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INTRODUCTION

This paper focuses on the problem of distinguishing straight lines from curves in noisy, gray—
tone images of engineering line drawings. The underlying motivation is to develop a fully automatic
system that could take a digitized gray-tone image of a line drawing, recognize and extract the lines
and shaded regions, and compress the data based on a high-level, mathematical representation. The
substantial volume of existing hard-copy drawings would benefit from such a system which would

facilitate storage, transmission, and review and modification.

We are not necessarily concerned with the best method of generating arbitrary lines and curves,
although many of the same approximation techniques apply. The emphasis here 18, first, on accu-
rately locating corners in line drawings, and, second, on developing an effective test for when a set of
real data constitutes a straight line. ¥ the data is not a straight line we give a good higher order ap-
| proximation. We do not attempt to find an optimal approximation satisfying some prescribed fitting
criterion. The quality of the fit is judged subjectively based on a comparison of the reconstructed -

drawing and the original.

The proposed algorithm first uses a simple technique to locate general changes of direction
(corner points) in the data, and then determines if each segment between successive corner points
is best represented by a straight line or a curve. Two least squares spline approximations are
generated, one linear and ome cubic, to fit each segment. The quality of these fits then determines
which primitive is used to represent that portion of the data. If the linear fit is sufficiently good, the
data is represented by a straight line, otherwise, the data is represented by the cubic spline. This
method produces good qualitative results, and generates efficient mathematical representations for

the primitives.

There iz a substantial volume of literature devotéd to the topic of fitting scattered data with
piecewise polynomial functions and several are listed in the references. Many existing algorithms,
however, tend toward the extremes of optimizing efficiency at the expense of quality or allowing
substantial processing time to obtain a very close fit. Some algorithms are content to provide
a polygonal approximation to all curves and for applications in which most of the components are

straight lines, they work well. For images in which many of the components are highly curving, these
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technigues are simply not appropriate. Still other algorithms are intended as interactive design tools

and require some user intervention.

Our efforts are motivated by the need for an efficient means of archiving typical engineering
line drawings. Thus, we have attempted to strike a balance between fitting quality, speed, and final
storage requirements, We have also insisted that, beyond specifying a few global parameters, there

be no user interaction.

To produce input for this study, any good line finding or contour following algorithm would
suffice. It is only necessary that the input consist of a binary image in which each curve has a thick-
ness éf one pixel and is represented as a sequence of adjacent pixels. The particular preprocessing
applied in this case is as describeé in [1] and [2]. The data is then in a form that can easily be

approximated by a variety of mathematical primitives. See Figure 1.

*** FIGURE la and 1b GO HERE ***

FINDING CORNERS

Many of the existing methods for fitting curves begin by first finding a polygonal approximation
and then using the vertices of the polygon to help determine the approximating polynomial [3,4].
Sometimes the vertices are dynamically adjusted to better locate corners and to improve the fit.
These vertices are then used as breakpoints for a spline approximation. It is possible to determine
the placement of the breakpoints that produces an optimal fit, but this is computationally very
expensive and the results are nsually not worth the effort. That is, a simpler suboptimal placement of
the breakpoints can produce an approximation that accurately captures the shape of the underlymg
data [5]. “The real value of the initial polygonal approximation is that it should accurately locate
sharp corners inr the data, that is, places where two different curves meet. This then allows one to
| fit each segment between successive corners with a smooth curve requiring only continuity between
adjacent segments,
There are numerous techniques for coﬁstructing polygonal approximations to arbitrary line _ciata
[6,7,8,9]. Two recent algorithms also relevant to our st.udy are reported in [10] and [11]. Both of

these are fast, scan-along techniques that essentially try to add data points to the current line until

some error threshold is exceeded. In [10], Sklansky uses itersecting cones to to find the longest valid
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approximating segment. Circles are first drawn about each data point, then, proceeding from point
to point, tangents are drawn to the circles to define sectors in which valid segments must lie. The
procedure finds a polygonal approximation to & set of input data points such that the Hausdorf-
Euclidean distance between the two is no more than some prespecified €. If ¢ is large, curves can be
separated into long straight segments introducing extra vertices in the approximating polygon. A
smaller ¢, on the other hand, can make the algorithm more sensitive to noise which agalin introduces
extra vertices. Additionally, while proceeding around a corner, the algorithm often adds extra data
points to the current line segment before terminating. This causes a mislocation of the true corner
and results in squares or rectangles appearing as parallelograms or trapezoids. See Figures 2a and

