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FINDING ALL ISOLATED SOLUTIONS TO POLYNOMIAL SYSTEMS
USING HOMPACK

by

Alexander Morgan, Andrew Sommese, and Layne Watson

ABSTRACT

Although the theory of polynomial continuation has been established for over a decade
(following the work of Garcia, Zangwill, and Drexler), it is difficult to solve polynomial
systems using continuation in practice. Divergent paths (solutions at infinity), singular
solutions, and extreme scaling of coefficients can create catastrophic numerical problems.
Further, the large number of paths that typically arise can be discouraging.

In this paper we summarize polynomial-solving homotopy continuation and report
on the performance of three standard path-tracking algorithms (as implemented in HOM-
PACK) in solving three physical problems of varying degrees of difficulty. Our purpose is
to provide useful information on solving polynomial systems, including specific guidelines
for homotopy construction and parameter settings. The m—homogeneous strategy for
constructing polynomial homotopies is outlined, along with more traditional approaches.
Computational comparisons are included to illustrate and contrast the major HOMPACK
options. The conclusions summarize our numerical experience and discuss areas for future
research. '




1. Introduction.

Let f(z) = 0 denote a system of n polynomial equations in » unknowns with complex
number coefficients. Generally, such a system has many (complex) solutions. We use
homotopy continuation to find all the geometrically isolated solutions of f(z) =0 as
follows. We embed f in a system of n polynomial equations in 7 + 1 unknowns where this
new system includes the variables of f and a new variable, the homotopy parameter. For
one value of the homotopy parameter, the new system can be satisfactorily solved, and for
another it is identically equal to f. The continuation process attempts to solve f(z) =0
by evolving or “continuing” the full set of known solutions into the full set of solutions to

f(z) =0.

We denote the homotopy system by A(z,t) = 0 where h(z,1) = f(2) for all z and
we know the solutions to h(2,0) = 0. Thus we view the homotopy parameter, ¢, as
~varying between 0 and 1. We must continue the solutions of A(z, 0) = 0 into those of
h(z,1) = 0. We assume sufficient conditions so that £~1(0) consists of smooth paths, and
the continuation of solutions becomes process of “path tracking.”

Many issues arise in atternpting to implement this concept into a reliable and fast
algorithm for computing all solutions to polynomial systems. Basically, there are two
steps:

(1) Define the homotopy, A(z,t).
(2) Choose a numerical method for tracking the paths defined by h{z,t) =0.

Step (1) is guided by results from algebraic geometry, while (2) is based on methods for
the numerical solution of ordinary differential equations and local methods for the solution
of nonlinear systems. Both parts are nontrivial and important. '

When homotopy continuation is used to compute the full solution list for a polynomial
system, the continuation is carried out in complex projective space in a complex analytic
context (as discussed in Section 2). Asa consequence, the homotopy paths have a very
special structure. For example, dt/ds > 0 on paths where s denotes arc length; thus,
paths are strictly increasing in ¢ as a function of arc length. On the other hand, singular
solutions to f(z) = 0 always reduce the real-rank of the Jacobian matrix by a multiple of
2. Therefore, the end game of the continuation process cannot be made nonsingular by
generically embedding f in k, and “rank n— 1 local refinement algorithms” are not applica-
ble. Most sophisticated path-tracking algorithms allow paths to “turn back in t,” so these
algorithms are more general than is needed for polynomial-solving homotopy continuation,
and at the same time they generally do not respond well to highly rank deficient endpoint
singularities. It follows that these path trackers are not necessarily well suited to the paths
generated by polynomial continuation. This paper studies the behavior of three standard

‘path-tracking algorithms on the special paths generated by polynomial homotopies. In-

cluded is a brief summary of the theory of éonstructing polynomial homotopies (Section 2)

=

1




and a brief description of the three path trackers, as implemented in HOMPACK (Section
3). Section 4 describes three test problems and the results of the associated numerical
experiments. Section 5 is a summary with conclusions and suggestions for future work.

We shall call polynomial-solving homotopy continuation “polynomial continuation.”
Any numerical method to find the full set of geometrically isolated solutions to a polyno-
mial system using homotopy continuation is “polynomial continuation.”

The POLSYS routine in HOMPACK evokes a traditional polynomial homotopy. POL-
SYS uses a convenient “tableau” format for inputing the system parameters, along with
options to scale (via subroutine SCLGNP) and to apply the projective transformation. In
this paper we consider a broader range of options than is available in POLSYS, the most
important being the m~—homogeneous approach to homotopy constriction (described in
section 2). Also, we consider three path-tracking methods, while POLSYS offers only one.
- We include in our numerical experiments tests of codes equivalent to POLSYS. See the
beginning of section 3 for additional comments on POLSYS.

The idea of polynomial continuation was first suggested in 1977 in papers by Garcia
and Zangwill [10] and Drexler [5]. The following year Chow, Mallet-Paret, and York [4]
presented an important refinement of the Garcia and Zangwill work. A number of papers
have followed: Brunovsky and Meravy [2], Drexler [6], Garcia and Lj [9], Garcia and
Zangwill {11-14], Li, Sauer, and Yorke [19], Morgan [21-24], Morgan and Sommese [25,
26], and Wright [WR].

There have also been some significant physical applications. See Richter and De Carlo
[28], Meintjes and Morgan [20], Morgan [24], Morgan and Sarraga [27], Safonov [30], and
Tsai and Morgan [32].




Section 2. Constructing Homotopies For Polynomial Systems.

In this section we state the three theorems on which the m—homogeneous method
of constructing polynomial homotopies is based. (These theorems are proven in [25] and
[26].) Then we outline the steps in the homotopy construction process.

Let f(z) = 0 be a polynomial system of n equations in n unknowns with complex
number coefficients, where z € C™. First, we need the definitions of & geometirically isolated
solution and the multiplicity of a solution.

A solution to a polynomial system is called geometrically isolated (or simply isolated)
if there is a ball around the solution that contains no other solution. A solution that is
not geometrically isolated is singular, but an isolated solution can be singular also.

Let 2* be a geometrically isolated solution to the polynomial system f(z) = 0. Let
U be a closed ball about z* containing no other solution. We can perturb f by adding
arbitrarily small complex numbers to each coefficient of f {including the zero coefficients)
in such a way that the perturbed system has only nonsingular solutions. (For example, by
the Transversality Theorem [16], it suffices to add small random numbers to the constant
terms.} For all sufficiently small coefficient perturbations, the perturbed systems have =
constant number, m, of solutions in I/, This m is (by definition) the multiplicity of z*. See,
for example, (7], [8], [15], [31], [37]. We note that a solution z* to f(z) = 0 has multiplicity
greater than one exactly when it is singular; that is, when the Jacobian matrix df(z*) is
singular.

The algebraically proper context for generating the full solution list of a polynomial
system is complex projective space rather than real or complex Euclidean space. This is
because the structure of the solution set to f(z) = 0 is generic in projective space. (See,
for example, Bezout’s theorem in the above algebraic geometry references. ) Homotopy
continuation methods for generating the full solution list to f (z) = 0 have always implic-
itly acknowledged this by being formulated in complex Euclidean space and allowing paths
to diverge to infinity. It is more numerically stable, however, to acknowledge projective
space directly. We therefore follow the classical approach from algebraic geometry of ho-
mogenizing f and establishing our continuation process in projective space. In many cases
it is advantageous to homogenize f so that it has an m—hornogeneous structure (defined
in this Section below). Then we view the solutions to f(z) = 0 as being in a Cartesian
product of projective spaces. We will present our discussion in this generality. Since 1-
homogeneoﬁs_systems are merely homogeneous systems, the m—homogeneous approach
includes all polynomial systems and does not limit us to special cases. '

Complex projective space, P* consists of the lines through the origin in _C’k“,
denoted [(zy, ..., 2;)] where (z05-2:) € C*1 — [0}, that is, [(20,.-., z5)] is the line
‘through the origin that contains (20, ..., 25). It is natural to view P* a5 a disjoint union
of points [(20,...,zk)] With zg # 0 (identified with Euclidean space via [(zoy..., 22)] —

(21/20,...,28/20)} and the “points at infinity,” the [(2q, ..., 2,)] with 2o = 0.
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We partition the variables {21,520} into m nonempty collections. It will be nota-
tionally simpler here if we rename the variables with double subscripts. Thus, let

{21, e zn} = U;-’;l{zl,j, -7 ,j},
where E;’;l k; = n. Now choose homogeneous variables zg,j for j = 1 to m and define

Z5 = {204, 21,5, e 21, 5}

for j = 1 to m. Then evoke the substitution z; ; « zijlz05 for i = 1 to kj and j = 1
to m, generating a system " = 0 of n equations in n +m unknowns (after we clear the
denominators of powers of the zo,5). Now f' =0 naturally has solutions in

P=Ph x phry |y pkm.

