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Abstract

The software crisis has increased the demand for automated tools to assist software developers in
the production of quality software. Quality metrics have given software developers a tool to
measure software quality. These measurements, however, are available only after the software has
been produced. Due to high cost, software managers are reluctant, to redesign and reimplement low
quality software. Ideally, a life cycle which allows early measurement of software quality is a nec-
essary ingredient to solving the software crisis. This paper describes an automated tool for pre-

dicting software quality at design time.
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I. Introduction

In general, the software life cycle consists of requirements definition, program design, implementa-
tion, testing, and finally, maintenance. The portion of the cycle that is of interest to this research
is that of design and implementation with the inclusion of software quality metrics. Figure 1 con-
tains a diagram of this part of the software life cycle using complexity metrics. First, a design is
created and implemenfed in software. At that point, software quality metrics are generated for the
source code. If necessary, as indicated by the metrics, the cycle returns to the design phase. Ideally,
the software life cycle can be “reduced” to that in Figure 2, where the metrics are generated during
the design phase, before code implementation. This modified cycle will eliminate the generation
of undesirable source code, since it is possible to use the metrics, exactly as before, only earlier.
The goal of this study is to indicate the plausibility of using the “reduced” cycle to increase the ef-

ficiency of the software developmem process by implementing metric analysis as early as possible.
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The goal of shortening the loop in the life cycle is highly dependent on the ability to perform the
metrical measures on the design, along with the need for evidence that the metric values produced
from the design reflect the quality of the resultant source code. To facilitate this ability, a software
metric analyzer is provided that takes as input either the design or the source code and produces,

as output, a number of complexity metric values:
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Figure 2. Diagram of Proposed Reduced Software Life Cycle

The metric analyzer requires syntactically correct code. When using the analyzer at design time,
input consists of syntactically correct program design language (PDL) code. To this end, 2 PDL
was developed for use in this research. This design language has some Pascal-like and ADA-like
constructs, but it is sufficient to say this ool is a general PDL. For a complete definition of the

PDL, the interested reader is referred to [SELC 87].

The next section describes in detail the software metric analyzer. Exact definition of the metrics
produced by the tool are not provided but left to the reader. In section I11, a brief discussion of the
data collection and preparation is given. The data analysis and resultant prediction equations for
source code quality are given in section IV. In addition, section IV also contains the inter-metric

correlations.  Finally, section V contains our conclusion.



II. Description of Software Metric Analyzer

A software quality metric analyzer, which iakes as input PDL or source code and produces several
software metrics, has been developed for use in our research. A general relation language has been
successfully used as a tool to express the intermediate form of the design or source code [HENSSS].
This intermediate form is then translated into a set of relations which are interpreted to produce
metrics. The software quality metric analyzer produces three code metrics, three structure metrics,
and several hybrid metrics. This analyzer is based on LEX (a lexical analyzer) and YACC (Yet
Another Compiler Compiler) which are tools available with a UNIX environment. Hence, the

analyzer requires a UNIX system.

The remainder of this section describes the details of the implementation of the software quality
metric analyzer. For purposes of discussion, the analyzer is divided into distinct three passes. See

Figure 3 for a diagram of the analyzer.

Pass 1

Pass one has as input the Backus-Naur form (BNF) grammar for the PDL or source language to
be analyzed, the semantic routines which dictate processing for each production in the grammar,
and the design or source code to be analyzed. A file containing the intrinsic (built-in) functions,
peculiar to the source language is also input. For obvious reasons, these functions should not be
treated as real functions; they actually act similar to complicated operators and as such are treated

as operators. The source code to be analyzed is assumed to be syntactically correct,

"Two files are output from pass one. The first file contains the language dependent metrics for each

procedure: lines of code (LOC) [CONS 86], McCabe’s Cyclomatic Complexity (CC) [MCCT 76},




and Halstead’s Software Science indicators length, volume, and effort (N, V, and E respectively)
[FIALM 77]. These metrics are produced in pass one since this is the only pass which has the actual
code necessary to generate them. The second file output from pass one contains the Relation
Language code which is equivalent to the source code. Pass one is the only language-dependent
portion of the analyzer. Current source languages processed are the PDL used in this study, Pascal,

‘C’, FORTRAN, and THLL, a language used by the United States Navy.

