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Abstract. In this paper we examine the flow of 5 conducting fluid between a sohid rotating disk and
& stationary porous disk with uniform injection of fuid through the porous disk in the presence of
an axial maguetic field. The equations of motion are solved using least change secant update quasi-
Newton and modern root finding techniques. The fluid motion depends on the cross-flow Reynolds
number, rotational Reynolds number and Hartmann number. The effects of the parameters on the
flow field are presented graphically.

numbers R; and B3 based upon the angular velocities of the disks and the gap length, respectively,
Stewartson (2] obtained a series solution for small values of R; and Ry Several later investigations
[3]-{6] used analytical and numerics] techniques. ‘The flow between rotating disks with injection on
the porous disk was throughly examined by Wang and Wateon [7]. Several other references can be
found in [7]. | - -

Srivasthava and Sharma [8] extended the solid rotating disks problem to MHD flow obtain-
ing a solution for rotational Reynoids number Ry << 1. This problem was analyzed analytically
and numérically by Stephenson [9] for arbitrary Reynolds pumber B and Hartmann number A
Chandrasekhara and Rudriah [10] obtained solutions for the two dimensional statiopary case with
small suction and injection velocities, Later Chandrasekhara and Rudriah [11] studied the case of
axisymmetric flow between a rotating porous disk znd s staticnary porous disk with suction and
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injection, restricting the rotation and magnetic field parameters. Recently, Agarwal and Bhargava
[12] studied numerically the flow between a solid rotating and s stationary porous disk with suction.

_ This paper examines the flow of a conducting fluid between a solid rotating and a stationary
porous disk. At the stationary porous disk, fluid is injected with uniform velocity w. By using
suitable similarity transformations, the governing nonlinear partial differential equations are reduced
to nonlinear ordinary differential equations. These equations are solved numerically using a least
change secant update quasi-Newton and modern root finding methods. The problem depends on
the nondimensional parameters R, Ry and M which are the cross-flow Reynolds number, rotational
.Reynolds number and Hartmann number respectively. The effects of these parameters on the flow

field are shown graphically.
2. FORMULATION OF THE PROBLEM

Consider the flow of an incompressible Auid of density p, viscosity 4 and electrical conductivity
o bounded by two coaxial disks at z = 0 and z = h using a cylindrical polar coordinate system
(r,0,z). The z-axis is the axis of the disks. The upper disk at z = h is rotating at a constant
angular velocity Q. The lower stationary porous disk has fluid injected with a uniform velocity w. A
uniform magnetic field of strength B; is imposed in the z direction. In the analysis of this problem
it i assumed that the distance A between the two disks is small compared to the radius, ro, of the
disks and that the edge effects are negligible,

The governing magnetohydrodynamic {MHD) equations of motion for the steady How [9] are

A V)@= ~Vp+uV3s+ Fx B, (1)
V.§=qo, | (2)
V-B=0, - (3)

VxB=pna(B+ix B, (4)
VxE=o, | (5)
J=0o(E+7x B), (6)
V.J=q, , m

where V and V? are the standard gradient and Laplacian operators expressed in cylindrical co-
ordinates, and where g=(u,, ug, u, )}, f:(J,,Jg,J,), .§=(0,0, By), .g'z(E,,_Eg,Ez), #m and p are
the velocity Beld, current density, magnetic field, electric field, magnetic permeability and pressure
respectively. The components of the vectors refer to the r, § and » directions respectively.

For axisymmetric fow, equation {5) gives

Ey =10, ' (8)

Assume that the induced magnetic fleld is small compared to the imposed magnetic feld. This
B=:p,.
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where 2 is the unit vector in the direction of the positive z-axis.

Using these approximations, equation (6) gives

Jo = ~0Bou,, : (9)
J.=0FE,. ' (10)
Assuming
E, = —xBy0)r : (11}
yields
Jr = oBo(up — xQr), (12)

where x is a dimensionless quantity denoting the strength of the induced radial electric field and is
equal to way /11 for insulated disks. w,, is the average velocity of the fiuid. :