(See [25].) We say f' is m-homogenecous because the variables are partitioned into m
collections, Z;, s Dm, so that f! is homogeneous as a system in the variables of any
one of the collections. We let dj; denote the j** degree of the Jth Polynomial; that is,
with all variables held fixed except those in Z;, f/ has homogeneous degree d;;. Note
that “l-homogeneous” is the same as “homogeneous,” so theorems about m-homogeneous
polynomial systems apply essentially to all polynomial systems. We say that polynomial

J1 has type = (dig,..., dm,1).

The Bezout number, d, of an m—homogeneous polynomial system is defined to be the
coefficient of I, afj in the product

D= HE;L dj,gafj. (1)

=1

The significance of the Bezout number is that it is an upper bound on the number of
homotopy continuation paths we will track in the space P x [0,1] (Theorem 1, below).
The smaller d is, the better. Frequently, the m-homogenization of fform > 1hasa
- (much) smaller Bezout number than the 1-homogenization. If m=1,thend=d; .- - dn,
the total degree of f. This is the “traditional” number of paths to track.

Thus, when we start with g system.-of polynomials f (2).= 0 with z. € ™ and generate
the m—homogenization f(2') = 0 with ' ¢ P, we generally will abuse the notation by
dropping the primes. Usually, our systems arise naturally as non-homogeneous systems of
n equations in n unknowns, and it will be implicit that an appropriate m-homogenization

. will be carried out 50 that “z” is now in P and the systems under discussion are the

m-homogeneous forms of the original systems. -

™
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Define a homotopy
h(2,8) = (1= t)yg(2) + t£(2), (2)

where ¢ is an m-—homogeneous system of n, polynomials in n, variables, and « is a, randomly
chosen complex number. Let g be chosen so that jts m-homogeneous structure matches
that of f; that i8, Z1,...,2,, are specified and the d 5,1 for g are exactly the same as those
for f. Naturally, many such g will exist. We can always choose m = 1 and ¢ diagonal
(eg., g; = pjzfi" -~ szg’li'), but it is important to note that In practice we can often
do better. Whe’n specific examples of systems f and ¢ are presented below, we give the
non-homogeneous forms with the understanding that the appropriate m—homogenization
is to be applied, as noted above,

Let S C P be a set of common solutions of f(z) =0 and 9(z) = 0. For each s €5,
we require that the following conditions hold, For s € S let K denote the full connected
component of solutions of 9(z)=0withse K.

Ifsisa geometrically isolated solution of 92} =0 (ie, K = {s}), we assume that.
® sisa geometrically isolated solution of f(z) =0, and

e the multiplicity of s as a solution of 9(2) = 0 is less than or equal to the multi-
plicity of s as a solution of flz)=0. -

If s is not a geometrically isolated solutjon of 9(2) =0, then we assume that:
* K is contained in § ,
* K is the full solution compomnent of f(z) = containing s,

* K is a smooth manifold (see [16]), and

at each point 2° € K the rank of dg(2°} is the codimension of K (that is, n—(the
dimension of K )

Let T denote the solutions of 9(2) =0in P - S. Then the following theorem holds.

Theoreém 1. Assume the pointsin ¥ are nonsingular solutions of g(2) = 0. For any positive
r and for all but a finite number of angles, §, if 7Y = re® then R=HO)n (P - S) x[0,1))
consists of smooth paths and every geometrically isolated solution of f{z) = 0 not in
S has a path in (P — §) x [0,1) con’éérging to 1t. In fact, if my is the multiplicity of
a geometrically isolated solution, 2° that is not in S, then 2° has exactly my paths
converging to it. 'Further, the paths are strictly ihcreasing in ¢, and dt/ds > 0, where s
denotes arc length. '

~ This theorem is given in [26] as Theorem 1 (including the rerarlks after the statement
of the theorem), = . o _ IR
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Notes:

1. Naturally, § may be empty, in which case the only restriction on the solutions of
9(z) = 0 is that there be exactly d of them. (This implies they are nonsingular. )

2. The theorem can be generalized to allow the X in S not to be smooth manifolds. How-
ever, computing the multiplicity of higher-dimensional non-manifold solution compo-
nents is much more difficult than for geometrically isolated solutions and higher-
dimensional manifold solution components.

3. Applications in which one might allow S to contain infinite solution components arise
naturally. For example, S might be a disjoint unions of lines, in which case the rank-
codimension requirement is that the rank of dg(z%) be n — 1 for each 2° on each of
the lines. See the manipulator example in Section 4.

Here is a simple example to illustrate the case when the multiplicities of a common
solution are different for f(z) = 0 and ¢(z) = 0. Let

9(z) = (z = 1)*(2 = 2)(z = 8)(z — 4)

and
flz) =(z = 1)*(z - 5).

Take § = {1}. We track paths beginning at z = 2, 3, and 4. One of these will converge to
z = 9, the other two to z = 1. '

Let L = (Ls,..., L) with
E;
Li=Y bijz; (3)

i={
where b; ; # 0 for some i, for each 7. Then we say that
U =UL1 XULz X. .. X ULma
is the Euclidean coordinate paich defined by L, where
t

U, ={lzl PY|L;(2) # 0}

15 the Euclidean c'oordi_nate patch on P*% defined by L j- Note that Uz, which is an open
dense submanifold of P, can be identified with

Ch=Cr xC" x ... x
by identifying Ur; with C* via

_ _ 1 o
& [(zﬂa'“)zkj)] - F(‘z—)_(zm--~,2i,-—1;2’z',-+1,---,2k,-);
7 : :
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where 8, ; # 0 for j = 1 to m.

Note that if 2 € P, then 2 ¢ UL unless L_,-(za,j,...,zkj i) = 0 for some j. Thus z
is in virtually all such coordinate patches. This also holds if we restrict our choices of
the constants b;,; to be real numbers. (We say that “virtually all” parameters obey a
stated condition if the set of parameters that do not obey the condition are contained in
a lower-dimensional algebraic variety of parameter space. The result is that parameters
“chosen at random” from parameter space will obey the condition “with probability one.”
Compare with the similar topological ideas in [3].)

The following two theorems from [26] show us how to keep the continuation process
in Euclidean space, even though our basic theorem (Theorem 1) is formulated in P, a
Cartesian product of projective spaces.

Theorem 2. Let Uy be a given Euclidean patch on P defined by L, as above. If the solutions
of g(z2) =0in P — S are all in UL, then

A7HOYN ((P - S) x Jo, 1) c Urxo,1),

except for a finite number of 8,

Theorem 8. Assume the points in T are nonsingular solutions of g(z) = 0. Then

EHON((P=8)x[0,1)) c Uy x [0,1]

for virtually all U and all but a finite number of 8, where the overbar indicates topological
closure,

Note that A=1(0) n (P -5 x]o, 1)) is the set of continuation paths, including end
points. It equals RTH0)N ((P-95)x [0,1]) if and only if f(2) = 0 has only a finite nurmber
of solutions in P— §. (Because the half open interval [0,1) is used here instead of [0,1], the
parts of the high’épdimensional solution components of R~1(0) that are not the endpoints

of continuation paths are excluded from A=H0)N ((P - 39) x [0, 1)) )

We can make the phrase “virtually all I/ 1” in Theorem 3 more precise. The result
holds for virtually all (bi,5) € TTC%*! and also for virtually all (5; ;) € J] R®+1, In fact,
the only L for which the result fails are those for which T ¢ Up, where T is the finite sot
containing both the geom_étn'cally isolated solutions of f(z) =0in P—$ and the limits of
homotopy paths in (P—-8)x[0,1) going to infinite solution-components of flz)=0. In
other words, if Lj(zg ..., 2k; 5) = 0 for some 2z € T and some j, then Uy will not work.
Otherwise, it will, ' |
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For computations, we need a convenient way to realize the IJ L. We do this via “the
projective transformation,” as follows. With m-homogeneous % in the variables z;,5 for
i:Otokja,ndj*—-ltom,welet

k;
Z05=3 Biszi; + Bo (4)
i=1

for j = 1 to m where the B;,; are constants and Bi,; # 0 for some i, for each J. (Compare
equation (3).) The projective transformation of h (given by (4)) is the system H of n
equations in the n variables zijfori =1 to ki, 7 =1 to m where Hij=hjforj=1ton
with (4) defining the Zg,; in terms of the other variables. By Theorem 3,

h=H0)n ((P - S) x [0,1))

(the homotopy paths, including end points) are completely represented in C® via H , for
virtually all 8 = (8:,7) and all but a finite number of §. Thus, for computations, we need
not acknowledge projective space except by solving H with randomly chosen Bi,; and 6.
The finite solutions of f(2) = 0 are recovered via Zij + zijfzojfori=1to kj and j =1
to m. (If any zo,; = 0, then the solution is at infinity.)

