Building Bridges and Interfaces:
Toward the Next Generation of UiMsS

H. Rex Harisonh
Deborah Hix

TR 87-3

T

Building Bridges and Interfaces:

Toward the Next Generation of UIMS

H. Rex Hartson (Contact Auther)
Deborah Hix

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg VA 24061
703/961-4857

ABSTRACT: User interface management sysiems (UIMS) have established
themselves in both research and commercial arenas. We present several
generations in UIMS evolution and discuss some problems of the early
generations. In particular, we discuss the problems of a gap between methods
used by behavioral scientists and computer scientists during the process of
building interfaces. = We present an empirical approach to begin bridging this
gap and results of our preliminary observations: a human-computer interface
development life cycle and recording techmiques for interface development, as
well as UIMS needed to support them. We conclude with future directions for the
evolution of UIMS.

Number of words: approximately 2890 (excluding outline and references)

Keywords: UIMS, user interface management, human-computer interaction,
human-computer interface, interface development methodology, interface

development life cycle.

Topic area: User interface tool kits

Building Bridges and Interfaces:

Toward the Next Generation of UIMS

H. Rex Hartson
Deborah Hix

1. GENERATIONS OF UIMS

2 PROBLEMS WITH EARLY GENERATION UIMS: A Gap to be Bridged

3. APPROACH TO SOLVING THE PROBLEMS: Empirical Observations

4. RESULTS OF THE OBSERVATIONS: A Life Cycle, Recording Techniques, and Next

Generation UIMS for Interface Development

4.1. A Life Cycle for Interface Development

Evolution of Our Hypothesis

An Interface Development Life Cycle

4.2. Recording Techniques for Interface Development

Nature of the Recording Problem

A Set of Recording Techniques

4.3. Interactive Tools to Support Interface Development:

UIMS

Support for Alternating Waves

Evolution of Next Generation UIMS

5. FUTURE DIRECTIONS IN UIMS RESEARCH

The Next Generation of

1. GENERATIONS OF UIMS

Unknown a few years ago, user interface management Systems (UIMS) have
become an exciting area of research and practice. Yet there are already signs of
promises unfulfilled, due to a lack of both functionality and usability. We
perceive a trend in UIMS evolution that we have somewhat arbitrarily divided

into generations:
First generation: Facade and prototype builders, predecessors 10 real UIMS.

Second generation: UIMS with run time support and increasing design time
and rapid prototyping tools, often with limited
functionality and usability.

Third generation: UIMS with increased functionmality and flexibility
through such advances as object orientation, direct
manipulation, asynchronous and complex graphical
dialogue; still a usability gap.

Fourth generation: UIMS with improved usability through empirically-based
refinement of both UIMS and interface development
methodologies.

Future generations: UIMS supplemented by artificial intelligence, such as
expert systems for aiding interface development and
knowledge-based processing.

UIMS of the first two generations have established themselves in both
research and commercial arenmas. Although first generation UIMS were mostly
facade generators and prototypers (e.g., [Hanau and Lenorovitz, 1980; Mason and
Carey, 1981; Wong and Reid, 19821), they saw significant application in
commercial development environments. Interfaces produced by these UIMS were
typically specified by BNF-style languages, supplemented with conventional
programming. Early second generation UIMS research often focused on support
for interface execution [Guedj et al., 1980; GIIT, 19831, with little emphasis on the
end-user, human factors, or interface design. This gencration produced several
experimental systems that contributed greatly to the knowledge and experience
base [Wasserman, 1981; Kasik, 1982, Buxton et al.,, 1983; Kamran and Feldman, 1983;
Olsen, 1983; Hartson, Hix, and Ehrich, 1984: Granor and Badler, 1986]. Second
generation UIMS have been commercially available for some time [e.g, Rubel,
1982; Schulert, Rogers, and Hamilton, 1985; Wasserman and Shewmake, 1983].

Second gencration UIMS varied greatly in their capabilities and usability, with

1

many requiring conventional programming. Moving toward the third
generation, the UIMS view has broadened [Tanner and Buxton, 1984; Olsen et al,
1984: Hartson and Hix, 1987] to include emphasis on the end-user and the non-

programming interface developer.

Third generation UIMS are adding functionality to address specific problems.
For example, limitations of sequential dialogue are overcome by event-based
asynchronous dialogue [Green, 1985] and by an order independent form, or slot,
abstraction {Hayes, 1985]. Object orientation allows greater flexibility and ease of
implementation {Sibert, Hurley, and Bleser, 1987]. Dialogue techniques can be
specified by demonstration [Myers, 1987]. While the third generation is
producing interesting new UIMS ideas, it has not been the needed empirical

refinement of the previous generations.