Pass 2

Pass two uses the UNIX tools LEX and YACC. The Relation Language code from pass one is
translated into a “set of relations” [KAFD 82]. This set of relations is completely independent of
the original language. Code can be processed one procedure at a time. An advantage is that the
Relation Language code for the procedure is the only information necessary to generate its relations.
An additional advantage is that source code could be translated into Relation Language code and
then analyzed at a separate facility. This feature allows any proprietary details in the original source

code to be hidden from the analysis process [HENS 88].

Pass 3

Three general classes of software metrics can be distinguished: structure metrics which are measures
based on antomated analysis of the system’s design structure, code metrics which ar¢ measures
based on implementation details, and Aybrid meirics, which combine features off both structure and
code metrics. As previously proposed by [CANJ 85], [HENS 81b], and [HENS 84}, this research

shows that the structure metrics are global indicators of software quality which can be taken early



in the life cycle, while code and hybrid metrics can be brought into use as more implementation

details become visible.

Pass three and the associated implementations of the structure metrics are written in standard
Pascal. The relations file from pass two generates the three structure metrics: Henry and Kafura's
Information Flow metric [HENS 81a], McClure’s Invocation metric [MCCC 78], and Woodfield's
Review Complexity metric [WOOS 80]. Only the Information Flow metric was available for this
study. The structure metrics and the code metrics (file one from pass one) produce the hybrid

metries.

A quantitative measurement of design structure can be defined only in terms of those features of
the software product which have emerged during the (high-level) design phase. Tﬁ define a nu-
merical measure, structure metrics use only these features, components, and relationships among
components. Note that the actual source code is not necessary to observe the interconnections

among components of a system.

A structure measure based on the data relationships among components is the Information Flow
Metric [HENS 79]. This metric identifies the sources (fan-in) and destinations (fan-out) of all data
related to a given component. The data transmission may be through global data structures, pa-
rameters, or side-effects. The fan-in and fan-out are then used to compute a worst-case estimate
of the communication “complexity” of this component. This complexity measure attempts to

gauge the strength of the component’s communication relationships with other components.

As previously stated, pass three is written completely in standard Pascal and is independent of a
UNIX environment. The user is in complete control of the sclection of the above metrics to be run
and the method of viewing the metrics. The user decides which of the structure metrics he desires

to apply to his system. In addition to running the structure metrics and examining them, the user




is allowed to define modules (a related collection of procedures) or levels (a related collection of
modules). It is assumed that the user would like to view all related procedures as a single module,
and likewise, view all related modules as a single level. This feature is especially useful for very large

systems. Hardcopies of all reports are available at any time.
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III. Data Collection and Preparation

Research, such as that done for this study, is highly dependent on the availability of relevant data
to analyze. In general, programs produced by students and used as data are not very well accepted.
Due to the problem with obtaining “real world” data, the data used for this study is student gen-
erated, but there is a major difference between the data used here and that generally produced in
academia. The programming is done in an environment that is as realistic as possible. Therefore,
it is felt that even though the programs used are produced within an academic environment, they

are substantially more realistic than that generally obtained under these conditions.

Over the past six years, PDL designs and the resultant Pascal source code has been collected from
undergraduate senior-level software engineering courses at both Virginia Tech and the University
of Wisconsin — LaCrosse. The project-oriented class is designed to teach students the basics of

software engineering [HENS 83].

The goal of the project is to expose students to the experience of non-trivial program development
in a “real world” environment where designing and implementing a project is not a single-person
task. To this end, the class is divided into teams of three people. Each team is responsible for
designing a system that upon completion will be from three thousand to five thousand lines of
source code. This design includes hierarchy charts and module specifications written in the PDL.
After a team has completed the specifications for their project, they “hire” classmates 1o implement
the modules in Pascal. Finally, the design team must integrate the modules into the completed

program.

The completed projects that have been furnished by the classes are varied. They range from two
thousand to eight thousand lines of code, indicating the students’ inability to accurately predict
program size. Program function is also widespread. In an attempt to ensure that the completed

designs and source are usable as data, students are given minimal design requirerents. It was im-



possible to monitor all of the designs of all of the students; in fact, the students alone decided on

“English-like” specifications, “code-like” specifications, or somewhere in-between.