In creating a computer code to implement H, our usual procedure is to write a sub-
routine for A as a system of n equations in the n +m variables z;,; but include the formulas
(4) which make zo,j for j = 1 to m implicitly defined functions of the other variables. The
partial derivatives of I with respect to z;;fori=1+to ki, 7 =1 to m are then generated
from those of A with respect to z; ; for i = 0 to k 5» 7 =1 to m using the chain rule. To
make use of Theorem 3, the B;; are chosen at random from C or from R.

In the 1-homogeneous case one option is to apply the projective transformation to i
rather than to A, and then solve the resulting F(z) =0 ﬁsing a homotopy in Euclidean
space (perhaps to make use of an existing homotopy code). In fact, this is recommended
in [22]. Since this F(z) = 0 has all its geometrically isolated solutions in Euclidean space
(for virtually all coefficients of the projective tranéformation), we are guaranteed that the
. resulting homotopy paths will find all geometrically isolated solutions of F(z) = 0 (includ-
ing those at infinity). In our tests we tried both approachs (projective transformation of /
and projective transformation of f) when we were studying traditional homotopies. The
practical difference in most cases was slight. For simplicity, in Section 4 we report the
results with traditional homotopies using the projective transformation of f only.

Let H be the projective transformation of homotopy %, where A is given by theorem 1.
We now give a summary of the structure of the solution set ~1(0) as given by theorems 1—
3. Then, we complete this section with a step-by-step description of the m—homogeneous
solution strategy based on theorems 1-3. o '




First, assume that T is the full solutions set of 9(z) = 0. (The start points for the
homotopy will be the associated (“projectively transformed”) solutions to H (2,0) = 0.)
The set H~1(0) is a union of two parts: Part A (the paths) and Part B {(described below).
Part A consists of bounded, non-bifurcating, non-intersecting (except perhaps when ¢ = 1)
paths in C™ x [0, 1], with start points in O™ x {0} and end points in O™ x {1}. There will
be one path for each point in ¥, except that some paths may come together when t = 1.
The paths are smooth 1-real-dimensional submanifolds of C™ x [0, 1] (with boundary),
except that where paths come together non-manifold points may be generated. All the
paths are strictly increasing in ¢ as a function of are length, s, and dt/ds > O on paths.
Part B consists of the points in the set

{(2, I)IH(Z, )= 0}

not i Part A; that is, solutions to & (2,1) = 0 that are not the endpoints of homotopy
paths. All geometrically isolated solutions are the endpoints of paths, and therefore in Part
A. Part B is empty if H(z,1) = 0 has only a finite number of solutions. If H(z,1) = 0 has
an infinite number of solutions, then the solution set consists of the geometrically isolated
solutions and the solutions that are parts of higher—dimensiona_l solution components,
(These are algebraic varieties, in the sense of algebraic geometry, but are not necessarily
smooth manifolds.) Part B consists of the pieces of the infinite solution components that
are not in the set of endpoints of the paths. Each infinite solution component contains at
least two points that are the endpoints of paths.

K ¥ is a proper subset of the set of solutions of g(z) = 0, then the description of
Part A given above remains valid, and we may take Part B to consist of the pieces of
the infinite solution components of H(z,1) = 0 not the endpoints of paths that are in
connected components in 7 ~1(0) of points in & . There is & third part to the solution set
of H71(0), defined as follows. The common solution set S (see Theorem 1) may contain
infinite solutions components, K. Then K x [0,1] is in A~Y(0) for each K in §. {The
homotopy is constant on these K » and we don’t track any paths associated with them.)
Part C of the solution set to H ~1(0) consists of the union of (K NUL) x [0,1] over all

K €8, where Uy, is defined by the projective transformation, as above.

Here is a summary of the m—homogeneous solution process. We want to find all
geometrically isolated solutions to f (#) = 0. The solution process described below finds
all such solutions as well as at least two points on every infinite solution component. There
-are two steps: '

Step 1: Constructing the Homotopy.

Stage a. Fix an m-hom.ogeneo_us form for f. Generally, we choose an m-homogeneous
form for f that minimizes the Bezout number, although other considerations may be

relevant.




Stage b. Choose the system g so that:
¢ g has the same m-homogeneous form as f
¢ The solutions to g(z) = 0 are known

* The singular solutions to g(z) = 0 are also singular solutions to f(z) = 0. See Theorem
1 for conditions that must hold (i.e., restrictions on the set S.)

¢ If possible, g(2) = 0 and f(z) = 0 should share solutjons and/or the coefficients of ¢
should be “close t0” the coefficients of f. (There are generic ways to choose g that
always “work.” However, these generic choices are rarely the most effective.)

Stage c. Define H to be the projective transformation of h. Choose a set § of comimon
solutions of ¢ = 0 and f = 0. Let T be the solutions of g=0notin §. (¥ and §
must obey the conditions of Thecrem 1.)

Step 2: Numerical Path Tracking. For each point in T , the associated path in H71(0) will
be tracked numerically from ¢ = 0 to ¢ = 1. This will yield the full list of geometrically
isolated solutions to H(z, 1) = 0. No paths diverge to infinity, so the numerical path
tracking will terminate in a finite number of steps without abandoning any path.

10




Section 3. Smooth Path-Tracking Algorithms.

There are many different algorithms for tracking smooth paths. The CON SOLS code
from [24] was developed specifically for polynomial continuation, and its performance is
discussed in [24] and [26]. HOMPACK [35] supports three general Path-tracking methods,
not customized to the polynomial problem. These methods are: ordinary differential
equation based, normal flow, and augmented Jacobian mat1ix, denoted DF, NF, and QF,
respectively. These are described in detail in [35), Here, we summarize. Although the
distinction of sparse vs. dense Jacobian matrix methods is important for some applications,
the polynomial applications we have in mind generate dense Jacobian matrices. We will

not acknowledge the sparse techniques further here, but see [35].

The POLSYS driver provided with HOMPACK (and described in [35]) is essentially
the traditional generic homotopy with the NF method, including easy-to-evoke options
for scaling and using the projective transformation of f. The computational results in
section 4 for the traditional homotopy and NF method can be interpreted as POLSYS
results, with the exception that the CPU times for POLSYS will generally be longer (but
not the WORK values, which are based on operation counts). This is because the coding
of the FFUNP subroutine for POLSYS (using the convenient tableau input format) is less
efficient than the customized code used in this study. (See [35] for a discussion of the
POLSYS input tableau.)

We will use the notation w = (2,t) in this section. It is valid to view w either as a
vector of n complex numbers (21....,2,) and one rea] number (¢) or 2n + 1 real numbers
(Re(z), Im(z),..., Re(zy), Im(2,,),t). Tt is standard in polynomial continuation to move
from the context of 95, equations in 2n +1 real unknowns to the context of n equations in

T = (Re(z), Im{z),..., Re(zy,), Im(zy,)),

so that w = (2,1) = (z,1).
Ordindry differential equation based a.lgorithm.

_ Let I' denote & zero path of H(w) = 0. We can always parametrize I by arc length
s. Thus w = w(s) along T, and _
H(w(s)) =0

identically in s. Therefore
dH dw g
T (o) = d () 2L g (5)

11




and

=1 (6)

|

identically in s, where d& denotes the 2n, x (2n + 1) Jacobian matrix of H with respect
to w and the norm in (6) is the Euclidean norm, With the initial conditions

&l

ds

t(O) =0, Z(O) = 20$ (7)

for some 2% ¢ & (in the notation of Theorem 1}, the zero curve I is one of the homotopy
paths defined by F — g When #(3) = 1, the corresponding 2(3) is a zero of F(z) =
H(z,1) = 0. Thus techniques for numerically solving ordinary differentia] equations can
be brought to bear ont the problem of tracking I |

Typical ordinary differential equation software requires dw/ds explicitly, but (5-6)

zero curve I' | can be calculated by finding the one-dimensional kerne] of dH(w(s)), which
has full rank according to theory, except perhaps when ¢ = 1, Once the kernel has been
calculated, the derivative dw/ds is uniquely determined by (6) and continuity. Complete
details for solving the initia] value problem (5-7) and obtaining z(5) are in [33] and [36].
A discussion of the kernel computation is given in [35] and [34], along with a summary
flow chart for the ODE-based algorithm.

Normal flow algorithm,

sets of zero curves is known as the Davidenko flow. The normal flow algorithm is so called
because the corrector iterates converge to the zero curves along the flows norma] to the
Davidenko flow.