Using the equations of motion (1) and (2), assuming the flow is axisymmetric, and incorporating
equations (8), (9}, (10) and (12) (see Stephenson [9]) yields

e i) + o (ru) =0, | (13
w iy, B ~9§=~§g§+y(vz.,,_g - 22 (14)
Ert;:(mg) +u, ‘;’f = v (V2 - =) - Efﬁ(ua ~ x0rr), (15)
4, é;" u,% = —%g—z.-% vV2u,, (16)

where

V2 6.2 }._.a...f_.l 82 + 32'
T T rdr p2ge2 T 5.3

and ¥ = u/p is the kinematic viscosity. Writing u = u(r, z) and p = p(r, z}, the boundary conditions

are:
Ur(f, O) = 09 ug(r, 0) = 0) u,(r, 0) =w,

17
trp(r,h} =0, ug(r, k) = Qr, u{r, h) = 0. (17)
Using the following similarity transformations:
z wr f! -
M= tr = __;}n_) ue ={rg(n), u,=-wf(n),
. Aw? |
p=—pr? o T Fln),
equations (13}-(16) reduce to
"= R(7'V/2= 11"~ 0g? - 4) + 2227 (18)
9"=R(f'9- 1"} + Mg~ x), | {19)
w2 w2 g
F=r (“z‘ TSR R




The constant Py is the pressure at the porous stationary disk, A is a constant of integration,

Ry = nt—z, R= -‘f’v—" M= Boh(’%) 1/2’_ A= z%g-,
and .
X= fo g(n) dn. (20}
The boundary conditions (17) reduce to
HO)=-1, f(0)=0, g(0)=o0, (21)
fM=0,  f(1)=0, g1)=1. (22)

Differentiating equation (18) with respect to n to remove the constant A gives
9= R+ 2200") + M2 p", (23)
3. LIFT AND TORQUE

Letting the pressure at the edge of the disk {at r = ro) be p., the similarity transformation for -

p vields
Aw?
—pe = —p(r? — ) A7
p Pe p(r rO) 4h2

The lift force is

ro rowird A
L= 2x/ {p— p.)rdr = i-g}:f—,
0 .

the shear stress is

Ju | {9
Ta0 = y—af = Eh—rg'(n),

and the torque is
' rovidg'(n) ,

Ta
T = 2x./£ rearidr = oh o

4. NUMERICAL METHOD

Following the format in Heruska [13], define

. i) _
X= f’"(G)) , : (24)
¢'(0)

Let fim X, g(r;;X') be the solution of the initial value problem given by (1S} and (23) with initial
conditions (21) and (24), where y is treated as a constant. The original two-point boundary value
problem described by equations (19) and {21)-(23) is numerically equivalent 1o eoiving the nonlinear

. gystem of equations

£i1. ¥
’ J{.l!‘-_} \%
FiX)=1}| mMuxs 1 =0 {25)
Xy -1 )
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together with satisfying (20). Solving (28) amounts to shooting from =0t n =1, until an

appropriate value of X is determined such that the boundary conditions at n = I are met. However,
shooting from 1 = 0 to = 1 proved unsuccessful on this problem, due to the initial siope of one of
the functions (/f*) being very large. Next, a multiple shoo_ting technique was tried. For this define

Then the boundary conditions (21) and (22) give the following nonlinear system of equations
f0;X)+1
/'(0; X)

F(X) = ;’%‘I’Q - 0. (27)
(LX)
8(1; X) -1

Define
Yin) = (f(n), £'(n), " (n), 1" (n), (n), ¢"(n)),

20 that the value of F(X) is determined from Y(n)at n =0and n = 1. The vector Y (n) can be
calculated from the first order system of ordinary differential equations

Y, =Y,

Y)=7Ys,

Y=Y,

Y{ = M?Y; — R(Y1¥y + 20Y;Y),

Y, = Yo, :

Yo = M*(Y; — x) — R(Y,Ye — Y2Ys),
with initial conditions ¥ (.5) = X, by integrating both forward and backward. An unusual aspect of
this problem is the constant y in (20). This constant’s value depends on the solution, specifically,

the function g{n). In order to satisfy (20}, ¢ must be viewed as a function of ¥ and x as well as 1.
Thus the problem is to find the value of X such that

(28)

oori ’
‘I’(x')=j0 9(m X, x)dn —x =0 (29)

and (27) is also satisfied. To solve this problem, a least change secant update quasi-Newton method
was utilized for the nonlinear system part {27) and a hybrid secant and bisection technique was
utilized for the root fnding part {28}, The quasi-Newton code used was HYBRD from the MIN PACK
‘'subroutine package from . rgonze National Laboratory [14]. The root fnding code used waz ROOT
from the ODE subroutine package in Shampine and Gordon [15]. Using an ipitial guess for x,
HYBRD determined an X satistr {27). The value of U(x) using this X typically would not