Ja.
¥¥4* FIGURES 2a AND 2b GO HERE ****

Wall’s method [11], also a scan-along polygonal approximation technique, is based on computing
an area deviation for each line segment. The longest allowable line segment is determined by merging
points, one after another, until the area deviation per unit length of the segm;ent exceeds a prespeci-
fied value T'. The coordinate system is first translated so that the origin is at the starting data point
(26, ¥0). Successive data points (zi,4:),1=1,2,..., are added and the increments Az =2, — z;_4

and Ay; = y; — yi—1 are computed. The accumulated deviation, f;, is then calculated by:

Ji=fic1+Afi where fo=0, Afi=2;x Ay -y x Az,

The length L; of the current line segment from the starting point to (zs,y:) 1s calculated, where

L; = (z? + y?)llz’

and the following test is applied:

1R < (T x L)

I the test is satisfied, the next data point is added and the deviation is recalculated. Otherwise
the longest allowable segment has been found, i.e. the segment joining (2o, yo) to {z;—1, ¥i—1). The

latter point is taken as the starting point for the next segment and the process is répeated.
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The results for various values of T are quite similar to those produced by the Sklansky algorithm.
Lﬁrge values of T fragment the curves and small values of T fragment long straight lines. In some

cases the corner degradation is so noticeable that small squares and rectangles are hardly recognizable
(see Figure 3b).

**** FIGURES 3a AND 3b GO HERE ****

Another popular method is to first fit the data with a cubic spline and then compute the local
extrema of curvature, If curvature iz high enough, call the nearest data : point a corner point., This
method is not only expensive, but can Iegd to rather unsatisfacory results. Because of noise in the
image, the line tracking algorithms do not always produce a “smooth” line. The tracker tends to
undulate back and forth as it follows the gray tone intensity ridge, resulting in a sometimes jagged
line. These Auctuations in direction appear as local extrema of curvature, and, hence, many spurious

corner points may be found.

The goal here is to locate general changes in directions while ignoring the local fluctuations due
to nose. A simple technique that does work well is to pass a window over the data and approximate
each half of the window by a least squares linear spline. The two linear approximations form an
angle at the center of the window. When this angle exceeds some threshold, a potential corner point

is found. The exact details of the algorithm are given below.

As usual, parameterized row and,_colum.n coordinates of an arbitrary curve are considered sepa-
rately. The independent variable in both cases is the cumulative linear distance betweén successive
data points, where pixel separation is taken to be one unit, Breakpoints and simple knots are placed
at the window endpoints and at the center. Here splines are computed as linear combinations of
B-splines which implies a distinction between “breakpoint” and “knot” [5]. If the angle made by
~ the resulting linear approximation is less (sharper) than some threshold, the center is recorded as
a potential corner point, the window is moved ahead by one, and the process is repeated. Notice
that the linear distance between two successive data points is either 1 or /2, whereas the change
in the corresponding row or column coordinates is at most 1. Since the séparate row and column
splines are combined to form a single approximation, this discrepancy can result in a skewed fit if
the cumulative linear distance is used as the independel_lt variable. The problem is avoided by using

a uniform increment of 1 as the independent variable.

4



A less expensive and slightly less robust method for locating corners is simply to join the data
points at the ends of the window to the data point at the center. Although tbis may do a poor
job of approximating the actual data, it usually still detects the sharp corners. Unfortunately, each
method detects some corners that the other method does not. The most effective technique seems
to be a combination of these two methods. First, set a higher angle threshold (less sharp) and make
one pass over the data joining the window endpoints to the center. This detects all points that
have a chance of being corners. Then compute the more accurate spline approximation in a small
neighborhood of these points and test the angle against the sharper threshold. This hybrid method
accurately finds corner points while eliminating the expeunsive spline computations in cases of very

low curvature.