For the prediction phase, assume that severa] points, P() ang p(2) » on I' have been found,
with corresponding tangent vectors, T(1) and 7(2) respectively. Let 5 be an estimate of
the optimal step size (in arc length) to take along I' . The prediction of the next point on

20 = ey + 7), | (8)

where p(s) is the Hermite cubic interpolating w(s) at s; and $3. Precisely,

dp
p(s1) = PO, (E;)(Sl) =T,
. 2 .
p(ss) = P) (%)(32) =T

12




and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z () the corrector iteration is
li
ZG+) _ g _ [dff(z(’“))] H(Z®), k=01, (9)

where [dH (Z () )] Fis the Moore-Penrose pseudoinverse of the 27, x (2n+1) Jacobian matrix
dH.

Fortunately AZ can be calculated at the same time as the kernel of dH, and with just a
Little more work. '

also has the four Phases: prediction, correction, step size estimation, and end game. The

different step size control, necessitated by the use of quasi-Newton itera.tions, 1s used; (5) a
different scheme for locating the target point at ¢ = 1 is used. See [1] for a fuller discussion.

The prediction phase is exactly the same as in the normal flow algorithm, Having the
points P) and p(2) onT with corresponding tangent vectors T(1) and T, respectively,
the prediction Z©) of the next point on T' is given by (8). '

In order to use this pfedictor, a means of calculating the tangent vector 7(2) 4t 4
point P(2) ig required. This is done by solving the system -

dH (P@)
T3¢ _y:
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for y. (Here, superscript ¢ denotes the matrix transpose.) Normalizing y gives

@ __ Y
=T

The last row of (10) insures that the tangent T(® makes an acute angle with the
previous tangent 71, It is the augmentation of the Jacobian matrix with this additional
row which motivates the name “augmented Jacobian matrix algorithm.” The solution
to (10) is found by computing a QR factorization of the matrix, and then using back
substitution. '

Starting with the predicted point Z(® the correction is performed by a quasi-Newton
iteration defined by

FIORIYS < (Z)
k - k -
Z+1) (k) _ [T(z):J ( ) ), k=0,1,.. (11)

where A%) ig an approximation to the Jacobian matrix dF (Z (k)). The last row of the
matrix in (11) insures that the iterates lie in a hyperplane perpendicular to the tangent
vector T3, Equation (11) is the quasi-Newton iteration for solving the augmented non-

linear system
Bw) Y _,
Tt (w - Z(")) -

When the iteration (11) converges within some tolerance, the final iterate Z(™) ig
accepted as the next point on the zero curve I' . The step size estimation algorithm is
an adaptation of a procedure developed by Rheinboldt. The final phase of the algorithm,
computation of the solution at ¢ = 1, 1s entered when a point P(2) = (2242 i generated
such that t-(z_) > 1. Since P®) ig the first such point, the solution must lie on T somewhere
between P®) and the previous point P}, The algorithm for finding this solution is a
two step process which is repeated until the solution is found. First, starting from a point
P®) & prediction Z(+—2) for the solution is generated such that tk=2) = 1, Second, a
single quasi-Newton iteration is performed to produce a new point P+1) close to T but
not necessarily on the hyperplane ¢ = 1. '
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Section 4. Numerical Results.

This section is devoted to a description of numerica] experiments. It is divided into
“two parts. In the first part, we present a discussion of certain key numerical issues:

* path failure,
* singular solutions,

¢ run parameters (first run and rerun),

o CPU time vs. WORK.

e three problems, one each from geometric modeling, chemical equilibrium studies, and
the kinematics of mechanisms;

s three path-tracking techniques, the QF, NF, and DF methods from HOMPACK, as
discussed in Section 3;

® two approaches to constructing homotopies, one “special” (customiz_ed, nongeneric,
m-homogeneous) and one “traditionsl” (generic, uncustornized).

One of the purposes of this numerical work is to compare the path-tracking ap-
proaches, another is to compare the homotopy construction strategies. In addition, the
issue of scaling (which is critical for polynomial continuation) is clarified through the use
of the SCLGNP scaling algorithm (see [20], [35), or [24] Chap. 5) and the projective trans-
formation, both of which are optional for the traditional homotopy and have g powerful
beneficial scaling effect on most problems.

In [26] the same problem set is studied with respect to the CON SOL8 code given in
[24].

Hereis a summary of results. See Section 5 for more details. NF and DF generally
outperformed QF. In some cases NF did better than DF and in others DF. did better
than NF. The special {m-homogeneous way of constructing homotopies leads to solver
performance that is faster and more reliable than the traditional (generic) way. However, it
~ requires more (human) time and ingenuity. Also, the SCLGNP scaling and the projective
transforma.tion improve solver performance, sometimes considerably.

Section 4.1. Key Numerical Issues.
Section 4.1.1. ‘Path Failure.
" Path failure can be divided .i'ﬁt'o'two types:
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1. Recognized HOMPACK failures, signified by the output variable FLAG.
2. Endpoint accuracy and path crossing failures,
The recognized HOMPACK failures are:

¢ FLAG=3: not enough steps allowed for the path. When a FLAG=3is returned, three
cases are possible:

» There is nothing wrong with the path. If more steps are allowed, the tracker wil]
converge,

» The FLAG=3 is the result of path crossing. See the discussion below.

if FLAG=1, the accuracy of the solution estimate may be poor. At this time,
singular endpoints are dealt with most effectively by Postprocessing the endpoint
with a local solver, as discussed in the subsection below on Singular Solutions,

* FLAG=5: the path fails at the beginning (t near 0). The path tracker refuses to get
started. Often, a negative ¢ is returned. One frequently effective fix is to put the
following code at the beginning of subroutines RHO and RHOJAC:

IF (LAMBDA .IT. 0.D0 ) LAMBDA = .Dg.

(The homotopy parameter 7 is denoted “LAMBDA” in HOMPACK.) We recommend
doing this routinely, but we avoided it i our tests to clarify the issues. Otherwise, re-
running with tighter run barameters often works. (See the Run Parameters subsection
below. ) '

occurs because the solution is 11l conditioned, The best fix is postprocessing (as
discussed in the Singular Solutions subsection below), if the solution seems important,
and accepting the run as satisfactory, if the solution cap be judged unimportant (or

Endpoint accuracy and path crossing failures are 'more difficult to diagnose and fix
than HOMPACK FLAG = 3, 5, or 6 conditions. When a solution is il conditioned,




the answer-closeness parameters (ANS parameters) very small. But a more direct, reliable,
and convenient approach to the issue of endpoint accuracy is to test the accuracy and
conditioning of the solution estimate as a postprocessing step (i.e., post-HOMPACK) and
to refine important inaccurate solutions, as discussed in the Singular Solutions subsection

By “path crossing” we mean that the path tracker begins on one path but Crosses
to a different path for some ¢ between 0 and 1 and continues on the second path there-
after. We might say that “the paths cross numerically” even though they don’t cross in
exact arithmetic. Unfortunately, there is no foolproof way to detect path crossing. The
possibility of path crossing is the main motivation for setting path-tracking parameters
conservatively. (For an example of path crossing, see the discussion below of solving the

be rerun.

Section 4.1.2. Singular Solutions.

trackers. The picture is not so nice for singular solutions. F irst, to obtain a Bezout count,
we must count the solutions by their multiplicities, and we don’t know the multiplicities
independent of the HOMPACK computation. Second, singular solutions are expensive

endpoints. (CONSOLS from (24] does better, perhaps because of the special way in which
the homotopy parameter is managed. See [24, Chap. 4] and [26].)

~ Our experience with HOMPACK suggests that a singular solution may generate a
FLAG=1, FLAG=3, or FLAG=6 condition. We recommend that when HOMPACK has
completed, all solution estimates z° be tested for accuracy and singularity by computing

cond = cond(?—(zo, 1))
_ 5. /
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(the condition number of the J acoblan matrix at z° when ¢ — 1) and

|

(the norm of the Newton’s method residual), If cond is large and resid is not small,
then 2% should be refined by a local method if it is Judged to be of interest. Plain old
Newton’s method can be used to improve the accuracy of a singular solution. We have
been surprised at how well 5 (complex) Newton’s method performs in refining a singular
solution if allowed enough iterations. See [18] for some alternative methods and caveats.
We specifically recommend that FLAG=6 solutions and FLAG=3 solutions when ¢ is near
1 be refined in this way rather than by rerunning HOMPACK. A fina] check of the norm
of the difference between the unrefined and refined solution estimates helps weed out
“endpoints” that were not actually close to a solution.

resid =

[idf—(zﬂ, 1)] - H( 1)

Section 4.1.3. Run Parameters.

