1, year:1, dept:1, course#:1,
sec#:1, id#:1, instruct:1) y
IS DEFINED BY: .
(E) id$:2 (E) salary:1
REGZ?COURSEZ-INSTRUCTOR2.
(semester:1, year:1, dept:1, Course#:1, sec#:1,
ids:1, instruct:1)
& SYSTEMSB—FACULTYB(id#:Z, instruct:1, salary:1)

PREDICATE STUDENT?2 _ - ' _
ARGUMENTS ARE (semester:1, year:1l, dept:1, course$:1,
section#:1, id#:1, studid:1, studname:1, grade:1)
IS DEFINED BY : -
(E) id#:2 (E) salary:1 (E) instruct : i
REGZ2-STUDENT?
(semester:1, year:1l, dept:1, coursed:1,
section #:1, id#:1, studid:1, studname:1,
grade:1) : :
& SYSTEMB-FACULTY3(id#:2, instruct:1, salary:1)
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PREDICATE . REG12

ARGUMENTS ARE - (semester:y, year:1, dept:1, course#:1,
sec#:1, Id#:1, instruct:l,-studid:l, Studname: 1,

- grade: 1)

IS DEFINED BY .
(E) Studname: 2
REGI”Csemester:r; year:I,'dept:I, course#: I, Sec#:1,
id#:1, instruct: Ly studid:.1, Studname:1, grade:1)
&'STUDENT4Lstudid¢l, studname:2) '

PREDICATE . REG22-COURSE22-INSTRUCTOR22-STUDENT22
ARGUMENTS ARE - (semester:l, year:1, dept:1, Course#:1

sec#:1, id#:1, instruct:l, studid:1, Studname:1,
grade:1) ‘

IS DEFINED By
(E) id#2 (g salary:1
REG2—COURSE2-INSTRUCTOR2“STUDENTZ

(semester:l, Year:1, dept:1, Course#:1, sec#:1,

idg:1, instruct:l, studid:l,_studname:l
grade:l)

& SYSTEM3-FACULTY3(id#:2,

’

instruct:L, salary:l)

codes in the conceptual view, For example, consider the row

Predicate of (semtype,yrtype, COURSE22,dept
INSTRUCTOR22,idtype,namet
nametype,grdtype) as:

YPe,CStype, sectype,
ype, STUDENT22,idtype,

(semester:l,yearrl, COURSESZ?’(dept:l;cours

e#:1,seck: 1)
INSTRUCTORZZ (id#:l,na

me:1}, STUDENTZZ(studid:l,studname:l,_
' grade:1)) ' :

The defining formula for the question, from above, has arguments:

(semester:l,year:1,dept:l,course#:l,sec#:l,id#:l,
instruct:l,studid:l,studname:l,grade:l)

Notice how the variables of V(Dcon), namely Semester, vear ang so

©en, correspond to the codes for the original Variables in

The defining formula for this row predicat
(E}) id#:2 (gm) salary:1 |

V({Dext). e is:
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REGZ-COURSEZ—INSTRUCTORZ—STUDENT2 _

(semester:l,year:l,dept:l,course#:l,sec#:l,id#:l,instruct:l,

studid:l,studnamezl,grade:l)

& SYSTEM3-FACULTY3 (id#:2,instruct:1,salary:l)

Thus, €ach table or cluster name is“defined“in terms-of”free
and existentially quantifieqd variables. Arguments, Such as
Semester:1, Corresponds  to the free variables used, while the
variable names Preceeded by (E) Correspond to the existentially
quantified variables, those not used in defining the table or
cluster Predicate. This notation ang concepts are fully
developed by Jacobs [217]. Since the éxternal view has tables

with the same structure asg conceptual tables, we have dappended 3

2 to_ the conceptual table name to arrive at the exXternal table

name. For.example, REG12 is gan external tabie with the Same -

Structure ag the Conceptual table REG].

by relation 11 ig as follows:

CREATE ACTUAL CLUSTER N1.INFO(1) INF
SELECT {sTUDID, STUDNAME, COURSE) AS STUDENT
(DEPT, COURSE#, GRADE) AS COURSES
FROMle;REGISTRAsz) ERI
WHERE STUDID IN _
~ (SELECT STUDID FROM N1.REGISTRAR(Z) ER1
N2 RCIS(2) ERCIS

WHERE ER1-REG.DEPT = ERCIS-REG-COURSE-STUDENT.STUDID
: AND ER1-REG.DEPT = '"MATH'
AND ER1~REG,GRADE = 'B'

AND ERCIS-REG—COURSE.DEPT = 'ART'
AND ERCIS-REG-COURSE-STUDENT.GRADE = 'B!
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To arrive at the answer to thig query we must exXpress the
view V{(Dquery) which Corresponds to the query, in  terms of the

external view on which the query isg based, namely V{Dext), We

Will call this the interpretation of unery'in' terms.of'Dext;

Ifunernyextfg Since‘VTDext)"is*iﬁ;turn deriveg from relevant

conceptual clusters defined in V{Dcon), we must then perform an
exXternal to conceptual mépping. The function of this mapping isg
to replace the €xXternal databases in & query with their definji-
tions in terms of the underlyiﬁg Cconceptual databases.

The schema of V{Dquery) is:

TABLE STUDENT = (STUDID, STUDNAME, COURSES)
TABLE COURSES = (DEPT, COURSE#, GRADE)

In the_interpretation I(unery;Dekt), Iow predicates ang the
seguence of variables that range over the code for each data type
are:

DEFINING FORMULA SECTION

PREDICATE STUDENT—COURSES :

ARGUMENTS ARE (studid:l, Studname:1, dept:1,
courseg:1, grade:1)

IS DEFINED BY S
(E) Seémester:1 (E) vear:1l (E} sec#:1 (E) id#:1
(E} instruct:1 (E) course#:2 (E). studname:?
(E) Semester:2 (E) semester:3 (g) year:2
(E) year:3 {E) course:3 (EY sec#:2 (E) id:2
(E) instruct:? (E) studname:3
REGlZ(semester:l, year:1, dept:1, course#:1,

sec#:1, id#:1, instruct:l, studid:1,

: studname:l, grade:1) :

& REGl2(semester:l, year:1, "MATH', course$:2,
sec#:l,_id#:l, instruct:l, studid:1,
Studname:2, 'p') -

& REG22—COURSE22*INSTRUCTOR22
(semester:2, year:2, 'arT!', course¢: 3,

sec#:2,_id#:2, instruct:2)
& REG22FSTUDENT22 .
(semester:B, year:3, studid:l,_studname:3, 'B'}
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Basically, each defining formula (PREDICATE—name) represents
& question of whether Oor not .a ow in the cluster or table
defined in Dext reduces to questions about rows in cluster(s) or
table(s) defined in Dcon. Let's then perform an external to con-
ceptual'mappingfof*this*defining"formula in“terms”cﬁ*the defining-
formulas for_.REGIZ, REG22~COURSE22-INSTRUCTOR22, and REG22-
STUDENT22. Performing the substitutiong results in the following
formula (the eXistential variables that apnear only once are
~dropped and g - is substituted to mean "don't care" in order to
simplify the formnla; since the_ pPredicates are typed, we can

figure out what variables are necessary).