The premise that UIMS improve user interface quality and shorten
development time is gencrally accepted, despite a scarcity of empirical evidence
to this effect, and despite their sometimes limited scope and difficulty of use. We
believe the state-of-the-art in UIMS evolution is into the third generation, and we
see a need to produce a next generation of more usable UIMS, complementary 1o
improvements in interface development methodology. Much research has
addressed end-users; now it is time to address interface developers --- as users of
UIMS. Those who have begun work in this direction include Mantei [1986], Carey
[1987], and Rosson, Maass, and Kellogg {1987].

The work we report here is an embryonic observational approach toward
what Rosson, Maass, and Kellogg term "designing for designers". This paper
presents some problems of early generation UIMS; an empirical approach to
begin solving these problems; and results of the observations: a human-computer
interface development life cycle and recording techmiques, as well as capabilities
of UIMS needed to support them. It concludes with future directions for the
evolution of UIMS.

2. PROBLEMS WITH EARLY GENERATION UIMS: A Gap io be Bridged

Cooperation between behavioral scientisis and computer scientists is
necessary for development of interactive computer sysiems with quality human

interfaces [Hartson, 1985]. However, the problem is a gap caused by differences

2

between methods used by behavioral scientists to design and analyze interfaces
and those used by computer scientists to design and implement software.
Mechanical aspects of developing interfaces (and especially of using tools)
hamper performance of the task itself; the syntactic domain interferes with the
semantic domain [Shneiderman and Mayer, 1979]. Particularly with the increased
functionality of third generation UIMS, an interface developer can easily lose
sight of the interface development task, getting lost in the UIMS itsell. The gap is
manifest in the lack of, first, a holistic development methodology and, second,

usable interactive tools for supporting activities of this broader methodology.

First, consider the methodology problem. No accepted methodology exists to
guide interface development. The few interface development approaches that do
exist lack connections to software engineering, thus widening the gap.
Wasserman's User Software Engineering (USE) methodology [Wasserman, 1981]
and the Dialogue Management System (DMS) methodology [Yunten and Hartson,
1985] come closest to providing a connection to software engineering. Second,
consider the tool problem. As with the methodology, most UIMS (exceptions again
include USE and DMS) do not make a connection with software engineering.
Current UIMS typically support only a small subset of the overall interface life
cycle activities. Furthermore, few observational data exist of developers
performing development activities (cf. {Hammond et al., 1983; Gould and Lewis,
1985: Lammers, 1986; Rosson, Maass, and Kellogg, 19871). Thus, the limited existing
methodologies and tools for interface development have typically evolved based

on best guesses and intuition.
3. APPROACH TO SOLVING THE PROBLEMS: Empirical Observations

In an effort to begin bridging the gap, we conducted several studies, not to
formally test a hypothesis, but rather to investigate natural --- i.e., without 4
priori bias from specific approaches, notations, and tools --- and effective ways
in which quality interfaces are developed. Our approach follows the principles of
system design recommended by Gould and Lewis [1985]: focus on users {of UIMS)
carly in the design process, empirical studies throughout all phases of system

evolution, and iterative refinement based on the empirical results.

We conducted three protocol-gathering case studies involving interface
developer subjects producing different kinds of interactive systems. In the most
extensive of these, three subjects developed (including full implementation) a
document retrieval system over a two year period. This system was chosen
because it represented a broad variety of interface styles and techniques (e.g.,
menus, function keys, typed text input), interface features (e.g., direct
manipulation), and included both sequential and multi-thread dialogue. Subjects
were computer science students who performed this as project work for course
credit’. Two subjects had several years of industrial experience in software
development environments. Subjects were given a written functional description
of application system semantics, with very little information about the interface

and no specific methodological instruction about interface design.

Although details varied, the following describes what typically happened.
All three subjects used similar approaches, starting with pencil-and-paper
scenarios of what the end-user sees and does (c.g., viewing displays, pressing
keys, entering commands, using a mouse). They initially represented the design
with a set of numbered sketches of screem displays, writing in information about
sequencing among screens. To show transitions among screens graphically, they
developed representations varying from flow charts to state diagrams that were
detailed and concrete, yet large and complex. This pencil-and-paper "prototype”
was tested manually, and changes immediately fed back to requirements

specifications.

Next, subjects alternated from these bottom-up scenarios and state diagrams
to a top-down approach, working downward through the representation,
analyzing, structuring, and modifying the design, until they could implement a
first version of the document retrieval system. Then they alternated back to a
bottom-up step of end-user testing to refine the interface iteratively, focusing
primarily on interface details. Before end-users were reasonably satisfied with
quality and functionality, developer subjects had gone through three complete

revision cycles, and many iterations for fine-tuning interface details.

T Studies by Holt, Boehm-Davis, and Schultz [1987] indicate that use of students for subjects
in software and methodological studies is an acceptable practice, yielding useful results.