We distinguish between “frst run” and “reruns.” Reruns may be reruns of the whole
problem (“full reruns”) or of individual paths. The process we envision is a first run,
followed (perhaps) by several full reruns, followed (perhaps) by reruns of several individual

How conservatively should the first run parameters be set? The critical question is;
can the computed solution list be double checked external to HOMPACK? For example, is

this much information about the final solution list, we are in & good position to evaluate
the run and to rerun unsuccessful paths. Another case in point is provided by chemical
equilibrium systems. Each such system has a single physical solution and it is the only
positive real solution. In cases like these, we can “take chances” In choosing “loose” run
parameters. If we cannot double cheek a run by the characteristics of the solution List, we
must set tighter run parameters to start and be prepared to rerun the entire problem unti)
path crossing (for example) can be ruled unlikely from general principles.

Now we will state how run parameters were set for the experiments in this paper, for
the first run and for reruns on all problems, for the three HOMPACK methods. First, a
st of the main parameters, with method-speciﬁc_ variable names a.nd first run values, are

i ‘given in Table 1.
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We note the following on run parameters and initialization issues. (Refer to Table 1.)

In table 1, “-” indicates that the variable 1s not used in this method.

. LIMITD, the “maximum number of steps” parameter, is initialized at the beginning

of subroutines FIXPQF, FIXPNF » and FIXPDF (the main HOMPACK subroutines
for the QF, NF, and DF methods, respectively.} LIMITD is nominally set to 1000.

With reference to the START variable: We modified FIXPQF so that “H=(.1”
(in the initialization section at the beginning of the program) was replaced by
“H=SSPAR(5),” so that we could easily change this constant.

We always take ARCRE=ARCAE, and refer to these two variables together as ARC.
ARC specifies how close the path tracker will try to keep the path estimate to the

‘actual path, for 0 < ¢t < 1.0. Similarly, we always take ANSRE=ANSAE, called ANS.

ANS is the error tolerance for the solution at  — 1.0. The strategy for using ARC
and ANS is rather complicated and differs for DF, NF, and QF. See [33], [34], [35],
and [36] for the details,

The RHOA subroutine (which DF uses but QF and NF do not) is coded as a Newton's
method which refines z rather than the “random” parameters. It is necessary that z
be adjusted for path correction, because the special homotopies do not use an array
of random parameters.

Now here is the rerun strategy for the QF method. The rerun strategies for the other

methods are modifications of this, as noted below.

1.

If more than than half the paths do not return FLAG=1 (or are not otherwise satis-
factorily accounted for), then rerun the whole problem reducing MAXSS and/or ARC
and/or START by one order of magnitude. (If, to simplify parameter adjustment,
only one parameter is to be changed, use MAXSS.)'

. If path crossing is suspected, rerun the doubtful paths with MAXSS and/or ARC

and/or START reduced by one order of magnitude. (I, to simplify parameter adjust-
ment, only one parameter is to be changed, use MAXSS.) '

. Rerun FiAGz5 paths with START reduced by an order of magnitude. If two reruns

don’t suffice, begin reducing MAXSS and/or ARC also.

Consider not rerunning FLAG=6 paths. Examine the endpoint, 2°, of such & path to

_ see if it is close enough to a solution to justify post-HOMPACK refinement. That is,
* check the cond and resid test values as defined in the subsection above on Singular

Solutions. Otherwise, rerun with ANS increased to find an endgame tolerance that
works. Note that di'ﬂ"iculty'generally occurs with ill conditioned solutions.

. FLAG=3 paths may be the result of path crossing, in which case the appropriate

S - action is described in 2. above. Otherwise, rerun a FLAG=3path with LIMITD
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increased, if ¢ is not near 1. If ¢ is near 1, Judge if the path is converging to an ill
conditioned solution, If 50, consider refining post-HOMPACK rather than rerunning,
as described in the Singular Solutions section.

The rerun strategy for NF is the same as QF, except that START cannot be adjusted.
Use ARC instead.

The rerun strategy for DF is the same as for QF, except that START and MAXSS
cannot be adjusted. Use ARC instead,

On QF and NF: Making MAXSS smaller is an extreme change. It tends to increase
the computational work by a big increment (like, say, an order of magnitude). On the
other hand, it is also a powerful change. Rarely will setting MAXSS smaller and smaller
fail to induce eventual convergence (at a cost in CPU time). Making ARC smaller can

optimization experience.

Ideally, most paths will be satisfactory on the first run, and we would (at most) need
to rerun only a few paths. However, if a number of paths fail, the danger of path crossing
will be great. Thus, we use as & (flexible) rule of thumb to rerun all paths if half the paths
fail.

Section 4.1.4. Run Time vs. WORK.

We use the following measure of computational work:

WORK = NOFUN + (N+1)* NOJAC

(1) Hdw does WORK compare to CPU time?
(2) Does WORK let us compare the computational cost of the Q.F, N F, and DF methods?
‘First, note the follovﬁng: _ _ _
e QF.‘_-c_a,Ils RHO mor_e_tha.n-RHOJAC.. Thus 'W_ORK.>(N+1_)_*NFE. -
"« NF calls RHO exactly as often as RHOJAC, Thus WORK: (N+2)*NFE.
'® DF never calls RHO. Tilus WORK = (N+1)*NFE,

It is_reasonable to use WORK to ‘compare two runs using thesame method. This

o Isnotsoclearfor compa.nsons between'methods, Our tes%s':féiigge_s
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thumb for estimating CPU times from WORK values. In Tables 3, 7, 8, and 12, WORK
and CPU time values (in minutes on IBM 3090) are given. The WORK /CPU ratios are
within a factor of 2 for DF and NF {usually much closer). Comparing WORK /CPU for NF
to WORK/CPU for QF we obtain factors between 2 and 4 (approximately). We conclude
that we can compare WORK values for NF and DF, but to compare these with QF values
for WORK we should multiply the latter by a factor of 3.

Section 4.2, The Problems and Numerical Results,

o3(e) =it g
with the “random” coefficients p;j and g; given in Table 2. (Here d; = deg(f;).) Thisis a
traditional homotopy as defined in 23] and [24], similar to the variety of other generic ways
of defining H. (See the kst of references cited in Section 1.) With this generic homotopy,
we use the I-homogeneous projective transformation of f realized by 25 + zj/zp41 for
J=1ton and

n
zn+1=2ﬂjzj +  Brt
J=1

with the 8; taken from Table 3. (HOMPACK does not support the double-subscript
notation useful for the general discussion of the m-homogeneous case. To simplify setting
up the various codes for our experiments, we have adopted the convention of ordering the
variables in sequence with the homogeneous variables last. Thus

20,15 21,1, 22,1, ?3,1%0,2, 21,2, 2.2

become
Zg, 21, 22, %3, 27, 24,25,

respectively.) It has been our experience that the'tradifional homotopy is more efficient
- when used with such a projective transformation, and it is specifically the case with the
test problems in this paper. (Note the computational comparisons for the first problem
below.) '

e :._Alt_h_ough we tested the alternative to the traditional homqtopy.-oft_aking the pro- -

U jective ‘transformation -of th_e':homotoPy:(féthér_than' of f), the differences between these.

variants were minor. For simplicity, we do not include the numerical results here of this
alternative. :

i L For :'t;he,- hz.——homqgénéous 'homo_fg_opies-.-;(_callgd_ _“_speqial”' homoto_pi__ejs)_',_-_wg deﬁn 7 by
7= 10804 6 = 0.§76534. The ¢'s thernselves | ive

21




below. The exact projective transformation formulas for each problem are specified below
also.

Note that the HOMPACK path-trackers do not specifically acknowledge the fact that
the homotopy paths are strictly increasing in ¢. The path-tracking parameters for each
path-tracker were the same for each run and as comparable as possible between methods,
(See Section 4.1.3 on Run Parameters.

Problem 1, Geometric Intersection Problem.
Background:

This system of two quadrics arose in a geometric-modeling context. (See [26] or (24,
Chap. 8].) It has two real solutions and a complex conjugate pair of solutions. It has no
solutions at infinity. Thus it has tota] degree equal to 4, and the special homotopy will
be 1-homogeneous. Three of the solutions are in the circle of radius 2, and the other hag
norm approximately equal to 2343. This is the last problem presented in [35], and the
solutions are listed there.