As expected, varying the window size and the angle thresholds produces quite different re-
sults. Smaller windows are too semsitive to local noise, resulting in too many comer.points and
misplacement of some corner points. Large windows, although less sensitive to noise, create general
inconsistenci’es when dealing with shorter line segments, such as those in block letters, small polyg-
onal symbols, etc. If the sides of the fizure in the original image are less than half the window size,
the approximations can result in recording invalid corner points or in losing valid corner points. As
indicated below, very short curves are considered as special cases. In general, a window of size 11

produced the best results for the test data. See Figure 2b.

The angle threshold is intuitively set at 135 degrees. This !ocatés those points at which a line
makes more than a 45 degree deviation from its current heading. It also, appropriately, ignores a
more gently curving line. Because of the large value for the angle tﬁreshold, bowever, data poiuts
surrounding the actual corner may also pass the threshold, thus yielding a string of adjacent corner
points. In this case a thinning process is applied: when two corner points are closer than three data
points apart, the corner with the sharper angle is retained and the other one is deleted. This ensures

that each segment from corner to corner consists of at least five data points.

DISTINGUISHING STRAIGHT LINES FROM CURVES

Having identified the sharp corners in the data, any of a number of methods for fitting the
idividual segments could be used. We again take a simple approach. First, generate a cubic spline

with simple knots located at equally spaced breakpoints, and breakpoints with triple knots at each of
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the corner points. Note that a simple knot ensures that the approximation will be twice continuously
differentiable at the corresponding breakpoint, whereas a triple knot guarantees only continuity [5].
Thus, the requirement for smoothness at the corner points is eliminated. At the same time, a linear

spline iz computed with a breakpoint and simple knot at each corner point.

Errors are then computed to decide whether the data shouid be represented as a straight line
or asg a cubic spline. Betweenx successive corner points calculate the RMS and discrete max norm
errors for the linear spline, and the RMS error for the cubic spline. If the linear RMS and discrete
max norm are below fixed thresholds, the linear fit is acceptable and that interval is taken to be a
straight line segment. If either of these errors is greater than its respective threshold, but the cubic
RMS error is not significantly better than the linear RMS error, the interval is again classified as a
straight line segment. The point is that one might just as well take advantage of the simplicity of
the linear representation in the case that a cubic representation is not significantly more accurate.
Finally, if both of these tests fail, the segment is taken to be a curve and is represented by the cubic

spline approximation.

To clarify the placement of breakpoints and their relationship to the knots, note that the
“standard” breakpoints are placed at regular intervals, every 5 units, until a “corner” breakpoint
.is reached. No standard breakpoint should be placed within 5 units of a corner point, to prevent
the data from being simply ir.xterpolated. Then, starting with the corner breakpoint, standard
breakpoints are again locé.ted every § units until another corner breakpoint is reached, and so on.
Simple knots are Iocéted at each standard breakpoint and triple knots at each corner breakpoint.

Figure 4 shows the location of the breakpoints and knots for a sample line.
*** FIGURE 4 GOES HERE ***

Because of image noise, it is reasopable to judge shorter line segments differentlf than longer
ones. Very short segments, say, less than five data points, are too short to be approximated by a
cubic spline and, hence, they are simply represented by their original data points. On the other hand,
as th'er line segments increase in length, the errors associated with the approximations also increase..
For this reason, a bi-level error threshold would seexﬁ appropriate. A shorter line, say 5 to 15 data
points-, would be required to pass a more stringent set of constraints to be.classiﬁed as a straight

line, whereas a longer line would be allowed & bit more error. Most of these shorter lines, however,
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are located between valid curved segments. This results in a fragmentation of the curves, which
has é negative effect on the appearance of the approximation. qu example, the fragmentation is
especially noticeable in small po!ygqnal figures, alphanumeric characters, etc. To avoid this problem,
all lines of length 5 to 15 are represented by their cubic spline approximations, regardless of their
actual shape. For lines longer than 15 points, the classification is determined as above. The precise

algorithm follows.