After the PDL and Pascal code have been processed by the analyzer and metrics have been gener-
ated, procedures must be combined into modules. This is necessary because there must be a one-
to-one correspondance between the design and source. The.method used is simple. A single PDL
procedure may be a definition of the function performed by several Pascal procedures. In order to
equate the design and source, it is necessary to add the complexities of each of the Pascal routines.
Combining procedures into modules is easily accomplished by using the module definition feature
of the analyzer. In this way, the design complexity is directly comparable to the source complexity

on a functional level.



IV. Data Analysis

It is desirable to examine the data as a whole in order to develop predictors for each metric. Pre-
Jiminary results indicate that the code metrics are strongly dependent on the level of the refinement
while the structure metrics are independent of refinement Iéval [SELC 87]. A highly refined module
would contain code-like specifications, while a low refinement level indicates the predominance of
natural language specifications. To determine the validity of this hypothesis, the routines are di-
vided into three categories; low, average, and high levels of refinement. Each level is analyzed in-
dividually, where the analysis consists of (1) correlations to determine the overall trends of the data,
and (2) simple linear regression analysis to obtain the predictors. In addition to the prediction of
the source quality, it would be convenient if an estimate of the amount of error involved in the
prediction could be calculated. To this end, the extra statistics necessary to calculate a 95% confi-

dence interval for a predicted source complexity are determined.

As mentioned above, it is informative to examine the metric values based on the level of refinement
of the specifications. In order to accomplish this purpose, it is necessary to determine the refine-
ment level for each routine to be examined. It seems reasonable that as refinement level increases,
the length of the procedure will also increase, but more importantly, the number of control struc-
tures will be greater as well. Also, it appears necessary to consider the relative or normalized
complexity values as opposed to examining the raw data, since, for example, the semantic difference
between 1 and 5 is greater than that between 40 and 50. Using these ideas, an algorithm to auto-
matically determine the completeness of the design has been created. It is intéresting to note that
the algorithm is completely dependent on code metric values, yet, as will be demonstrated, the In-
formation Flow metric performs better than the code metrics. This again indicates that structure

metrics are probably independent of refinement level.

The algorithm proceedes as follows: first a normalized value is calculated for McCabe’s Cyclomatic

Complexity and for Halstead's N metric for each procedure. In the next step of the algorithm the
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level of refinement is determined using the normalized values. Hf the normalized McCabe value is
0.0, then it cannot be used to determine level, and the metric N is the sole determiner. Otherwise,
the McCabe value is checked first, and if it appears fully refined, the level is either High or Middle,
depending on N. If the McCabe valuve is of Middle refinement, the level is either Middle or Low,
again depending on the value of the normalized N. Finally, if the McCabe value indicates a low
level of refinement, the procedure is determined to be Low. The last step in the algorithm performs

the actual regression at each level of refinement.

In order to determine the validity of the results of the algorithm, seven projects were examined and
procedural refinement determined by hand. Comparison of the results of the hand-generated levels
and those determined by the algorithm indicate that this method of setting a level of refinement
was extremely accurate, being correct more than 99% of the time. Due to the strong results of the
algorithm, it was used to generate the refinement level of all of the procedures. The results of the
algorithm indicate that of the 981 modules in the study; 422 have a High level of refinement, 283

have a Middle level of refinement, and 276 have a Low level of refinement.

Table 1. Correlations by Level of Refinement

Low Level

LOC | N v L CC INFO
0.610 | 0.512 | 0.552 | 0.211 0.405 | 0.903

Middle Level

LOC | N v E cC INFO
0.701 | 0.731 }0.756 | 0.577 0.867 | 0.904

High Level

LOC | N A4 E CC INFO
0.810 | 0.830 | 0.807 | 0.706 0.902 | 0.792
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The analysis results, shown in Table 1, show that the above expectations are generally true. In the
tables, Henry and Kafura's Information Flow metric is abbreviated INFO. The Information Flow
metric performed consistently well, with its lowest correlation value being 0.792. This result shows
explicitly that the metric is independent of refinement level. The code metrics reacted as predicted.
They do not perform well at a low level of refinement, and their correlations increase as level of
refinement becomes greater. An interesting result is that the metrics perform quite well at even a
middle refinement level. This indicates that after a minimum amount of detail is included in the

specifications, the code metrics become useful measures.