This relatively mild problem is included here to show that even when a system exhibits
no special numerical difficulties, it can be solved with less work by the special homotopy
approach. We have solved the problem with and without the SCLGNP scaling and with
and without the projective transformation of £ (when the traditional homotopy is used)
to illustrate the value of these options. In the more difficult two problemns presented below
(the chemical problem and the Mechanism problem), we have omitted running some of
these variants, for simplicity. '

Definition of f:

fi=ap 22 4 1,925 + a1 321 29 Tz +a152: 4+ ap 4
for I = 1,2 where the a;,; are given in Table 4.
The Special ¢: |

The_special ¢ is the same as ¥, éiccept.that we ﬁa;ke a1 =ay 5 = 01,'4. -0 The logic
. of this choice of g is: . :

-2, 'W_e__ can meike_ f | mto a triangular system in.four ways, via a choice of an equation and
. of & variable to delete in ‘the chosen equation. ‘g1 iﬂ'clur“i_es'the' terms o} st




o 'gqmp_lg_e’}__:_ pair __W-hdse'-jc’()nrdit'ion;_..js, gx_‘-eaj;c_r__th@n 1010

The projective transformation js defined via z; zj/z3 for j = 1 to 2 where
z3 = Prz1 + Pazs + fs

with the 8, chosen from Table 3.
Experimental Results:

The results of this experiment are listed in Table 5. Almost every run “worked,” in
the sense that the correct solution set was obtained without the need for reruns. The
exceptions are the two runs of the traditional homotopy without scaling and without the

Problem 2. Chemical Equilibrium System (Butler’s Problem).
Background:

Chemical equilibrium systems generate polynomial systems. They are characterized
by extreme séaling and unique model formulation issues. The problem inchided here is
the second example in [20], “Butler’s Problem.” See [20] for a discussion of its chemical
significance.

This system of a quartic and & cubic has seven finite real solutions and a finite com-
plex conjugate pair of solutions. It has one solution at infinity, of multiplicity three.

transformation, the solutions have condition numbers less than 3000, except the complex
conjugate pair, whose cOhdition number is about 8 x 108, The unscaled transformed so-
“lutions all have condition greater than 10'°, except the complex pair whose condition is
about 3-x 105, Without scaling and without the transformation, the solutions all have
condition greater than’ 10%°. With scaling but without the transformation, the solutions
~ ‘have condition number less than 3 x 10%, except one with condition about § x 105 and the

Thls -".s:‘s'fsﬁfex'h'has total 'degrée equal to :"ﬁ12. :be'i' the SPeclal "hbmbféby:;&é"u'se a2— 2

B ‘homogeneous homOtbpy' with associated Bezout -number of ‘9, Thu_s on P = Pl x pl
the System has no solutions at infinity. It is especially significant to elimi
singularity, -b_ecause..t:his_:solutio_n‘is : i an adit

thre ge to.




Definition of f:
4 3 3
fi=a112f +a; 9232, + a132) +a1421 + a5

2 2
fo=az,z25 + Q2225 +ag3

where the a;; are given in Table 6. We 2-homogenize the system via the transformation
21 < 21/23 and z3 — 2z, /z4. Thus z3 and z4 are the homogeneous variables. We can
compute the Bezout number from the combinatorial product (1) for this case:

D= (4a; + lay)(la; + 205).

We then confirm that the coefficient of ayas is 9. The projective transformation of the

special homotopy is realized by:
z3 = P21 +

2g = fozy + B4

where the 3 ; are taken from Table 3.
Special choice of g:

The special ¢ is the same as f except we set a1,z = 0. This makes ¢ triangular, and we
can solve as in problem 1. (We use the method from [17] to solve the quartic, rather than
the quartic formula. The computational cost of this is trivial compared to the total cost
of the continuation run.) However, there is a “trick.” g1 should be type (4,1), because fi
is type (4,1). (The “type” is defined at the end of Section 2.) However, if we homogenize
g by the prescription given in Section 2, then g1 will be type (4,0), because g1 containg -
no z3. The trick is to multiply 91 by z4. Then ¢ has the same 2-homogeneous structure
as f, and g(z) = 0 has exactly 9 solutions in P! x P1, a5 required. There are eight finite
solutions and one solution at infinity: : '

. (zlﬂ 2_27 Z3, 24) :..'._(—a252/a’2:1’ 1’ 1’ 0)

corresponding to

o -.([(—-ag,ﬁ/ag;l,_l)],[1,0}_)e.Plx_Pl?-_. T T
Exp_eriﬁlental Results:

ape _Rg':fe_r: fofTa.ble_s 7-and 8. .Tlﬁe-spec_:ia.lrhdmotopy'_i_s rélati\'rely'ea'sy to so_lirje,' whether- . - i E

. scaledor unscaled. Tn spite of the condifioning of the solutions, none of the methods had S

" unscaled problem ﬂéedt_ed some reruns. The failed path_s' were clearly marked (F LAG=s, e
~ FLAG=6) and corrected easily (by reducing MAXSS). . . SR T

i 'hf uniscalggl'ye;sicin.:cigfea'téd-a‘ﬂ**fh @

. .'The traditic
SE8, burally, we .could Have 1¢




the issue by heroic efforts (say, by using extended precision). However, this seemed point-
less. Chemical problems should be scaled, as noted in [20] and [24, Chap. 9]. And the
traditional homotopy, which forces a blending of f with a generic g, 1s more sensitive to
scaling and other mismatching issues than a well chosen special homotopy. Note that the
ill conditioning of the solutions, per se, is not the difficulty, but rather the ill conditioning
of the homotopy. Each of the methods required three full reruns of the scaled problem,
for different reasons, and with different outcomes. Still, we can conclude that the solu-
tion process (including the rerun strategies) is successful, allowing that post-HOMPACK
refinement of the complex solution pair is required for reasonable accuracy. In fact, the
physical solution (the positive real solution) is relatively easy to find and is found with
reasonable accuracy without refinement.

Here are some additional notes on Table &:

1. For the QF method: For the all-path reruns, we reduced {only}) MAXSS (twice).
The second all-path rerun had four paths for which FLAG # 1. They were settled
as follows. The FLAG=6 path is close enough not to rerun. The FLAG=5 path
converges when rerun with MAXSS=0.01 and START=0.001. The WORK for this
rerun is 1219, CPU=0.008 min. The two FLAG=3 paths were rerun with LIMITD =
10°, MAXSS=10"2, and START=0.1. They converged but with WORK = 1934360,
CPU = 11.581 minutes . This “convergence” is pathelogical both for the amount of
WORK and also for the inaccuracy of the solution estimates. See N ote 4 below,

2. For the NF method: For the all-path reruns, we reduced (only) MAXSS (twice). No
reasonable parameter settings for NF caused the final two FLAG=3 paths to change
to FLAG=1. These paths should converge to the complex solution pair. See Note 4
below. '

3. For the DF method: These three runs are a good example of how path crossing and
endpoint inaccuracy may not be detected by HOMPACK. For each run, every path
returns & FLAG=1. However, runs 1 and 2 include crossed paths and the complex
sollitio__n pair is not computed accurately. An easy pos_t-_HOM_PACK check shows for

run 1 that a path has crossed; a nonsingular solution is found twice. Nothing in the

solution list for run 2 indicates that the run is less than perfect (except the inaccuracy
in the complex pair). In fact, two paths have crossed with each other. The solution
o List is correct, but the path computation is fau_lty._ The reruns here were done reducing

4 No run of the traditional honibtbpy ret-ur_hed "e'Ve‘n'.oiie' digit of_ aéétlfacy'fdr the com;ile’i

solution pair: -

1= —9.354537 x 10° £ 1367812 x 10~




The condition number of the Jacobian matrix at these solutions is about 8 x 108
(scaled and transformed). Eventually (after reruns) the QF and DF methods return
a FLAG=1 for this solution pair. In this sense, the performance of NF is better,
because it insists on returning a FLAG=3, clearly indicating failure. The Newton’s
method residual resid shows that the path endpoint is (badly) inaccurate. However,
Newton’s method (implemented in double precision) converges from this endpoint to
single precision accuracy, in spite of the ill conditioning.

Problem $. Mechanism Problem from Tsai and Morgan [32].
Background:

The inverse position problem (IPP) for six-revolute-joint manipulators is a basic prob-
lem in mechanisms. Given parameters describing a manipulator and desired hand posi-
tion and orientation, the problem is to find all the sets of Joint angles that put the hand
in this position and orientation. The IPP is analyzed in [32] and described for a more
general audience in [24], Chapter 10.