: useg this value of ¥(x) to predict the root x- This tteration

satisfy (25}, T%

Li2€ root =z
 was continued unri} {26]

o



M? R Ry X g'(0) g'{1) A
0 2 447 36562 .333 1.745 7.649
16 2 447 .30460 1.237 2.777 16.946
64 2 447 42837 3.003 4.696 43.970
256 2 447 .45881 6.883 8.711 147 434
512 2 447 46972 10.159 - 12.035 281.918
16 2 2.000 30429 1.236 2.782 16.625
16 2 4.000 39334 1.233 2.796 . 15.623 -
16 2 10.000 .38710 1.216 © 2.804 8.964
16 2 16.000 37715 1.189 3.056 -2.029
16 2 2.000 .39429 1.236 2.782 16.625
16 4 2.000 .32650 797 3.302 9.259
16 10 2.000 .22113 .305 4.392 4.853
16 16 2.000 17273 161 _ 5.187 3.805

Table 1. Effects of M?, R and R, on y, ¢'(0), g'(1) and A.

5. DISCUSSION -

Figure 1 shows the effect of the Hartmann number (M) on the axial, radial and tangential
velocities for a fixed R and R;. From Figure 1a, the axial velocity f is always upward. The axial
velocity decreases with inecreased Af up to just past the midplane, but increases with increased M
‘in the upper part of the plane. The radial velocity f' is shown in Figure 1b. The radial velacity has
a maximum value near the midplane of the disks for M? < 64. For larger values of M?, the radial
velocity reaches a maximum nearer the lower disk, levels off for a distance and falls to zero at the
upper disk. The tangential velocity ¢ (Figure 1c) increases as M2 increases for 7 < .6 but decreases
in the area closer to the upper disk as M? increases.

Figure 2 shows the effect of R; on the axial, radial and tangential velocities for a fixed M and
R. Agamn the axial velocity is always upward (Figure 2a). Increasing R, has the effect of increasing
the axial velocity. The effect of increasing R; on radial velocity (Figure 2b) is to move the maximum
value towards the upper disk, Also, the maximum value is increased slightly. The effect of increasing
E; on tangential velocity (Figure 2¢c) i3 to slightly decrease it.

Figure 3 shows the effect of R on the axial, radial and tangential velocities for a fixed M and
Ry. Increasing R also increases the axjal velocity (Figure 3a), but with a less pronounced efect
than increasing Ry. There iz less eflect on radial velocity (Figure 3b) for large values of R than
R;. However, changes in small values of R have more effect on radial velocity than changes in small
values of Ry. The tangential velocity (Figure 3¢) is effected by changes in R significantly, unlike
changes in B;. The effect of increasing R is to decrease tangential velocity.

Table 1 shows the effects of changing M?, R and R; on the induced radial electric 8eld (x),
the shear stress and torque at each diek (¢'(0) and g¢'(1)), and the Lift force and edge pressure
(4). Increasing M? increases x, ¢'(0), ¢'(1) and A. Increasing the rotaticnal Reynolds mumber
{R;} decreases the slectric feld, shear stress and torgue at the jower disk, as well as decreasing the
life force 2nd edge pressure; however, the shear stress and torque at the upper disk are increased.
The efect of increasing the cross-Aow Reynolds number R is. generally, the same as increasing B;. _
However, the changes due to B are more dramatic for x, ¢'(0) azd §'(1} than the changes due to
e reverse is true for A.
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Figure Captions.

Figure 1. Effect of M? on flow field with R = 2, B, = 447 and M? =0,16,64,256, 512 {short dash,

dotted, solid, long dash, dash dot). (a) Axial velocity f(¢). (b} Radial velocity Fle) (&)
Tangential velocity g{¢).

Figure 2. Effect of R on flow field with M2 = 16, R=2and B, = 2,4,10, 16 {

solid, long dash). (a) Axial velocity f(¢). (b) Radial velocity
g{s).

short dash, dotted,
F'{¢). (¢) Tangential velocity

Figure 3. Effect of R on fiow field with A4? = 16, By = 2 and R = 2,4,10,16 (short dash, dotted,

solid, long dash) (a) Axial velocity f(¢). {b) Radial velocity f'(¢). (c) Tangential velocity
a(s). .
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