PREDICATE STUDENT—COURSES
ARGUMENTS ARE fstudid:l, studname:l,_dept:l, course#:1
grade:1).
IS DEFINED BY
- REG1(-, -, dept:1, course#:1, -, -+ =, sStudid::
Studname:1, grade:1)
& STUDENT4(studid:1,~)

& REGI1{-, =, 'MATH', course#:1, -, T =, studid:l,
Studname:1, 'BY) ' o

& STUDENT4(studid:I, - '
& REGZ—COURSEZ-INSTRUCTOR2(-, =, 'ART', -, -, “r=,)
& SYSTEMB—FACULTYB(-, -, =)
& REGZ—STUDENTZ(-, -, Studidfl, -, 'B")
& SYSTEM3-FACULTY3(-, =y =)
Renames, eliminating duplicate conjuncts, and eliminating

bredicates which use all existentially ‘quantified variables
resulté in the following Simplified formula which represents the

query as it is defined op the conceptual view.
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PREDICATE STUDEN'I’—COURSES
ARGUMENTS ARE (Studid:l,
grade:1)
IS DEFINED BY

&,REGl(>-n--ﬁ"MATHPm_courseé;l,.—
studname:l; "Bt}

INSTRUCTOR2(~, ~, *agpe,. “ise =, =)
& REG2-STUDENT2(~, -, studid 2L, ~, 'y

studname:l, dept:l, course#:l;

- -
f r . | CO

At this pPoint, the query graph may be drawn.
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(1) N1.TEMP_REGISTRAR(1) R11
GLUE R11 REG
¥ R # REG ¥REG STUDID
4 1 1 3143
5 2 2 2143
6 3 3 6143
(2) D N4. TEMP_STUDINFO(1) s1
GLUE S1 STUDENT
s #STUDENT #STUDENT ~  sTUDID
10 7 7 5143
11 8 8 2143
12 9 9 6143
(3) . N2.TEMP_RCIS(1) RCIS1
GLUE RCISI' REGISTRAR'
*RCIS  #REG  §COURSE #INSTRUCT  §STUDENT # REG
19 13 14 15 16 13
- 20 13 14 15 17
21 13 14 15 - 18
COURSE - INSTRUCTOR STUDENT
# COURSE # INSTRUCT  INSTRUCT  4STUDBENT STUDID
14 15 CARTER 16 2143
| 17 7143
18 8143
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10
11
12

# F
25
26
27

# .

(4)

GLUE

(5)

GLUE

(6)

GLUE

(7). -

GLUE

F1

#EA
22
23
24

S2

# STUDENT
7
8
9

F2
# FAC
22

23
24

R12
# REG

N3.TEMP_Fac(1) p1

FACULTY
$FAC  NAME

22 CARTER .
23 GARNER
24  ALLAN

N1.TEMP_STUDINFO(1) 5o

STUDENT
# STUDENT  STupIp
5143

8 2143

9 6143

N3.TEMP Fac(1) 2

# FAC
22
23
24

N1.TEMP_REGISTRAR(1) Ri .

FACULTY

REG SAME  AS IN (1)

NAME

CARTER
GARNER

ALLAN

N1.TEMP_MAP1(1)

MAP1
# 5 4R
11 s
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(8) N2.TEMP~RCIS(2) RCIS2

GLUE RCIS? _
¥ RCIS #REG :. #COURSE - #INSTRUCT: - - #STHBENTW
19 13 14 15 16 -
20. 13 1 15 17
21 14 14 15 18

Same REGISTRAR, COURSE, INSTRUCTOR and STUDENT Tables as in (3)
N2.TEMP_MAP2(1) M2

MAD2
#F . #RCIS
25 19
25 20
25 21
(9). N2.TEMP_RCIS1(1) RCIS3
| GLUE RCIS3 REG
#RCIS3 #RCIS #RCIS STUDID
26 19 | 19 2143
27 20 20 7143
28 21 21 8143
(10) N1.TEMP_RCIS1(1) RCTS4
GLUE RCIS4 7 REG
#RCIS3 . #RCIs #RCIS STUDID
26 19 19 - 2143
27 20 20 7143
28 21 21 8143
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(11) Nl.TEMP_RESULT(l) RES

GLUE RES REG SAME AS IN (1)
$# R # REG
5 2
N1.TEMP_MAP3 M3
4 RCIS # R
19 5
(12) N1.TEMP_FRESULT(1) FRES
GLUE FRES RES
4 FRES 4RES '~ # RES  STUDID
32 31

31 2143
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