The IPP might have an infinite number of physical solutions, in cases where the hand
position and orientation can be attained by the free rotation of a joint and in other de-
generate configurations. We focus on finding the geometrically isolated solutions. Usually
these are nonsingular, but not always. In P® the 1-homogeneous form of the system has
total degree 256, an infinite number of solutions at Infinity, and (we can prove) at most
64 finite solutions (unless there are an infinite number), while we observe at most 32 fi-
nite solutions (unless there are an infinite number). (The complicated formulas by which
manipulator data generates polynomial coefficients make exact analysis here difﬁcult.) In
P* x P% the 2-homogerneous form of the system has Bezout number 96, 8 solutions at
infinity (each of multiplicity 4), and (we observe) 32 finite solutions and 32 (additional)
solutions at infinity. The test results confirm that the problem should be solved in its
2-homogeneous. form rather than the 1-homogeneous. However, we have some choice of
2-homogeneous approaches.

In [26] the IPP was 's_olved_-usih_..g three. hoﬁlotopies, the trdditio‘nal_ and. tWo 2-
homogeneous ‘homotopies. Here we WilI_ use only the ‘traditional and the se'c_ond' 2-
homogeneous homotopy from [26] (denoted by its start system G® in [26]). The homotopy

. we will use has as a start system the__-IPP system with a particular _choﬁiée of coefficients. Lo
. Thus, o use this homotopy, we must solve the IPP once using a different homotopy, there-

:after using the salutions .obta;iﬁejd”f:omj-”tﬁa’t onerun as start pbints'fté*s'ohjr_'e'f‘t‘hé.:IPPEfor PR L

variety of other 'chOic'e:s' of coefficients -

Definition of f:
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fi=ar2y2; + @1,22124 + @) 32923 4+ Q42924
Q152527 + a1 62525 + Q172627 + a; 82625
t ez +ay 02, + 41,1123 + ay 1924
+ 11325 + ag 1426 + 11527 + a1 1623
+a1,17 (l=1,...,4)

fi=2 o428 -1 (I=5,...,8)

The values of the coefficients are given in Table 9. These are defined by the second
manipulator example in [32]. We 2-homogenize via Zj = zj/zg for § = 1,2,5,6 and
Zj «— zj/z1p for j = 3,4,7,8, letting 2y and z19 be the 2-homogeneous variables. There are
four equations of type (1,1), two of type (2,0), and two of type (0,2). The Bezout number
calculation requires that we find the coefficient of afad in equation (1), which in this case
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D =(la; + lag Y (20 + Otz }*(0cr; + 2a0)%.

Thus, the Bezout number is 96. The projective transformation vields

Z9 = P17y + Bozs + Bszs + Besg + By
210 = fBszz + Bazg + Brzy + Bszg + B1o

with coefficients from Table 3.
Choice of special g:

* The special g has exactly the same form as f but with coefficients given in Table 10,
These are defined by the third manipulator example in [32].

~ We could simply choose a 2¥homogeheous g with 96 nonsingular solutions, such ag
system (10) in [25). (This defines the “Ga» homotopy for this problem in [26].) We might
dd'th_js._.i__f we wanted to solve the IPP only once, However, if we wish to solve this problem
many t_izﬁes, we can create a much mofe.efﬁcient homotopy. It tirns out that f(z) =0 has-
exactly the same set of 8 multiplicity-four solutions at infinity in P4 x P*, independent of
the choice of coefficients. | (This is proven as Theorem 4 in [26].) Therefore, by Theorem
ve ce '_th(_é_"sa,r_ne form as f and ignore these.s_o_l_ii_tions a___s_s'_ta,rt points. -

example in [32] as our start
L We use it to solve the second
5 2 not._-'pa.rticularly related. t

o topy.. This 'bécbni_es the start




linked by thig physical relationship and are not “randomly choger.” But that is the point.
In practice, problems are never randomly chosen.

Experimental Results:

Refer to Table 11. The special homotopy uses much less WORK and is much more
reliable than the traditiona] homotopy. Although we have reduced the number of paths
from 256 (traditional) t0 64 (special), a 32 path homotopy does not follow, because the
finite start points do not vield paths converging to finite solutions. Let ysg consider this in
a little more detq;i].

The start points for the special homotopy consist of a set, A, of finite points and a
set, B, of points at infinity, where |A4] = |B] = 32. We observe 19 of the points in 4 and
13 of the points in B lead to the 32 finite solutions of f =  jp p4 X P*. The remaining
points of 4 and B lead to infinite solutions of f=0in Pt x pt, Thus the finite solutions
of ¢ = 0 are not necessarily connected to the finite solutions of f =0, even though f ang
g have exactly the same structure.

The special homotopy is relatively easy to solve, because:

* The 64 solutions are nonsingular,

a,ddition_al relations that actual manipulater solutions must obey, and the others. (See
“extraneous solutions” in {32].)

- For the traditiona] homotopy, 32 paths should converge to finite solutions, while
- 226 should converge to (singular) solutions at mfinity. Because of the singularity of the
‘endpoints of these 226 paths, it is unrealistic to expect HOMPACK to return “FLAG=1.7
- Many of the paths wil] be labeled FLAG=§ of FLAG=3 (while some wi]j have FLAG=1).
Ra,ther_. than force these pa.fhs-to cbnverge,.i_t 18 more reasonable tocall ary




Let us make several observations related to Table 11. The FLAG=6 endpoints are
sufficiently close to solutions, so that reruns are not necessary. The FLAG=3 runs are
actually crossed paths. The superior performance of DF on the traditional homotopy may
be related to its relative efficiency on singular endpoints.

With reference to the special homotopy reruns: For QF, both FLAG=5 paths con-
verged when rerun with MAXSS=0.01. The NF run had one crossed path, in addition to
the two FLAG=5 paths. Rerunning with ARC=10-% corrected these. The DF run had
one path cross, and it converged correctly with ARC=10-6,

With reference to the traditional homotopy reruns: For QF, the FLAG=3 runs were
corrected with START=0.01. The NF FLAG=3 path converged with MAXSS=0.1. The
DF run was perfect.




Section 5. Summary and Conclusions

homotopy continuation. In spite of the seeming completeness of theoretical results on
polynomial continuation, divergent paths (solutions at infinity), singular solutions, and
extreme scaling of coeflicients can create catastrophic numerica] problems. Further, the
large number of paths that typically arise can be discouraging.

We have surnmarized the m-homogeneous strategy for constructing polynomial ho-
motopies and reported on the performance of three standard pa,th-tra.cking algorithms

(as implemented in H OMPACK) in solving three physical problems of varying degrees of
difficulty using both m—homogeneous and traditiona] homotopies, We have shared our

HOMPACK is deficient in its handling of singular endpoints. Currently, the best
fix is to post-process (external to HOMPACK) endpoints judged to be singular . This

conditioned solutions generating an ill conditioned homotopy, and difficulties oceur long
before ¢ is close to 1. Scaling and the projective transformation Improve, but don’t cure,
these difficulties. The resilience of Newton’s method in the face of i1 conditioning suggests

?

edge. To someé extent the NF and QF methods do this, because their correctors are based
on Newton’s method. The CONSOLS code from [24] is another example. It solves Butler’s
problem unscaled with the traditional homotopy (as reported in [26]), which none of the




How do the QF, NF, and DF methods compare with each other? Because the run
parameters are not precisely comparable, one should be cautious in comparing methods,
In our tests, the QF method was consistently outperformed by the NF and DF methods.
We don’t know why. The NF method scems to be faster on “quick and easy” problems,
while the DF method sometimes (but not always) did better on the more challenging
runs. Because run times and WORK are sensitive to parameter settings, rerunning the
experiments with different nominals would produce different results, although (we suspect)
not significantly different results. The DF method seems to spend less time on singular
endpoints, which accounts for its faster performance on the traditional homotopy runs of
Butler’s problem and the Tsai-Morgan manipulator problem. Thus, if a new singular end
game is developed for the NF method, the advantage may disappear. DF is less prone to
the FLAG=5 difficulty, in which the path tracking fails at the beginning. However, we
were able to cure all FLAG=5 paths by tightening the run parameters, suggesting that
with tighter nominal values, this “difference” might not have come up. (An exception is
~ the traditional homotopy with the unscaled Butler’s problem, where most paths failed to

converge, usually with a FLAG=5, for a]l methods.)

HOMPACK was not developed specifically for polynomial continuation. It neither
exploits the fact that paths are strictly increasing in the homotopy parameter nor antici-
pates the need for dealing with highly rank deficient Jacobian matrices at the endpoints. In
spite of this, we have succeeded in solving some difficult polynomial problems using HOM-

polynomial systems.
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Table 1. Notation for HOMPACK parameters and nominal (first run) values.

Notation in In words Variables First Run
this paper QF NF DF Values

MAXSS  max step size SSPAR(2) SSPAR(5) - 1.0
START start step size SSPAR(5) - - 0.1
ARC beg path tolerance ARCRE ARCRE ARCRE 105
ANS end path tolerance ANSRE ANSRE ANSRE 10-10
LIMITD  max num steps LIMITD LIMITD LIMITD 1000




Table 2. Coefficients for generic ¢°.