Tables 2, 4, and 6 show the regression lines for each of the metrics at a Low, Middle, and High fevel
of refinement respectively. As discussed above, the information in these tables may be used to form
a prediction equation, given that the level of refinement can be determined, with a 95% degree of
confidence. Tables 3, 5, and 7 give the extra statistics needed to predict a confidence interval for a

specific design complexity value and refinement level using the formula:

Slope » X + Intercept£2 x JMSE % (1/n + (X — Xjprn)/SS,)  where
X is the independent variable or design complexity
Slope is the slope for the regression line
Intercept is the intercept for the regression line
MSE is the Mean Squared Error from the model
n is the total number of data points employed in the regression

X

&1

.. 15 the average value of the design complexitics
SSy is given by :
$Sp = (X, = Xogun)

[WALR 78]

Using the above equation and the prediction line for LOC as given above, the 95% confidence in-

terval for a design complexity of 100, and a low level of refinement is given by:
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1.126 x 100 + 29.22422 x /1.785E + 5 x (1276 + (100 — 11.388)/1.409E + 3)

141.8244+ 55.100

Another words, the actual value associated with the complexity 100 for the metric LOC will be in

the range 86.724 — 196.924 95% of the time.

Table 2. Low Refinement Regression Line Equations and Statistics

Regression Line Information
Coef Std Err t-Value

LOC Intercept 29.224 2.236 13.069
Slope 1.126 (0.088 12.737

N Intercept 226.137 18.032 12.541
Slope 1.410 0.143 9.877

v Intercept 1235.605 104.910 11.778
Slope 1.396 0.127 10.961

E Intercept 90760.893 16309.020 5.565
Slope 2.570 0.719 3.573

CcC Intercept 3.630 1.286 2.823
Slope 6.117 0.833 7.341

INFO Intercept 81740.175 105225.480 0.777
Slope 10.022 0.286 35.106

Table 3. Extra Statistics for Low Refinement Level
Metric Statistics
n MSE SSx XMean

1.OC 276 1 L78SE+05 | 1.409E+ 05 11.388

N 276 | 7.024E+06 1 3.531E+ 06 56.127

Y 276 | 3.227E+08 | 1.657TE +08§ 280.500

E 276 | 8.709E+ 11} 1.318E+ 11 6031.786

CcC 2761 7.690E+ 03 | 2.055E+ 02 1.279

INFO 276 | 3.710E+ 15| 3.693E+13 | 45085.200
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Tahle 4. Middle Refinement Regression Line Equations and Statistics

Regression Line Information
Coef Std Err 1-Value

LOC Intercept 4.900 1241 3.048.
Slope 1.242 0.075 16.498

N Intercept 49.247 8.553 5.758
Slope 1.440 0.080 17.937

v Intercept 285.608 43.100 6.627
Slope 1.408 0.073 19.356

E Intercept 24147.773 4525.805 5.336
Slope 1.459 0.123 11.851

cC Intercept 0.789 0.259 3.045
Slope 1.932 0.066 25.219

INFO Intercept -7258.697 14693.092 -0.494
Slope 5.231 (1.148 35.447

Table 5. Extra Statistics for Middle Refinement Level
Metric Statistics
MSE SS; XMeon

LoC 2831 5.893E+04 | 3.820E+04 11.696

N 283 | 27576+ 661 1.812E+06 70.360

A% 2831 1.285E+08 | 6.481E+07 349.226

E 283 { 7.614E+ 11| 3.576E+ 11 9348.640

CC 2831 9.615E+03 | 2.577E+03 2.502

INFO 283 | 7.530E+ 131 2.752B+ 12| 13747.350

This section has presented the statistical analysis for the data based on levels of refinement. It

shows that the structure and hybrid metrics perform much better than the code metrics, and more

importantly, proves that siructure metrics are independent of level of refinement. With a minimal

amount of information {the calling structure and parameters) the Information Flow metric can

predict the quality of the resultant software. This facilitates a shorter life cycle for the production

of quality software. Regression lines allow the calculation of prediction equations for the resultant

source code complexity values to be predicted based on the design.
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Table 6. High Refinement Regression Line Equations and Statistics