num_lines is the number of input lines

FOR i:= 1, num_lines DO

" length is the number of data points in the ith line
x_coord is the array of column coordinates for the ith line

y-coord is the array of row coordinates for the ith line
STEP ©: Find the corner points
1(a): Find the candidate corner points
1{b): Thin the candidate corner points
STEP 2: Fit the data
cub_x(s) is the best cubic spliﬁe approximation to the data
(jx_coord;}, 0 < j < length — 1 ,with simple and multiple knots
as explained above.
cub_y(s) is the best cubic spline approximation to the data
(j.y-coord;), 0<§ < length — 1 ,with simple and multiple knots

as explained above.
interv is the number of intervals in the above cubic spline approximaticns
STEP 3: Separate thé lines and curves
FOR j := 1, interv DO

size is the number of data points in the 7th interval
lin_x(s) is the best linear spline approximation to the data

(k, x_coord;), 0 Sk < size ~ 1, where F indexes the points in the jth
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interval, with a breakpoint and simple knot placed at the endpoints
of the interval

lin_y(s} is the best linear spline approximation to the data
(k,y_coerd;), 0 < k < size — 1 , where k indexes the points in the jth
interval, with a breakpoint and simple knot placed at the endpoints

of the mterval

FOR k := 0, size — 1 DO

lin_err; := \/( lin_x(k) — :c_ccmz'd,;)2 + { 1in_y(k) — y_coord,;)z.

' - 2 N 2
cub_err; = \/( cub_x (k) — x_ccord;) + ( cub_y(k) — ]r_coordi)

END FOR
size—1
lin_rms := ( E lih_err;‘:) / size
\ k=0
‘ rsize—1
cub_rms = ( Z cub_errz) | size
\ k=0
lin nerm := max |[lin_err;|
0<k<pizc—1
diff := [cub_rms ~ lin_rms]

lin_factor := lin_rms x 0.15
IF ( size >5) THEN
IF ( size > 16) THEN
IF ((( lin_norm < 2.05) AND { lin_.rms <0.75))
OR ( diff < lin_facter )} THEN
represent the data as a straight line
ELSE
represent the data as a curve
END IF

. ELSE



represent the data as a curve
END IF
ELSE
represent the data with the original data points
END IF
END FOR loop on intervals within a line

END FOR loop on lines

If the data within an interval i8 classified as a straight line segment, the endpoints of the linear
approximation are stored to represent the data. Intervals that are not classified as straight lines,but

that are longer than 4 data points, are represented by the cubic spline.

EXPERIMENTAL RESULTS

A sample line drawing nsed as original input to the entire system is shown in Figure 1. The
results of applying the line finding algorithm mentioned in the introduction are shown in Figure 3.
This serves as the input to the current algorithm for distinguishing straight lines from curves. A
portion of fhis image, after classifying segments as straight or curved, is shown in Figure 5. There
are still some lines that appear straight but were classified as curves by the algorithm. Sometimes
this iz because there is a short hook or wiggle near the end of the line, not sharp enough to be
considered a corner but pronounced enough to exceed the linear error threshold. It may also be
because the segment is joined to another straight segment forming an angle of less than 45 degrees.
This can be controlled to some extent by adjusting the angle threshold. A third possibility is the
.case ﬁvhen a straight segment is tangent and comnected to a curved segment, as in the side and

bottom edges of the cylinder near the fop of Figure 5.

Results for two other test images are shown in Figures 6-7. The drawing of Figure 6 consists
‘primarily of straight lines and points out the problems caused by a poorly executed drawing. Al-
though it is obvious to the human observer Just which lines are supposed to be straight, a closer look
shows that some of the lines have rather noticeable variations in them. Also, some of the corners

of the boxes in the keypad area are not well defined. Some of this may be due to the effects of

9




digitization, perhaps the lines were not drawn uniformly thick or uniformly dense, but some of it is
also simply due to the quality of the drawing. The algorithm does a fairly good job of identifying
most of the straight lines, but misses some others. The algorithm is reporting, perhaps a bit too
faithfuliy, what is actually in the image, rather that what we see or what we think we see. Such an
image might alsc benefit from from an adaptive thresholding scheme, i.e. relaxing the error criteria

for the linear approximations based on the length of the segment.

The final test image (Pigure 7) contains mostly straight lines, but also contains substantial
noise. In addition to several extraneous marks that are long enough to show up as curves, some of
the long (apparently) straight lines are actually broken in places where the original drawing had been
folded. Distortion m the vicinity of these creases have caused mauy of the lines to be represented as
curves. Again, adjusting the linear error threshold might help. There are also some probiems near
the intersections of some of the lines. This may be due to a small blob of ink that gets deposited at

- the end of a straight line and causes the line tracker to veer off shightly.