Index j

OO-\]OBW%WMH

Index

OO-'\]O)OT&PC,OMH

Real Part of Py

0.12324754231
0.93857838950
—0.23467908356
0.83542556622
—0.55763522521
—0.78348738738
0.03938347346
—0.43428734331

Real Part of ¢ j

0.58720452864
0.97884134700
0.39383737289
—0.03938376373
0.39383737388
—0.00938376766
—0.04837366632
0.93725237347

Imaginary Part of p;

0.76253746298
—~0.99375892810
0.39383930009
—0.10192888288
—0.83729809911
—0.10578234903
0.04825184716
0.93836289418

Imaginary Part of g5

0.01321064722
—0.14433009712
0.41543223411
~0.61253112318
—0.26454678861
0.34447867861
0.48252736790
~0.54356527623




Table 3. Coefficients for projective transformation.

Index ] Real Part of B; Imaginary Part of 8 f

—0.03485644332 0.28554634336
0.91453454766 0.35354566613
—0.36568737635 0.45634642477
—0.89089767544 0.34524523544
0.13523462465 0.43534535555
—0.34523544445 0.00734522256
—0.80004678763  —0.00938712364
—0.87543212424 0.00045687651
0.65256352333  —0.12356777452
0.09986798322  —0.56753456577

OQOOO"-JODUTI-I’&OJMP—‘

1




Table 4. Coefficients for f in problem 1.

Index j aj,; as ;
1 —0.00098 -0.01
2 978000.0 —0.984
3 -9.8 -29.7
4 —-235.0 0.00987
5 88900.0 -0.124
6 -1.0 -0.25




Table 5. WORK and CPU minutes for Geometric Modeling Problem. SC
and/or PT indicate that the SCLGNP scaling and/or the pro Jjective transformation,
respectively, were used.

Special Homotopy

METHOD SC,PT no SC, PT
WORK CPU  WORK CPU

QF 269 0002 310 0002
NF 352 0.001 340 (.00
DF 975 0.003 918  0.003

Traditional Homotopy

METHOD SC,PT no SC, PT SC, no PT no 5C, no PT
WORK CPU WORK CPU WORK CPU WORK (CPU
QF 771 0.005 2332 0.014 10108  0.054 51446  0.578
NF - 888 0.002 2572 0.006 8316  0.021 85624  (0.223

DF 1821 0.005 4734 0.011 7737 0.017 61239  0.159




Table 6. Coefficients for f in problem 2. The “D” notation indicates powers of 10,
Thus 0.2000D+17 denotes 0.2000 x 1017,

Index j ai,j Q2 5

1 0.1069D—-03 0.2000D+17
2 0.2600D+-05 0.1000D+15
3 0.1000D+01 —0.1000D+01
4
5]

—0.1800D—-09
~0.1283D-23




Table 7. WORK and CPU minutes for Unscaled Chemical Problem.

Special Homotopy

METHOD FULL RUNS (ALL PATHS) RERUNS OF
FAILED PATHS
No. paths with FLAG=
WORK CPU 1 3 5 6 WORK CPU
QF 346 0.005 6 0 1 2 1372 0.013
NF 332 0.003 8 0 1 0 400 0.001
DF 1713 0.007 9 0 0 0 0 0.0

Traditional Homoto py

ALL FAILED




Table 8. WORK and CPU minutes for Scaled Chemical Problem.

Special Homotopy

METHOD FULL RUNS (ALL PATHS) RERUNS OF
FAILED PATHS

No. paths with FLAG=
WORK CPU 1 3 5 6 WORK CPU

QF 247 0.005 g 0 0 0 0 0.0
NF 328 0.003 9 0 0 0 0 . 0.0

DF 1524 0.007 9 0 0 0 0 0.0

Traditional Homotopy

METHOD FULL RUNS (ALL PATHS) RERUNS OF
FAILED PATHS

No. paths with FLAG=
Run No. WORK CPU 1 3 5 6 WORK CPU

QF 1 2225 0.018 1 0 10 1
2 23098 0.150 4 2 , :
3 27695 0.169 8 2 1 1 1935579 . 11.589

)
s

2 694 002 6 ¢ ¢ 0
T T

2 1spag 0044 12 g g g _
3 19143 0.053 12 0. Y 0.0




Table 9. Coefficients for f in problem 3.

16

al :j az )j ’ (13 :j

—0.24915068D+00 0.12501635D+00 —0.63555007D+00
0.16091354D+01 —0.68660736D+00 —0.11571992D+00
0.27942343D+00 —0.11922812D 400 —0.66640448D+00

0.14348016D+01 —0.71994047D-00 0.11036211D+4-00 —

0.00000000D+00 —0.43241927D+00 0.29070203D 00

0.40026384D+00  0.00000000D+-00 0.12587767D+01 —

—0.80052768D 00 0.00000000D+00 —0.62938836D+00
0.00000000D+00 ~0.86483855D+-00 0.58140406D--00

0.74052388D—01 —0.37157270D—01 0.19594662D+-00 —

—0.83050031D—01 0.35436896D—01 —0.12280342D+01

—0.38615961D4-00- 0.85383482D-01  0.00000000D~+00 —

—0.75526603D+00  0.00000000D++00 —0.79034221D —01
0.50420168D+-00 —0.39251967D—01 0.26387877D—01
~0.10916287D+01  0.00000000D-+-00 —0.57131430D—01
0.00000000D+00 —0.43241927D+00 —0.11628081D+-01
0.40026384D4-00  0.00000000D+00 0.12587767D+-01

0.49207290D—-01 0.13873010D—01 0.21625750D+01 —

Qy,5

0.14894773D-+01
0.23062341D+00
0.13281073D-+01
0.25864503D+00
0.11651720D+01
0.26908494D +00
0.53816987D-+-00
0.58258598D 400
0.20816985D 00
0.26868320D+01
0.69910317D 400
0.35744413D+00
0.12499117D +01
0.14677360D 401
0.11651720D+01
0.10763397D+01
0.69686809D 400



Table 10. Coefficients for g in problem 3.

Index ;
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

ai,;

—0.61255849D—01
0.26076366D+-00
0.45281134D—01
0.35275837D 400
0.00000000D+00

—0.14746307D-+00

—0.56975356D-+-00
0.00000000D+00

—0.12965114D+-01
0.95839839D 400

—0.27565432D+00

—0.27244110D+00
0.88054348D-+-00

—0.11395071D+01
0.00000000D+-00
0.31773876D+00

—0.50218200D-01

az,j

0.34078258D—01
~0.15606219D+00
—0.27099914D-01
—0.19624886D-+00
0.22073862D+-00
0.00000000D+00
0.06000000D+00
—0.85286853D+00
0.72128377D+00
—0.573583561D+-00
—0.63198845D—01
0.00000000D+00
—0.14525953D+-00
0.00000000D+00
—0.47562562D +-00
0.00000000D+00
0.19116983D—-01

a3,j

~0.12694273D+01
—0.27719637D--00
~0.15963103D+01
0.22043375D+00
~0.11617822D+00
0.25915994D 400
0.67075527D—01
0.44887817D+00
—0.45191642D 01
—0.12669584D+-01
0.00000000D+-00
0.51406650D+-00
0.76452385D—01
—0.44139805D—01
—0.15019756D 401
0.12957997D 401
0.11330545D+01

Qq,j

0.21210809D+01
0.49826195D--00
0.28693762D+01
—0.36832183D+00
0.17313019D+-00
0.77612143D—01
0.29987029D+-00
—0.44809391D —01
0.87146435D—03
0.22180094D+-01
—0.22160665D+01
0.22422032D+01
—0.11718355D +00
0.86731007D+00
0.86565097D+-00
0.10033856D+-01
—0.15033239D +01




Table 11. WORK and CPU minutes for the Mechanism Problem.

Special Homotopy

METHOD FULL RUNS (ALL PATHS) RERUNS OF
FAILED PATHS
No. paths with FLAG=
WORK CPU 1 3 5 ] WORK CPU

QF 33878 0.937 62 0 2 0 1397 0.044
NF 04590 0.474 62 0 2 0 3320 0.027
DF 134775 0.866 64 0 0 0 4986 0.035

Traditional Homotopy

METHOD FULL RUNS (ALL PATHS) RERUNS OF
FAILED PATHS

No. paths with FLAG= -
WORK. CPU 1 3 5 6 WORK CPU

QF 7515514 2020 29 2 0 1 2342 0.064
NF 7921580 630 30 1 0 1 2300  0.025

CDF 34516 20 32 0 0 o o 00