Regression Line Information
Coet Std Err t-Value

LOC Intercept 1.284 0.547 2.348
Slope 0.810 0.029 28.304

N Intercept 20.210 4.262 4.741
Slope 0.842 0.028 30.488

v Intercept 110.247 25482 4.327
Slope 0.830 6.030 28.002

E Intercept 9522.419 3647.289 2.611
Slope 0.756 0.037 20.458

cC Intercept 0.644 0.133 4.829
Slope 0.791 0.018 42.840

INFO Intercept -297874.630 958329.640 -0.311
Slope 40.602 1.527 26,582

Table 7. Extra Statistics for High Refinement Eevel
Metric Statistics
MSE S8, Xitean

LOC 422 | 4.404E + 04 | 6.717E+ 04 14.358

N 4221 3.959E+ 06 | 5.590E + 06 102.960

v 422 | 1.345E+ 08 } 1.954E+ 08 525.775

E 422 | 2239E+ 12| 3.91eE+ 121 21439.980

CcC 4221 8218E+ 03 1.313E+04 4.583

INFO 422 2719E+ 17| 1L.65S0E+ 14|  52433.400

Inter-metric Correlations

Table 8 contains the inter-metric correlations for the Pascal code. This information serves to verify
studies previously done by [HENS 81b], [CANJ 85}, [BASV 83], [REDG 84, and [LIH 87]. The
table indicates that between code metrics there is, in general, a high degree of correlation. When

comparing the code metrics with the structure metric {Information Flow), however, it is seen that
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the results are quite close to zero. This resuli indicates that the code and structure metrics are

measuring different aspects of the source code.

The inter-metric correlations, with respect to the design, show the same relationships as those using

Pascal, and are given in Table 9. This is a desirable result since it indicates a consistency of meas-

urement when comparing the designs to the resultant source code, It also lends credence to the

usefulness of performing complexity measures at design time.

Table 8. Inter-metric Correlations for the Pascal code

Pascal Source Code

Metric LOC | N v g cC | INFO
LOC

N 0.893

A" 0.885 | 0.989

E 0.521 | 0.749 | 0.711

cC 0.629 { 0.776 | 0.781 | 0.492

INFO 0.044 | 0.029 | 0.036 | 0.005 | 0.019

Table 9. Inter-metric Correlations for PDL code

PDL Desigh Code

Metric LOC | N Vv E CC INFO
LOC

N 0.894

v 0.894 | 0.988

E 0.465 | 0.725 | 0.681 .

cC 0.541 | 0.702 | 0.656 | 0.662

INFO 0.260 | 0.208 | 0.249 | 0.039 } 0.039
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V. Conclusions

The use of software quality metrics has become more common in the computer science community.
Up to this point, however, their use has been mainly restricted to the measurement of production
software or, in the case of design, limited to code metrics. This research is an attempt to show that
(1) structure and hybrid metrics are extremely useful at design time, and (2) automatic generation
of metrics for design specifications is not only possible with an analyzer similar to the one used for

this research, but also desirable.
The results of this research clearly indicate several things:

* It is possible to generate meaningful complexity values at design time automatically.

¢ It is possible to predict the complexity values of the resultant source from the design meas-
urements.

*  Structure metrics are independent of level of refinement.

e  Code metrics are NOT independent of level of refinement.

There is still much work to do with the idea of automatically analyzing designs. More data needs
10 be collected in order to verify and extend this work to incorporate more programs of radically
different types, such as operating systems, compilers, etc. It would also be interesting to include
severai other metrics in the Software Metric Generator and compare the results with those of the
metrics already generated. A current research effort under way at Virginia Tech is applying Software

Quality Metrics in a graphical design environment.
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New tools, such as the analyzer used in this research, must continue to be studied in an attempt to
make the design process both more structured and more reliable. The incorporation of existing
tools, such as software quality metrics, can be of great assistance in this undertaking and should
be examined to determine their role in the software development process. Hopefully, this research

1s one of the first steps in the on-going search for better design methodologes.
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