All algorithms were implemented and tested on a VAX 11 /785, rum:ung UNIX. Sample execution
times range from 1 to 3 minutes depending on the complexity of the drawing, see Table 1. An
improvement of about 20% in performance should be possible by carefully optmnzmg the code. One
possibilizy for i mlprovmg the algorithm itself is to make a gross estimate of straightness by first
approximating a segment with the line joining its end points. If the error is fairly high, simply go

right to the cubic approximation, If it is not, proceed with the algorithm as stated above.

Actual storage requirements, assuming single precision values are used, range from about 18K
bytes to 44K bytes for the images tested, see Table 1. Since the standard breakpoints are placed at
regular intervals offset from. the triple knots, only the sequence of triple knots must be stored for
each of the cubic splines. For each segmeﬁt between corner points storage requirements consist of
4 coefficients for the first cubic and then, because of the continuity conditions at the simple knots,
only one additional coefficient for each simple knot. This implies that the actual coefficients must be
derived recursively inorder to recreate the i image from its stored format. The number of polynomials
needed is inversely related to the number of data points between knots. We have mt:ally chosen
to mamtam at least 5 data points between knots to j insure that the data is not simply interpolated.

Placmg the knots at wider intervals would reduce the number of cubics needed and, hence, the
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amount of storage, but at the expense of increased smoothing. The straight lines are, of course,

stored by their endpoints.

CONCLUSIONS

The two contributions of this work are a means of accurately locating corners in line drawings,
and a method of distiguishing straight line segments from curved ones. No attempt Ha.s been
made to repair or enhance poorly exectued drawings or noisy images, although the algorithms have
been designed to tolerate some noise. The algorithms work well on arbitrary line data, but can be
somewhat tuned to a given set of drawings. When coupled with a front—end system for extracting line
data from real drawings, these techniques form a complete system for archiving existing engineering

drawings,

Locally, a change in direction of 10 degrees iz not signiﬁca.nt,_ and should not be, but the
algorithm here would represent two long straight lines meeting at such a 170 degree angle as a cubic
spline. A long straight line with a short hook at the end, possibly caused when the ink pen is
ralsed from the paper, is also represented as a cubic sphne, because the hook makes the max norm'
error large, To faithfully reproduce a person’s ability to classify straight lines and curves apparently

requires a much more sophisticated algorithm, but the basic approach here seems sound.

A possible enhancement to these technique presented here would mvolve a tier of error tﬁresholds
based upon the length of the segment being tested. This would take into account the fact that the
RMS and discrete max norm errors generally increase with respect to line length. Other potential
reﬁnements to the present algorithm include optimal knot placement and special rules embodying

knowiedge about engineering line drawings.
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coil
keybd

circuit

Table 1. Results for sample drawings

data pts curved lines straight lines
25091 392 144
17837 279 240
17531 397 241

storage
44219
18562
24038




Fig. 1a.
Fig. 1b,
Fig. 2a.
Fig.. 2b.
Fig. 3a.
Fig. 3h.

Fig. 4.
Fig. 5.

Fig. 6a.

Fig. 6b.

Fig. Ta.

Fig. To.

FIGURE CAPTIONS

Photograph of the criginal coil line drawing.

Output of line tracker applied to Figure la.

Mislocation of corner points using scan-along techniques.

Corner detection using window method.,

Results from the Sklansky [21] algorithm with € = 0.5, for a portion of Figure 6a.
Results from the Wall {24] algc;rithm with T = 2.0, for a portion of Figure 7a.

Sample line showing the location of the breakpoints and knots for the cubic spline approxima-

tion, where « iz a data point, * ig a triple knot, and + is a simple knot.

A portion of Figure 1 following the line classification algorithm (straight lines are dotted and

curves are solid),
Original keyboard drawing after line tracking.

A portion of Figure 6a following the line classification algorithm (straight lines are dotted and

curves are solid).
Original schematic drawing after the line tracking.

A portion of Figure 7a following the line classification algorithm (straight lines are dotted and

curves are solid).
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