In two other similar, but less extensive studies, subjects produced some
form of scenarios and state diagrams as a starting point for interface
development. Added support has been given to our observations by two years of
co-operative research with IBM Federal Systems Division. We found that much of
their interface development, at least informally, is scenario-driven. In addition,
Carey [1987}] relates observations of numerous independent design teams:; all
produced pencil-and-paper versions of screen sequences early in the
development process. Finally, the interface developers' life cycle and
representational nceds we observed are consistent with Piaget's [1950] theory that
people naturally learn by starting with concrete examples and working toward
the abstract.

4. RESULTS OF THE OBSERVATIONS: A Life Cycle, Recording
Techniques, and Next Generation UIMS Jor Interface Development

It is probably impossible 1o determine empirically (or otherwise) the "best"
way to develop interfaces. But our observations have vielded indications of
procedural (life cycle) and representational (recording) needs of developers, as

well as tool requirements.

We conclude that a unified holistic methodology is needed to treat human-
computer interface development as an integral part of the software engineering
process. It consists of (1) a life cycle for interface development and (2) a set of
recording techniques for capturing outputs of each phase of this life cycle. A
new generation of UIMS is also needed to support all phases of the life cycle,
including task analysis, requirements, and early creative interface design
activities --- that tight mental loop of synthesis and analysis involving dialogue
scenarios, creative doodling, and experimentation with ideas. Without this
support, interfaces produced with UIMS will not necessarily be better than those
produced without UIMS. In fact, early generation UIMS may serve only as a

means for faster production of bad interfaces.

4.1. A Life Cycle for Interface Development

Bridging the gap in the interface development process neccssitates a non-

conventional life cycle. Two relevant results are discussed below:

. We hypothesize, based on our observations, that interface
development occurs in “alternating waves” of bottom-up and top-down
activities.

. We are evolving an interface development life cycle that
supports this hypothesis.

Evolution of Our Hypothesis. Draper and Norman [1985] draw a
parallelism between interface development and software engineering. Now that
some researchers [Swartout and Balzer, 1982; Ramamoorthy et al., 1984] are
beginning to see that a linear life cycle is not the most appropriate for all
software, the argumenis of Draper and Norman are more compelling. Our
observations have led us to conclude that the life cycle for interface development
does not "naturally” follow the traditional software development life cycle, with
its top-down linear sequence of requirements, design, implementation, and
testing. In fact, attempts to impose the classical "waterfall” paradigm on interface
development are undoubtedly the cause of many bad interfaces. Rather, we
hypothesize that the interface development life cycle most naturally occurs in
"alternating waves” of two kinds of activities. Typical early phases of interface
development are Dbottom-up, based on concrete dialogue scenarios, often
augmented with state-diagram-like representations of sequencing. Subsequent
phases involve top-down, step-wise decomposition and structuring. Activities that
are bottom-up, synthetic, empirical, and reflect the end-user's view alternate
with activities that arc top-down, analytic, structuring, and reflect the system's
view. These two kinds of development activities reflect different kinds of mental

modes, which we call "Mode A" and "Mode B", summarized below.

Mode A Maode B
Top-down Bottom-up
Analytic Synthetic
"Stop" “Go"
Organizing Free-thinking
Judicial Creative
Structural Behavioral
General Detailed

Modeling or formal

Reflects system’s view and
works toward end-user

Linguistic orientation

Empirical or ad hoc

Reflect's end-user's view
and works toward system

Dialogue flow orientation

Of course, development of interfaces and software requires both these mental
modes. The top-down nature of mode A activity is more useful when the developer
has some experience and a priori knowledge of target system structure. The
bottom-up nature of mode B activity is more suitable in novel design situations,
when little about target system structure is known in advance, and "trial and
error’ augment experience and intuition to develop system structure. As
interface development knowledge and expericnce are accumulated, top-down

techniques will be used more.

An Interface Development Life Cycle. We have extrapolated our
observations into a cyclical model of the interface development life cycle, shown

simplistically in Figure 1.

Tequiremenis,
task mode]

1mplementation

\

protorype specifications
formal conceptual
design design

\ __//
Figure 1. An Interface Development Life Cycle

This is the kind of life cycle we foresee being supported by next generation
UIMST. Because of its totally cyclic nature, almost any place (except possibly
implementation) is appropriate to enter this life cycle. Thus, a later entry point
(e.g.. a conceptual design activity such as playing with scenarios) may be

followed by an ‘"earlier" activity (e.g., formulation of requirements

T There are obviously similaritics between this figure and other system life cycles. However,
only a few other researchers address interface design methodology (e.g., [Wasserman et al.,
19861).

specifications). This again opposes traditional top-down paradigms, but fits our

hypothesis of alternating waves of development.

4.2, Recording Techniques for Interface Development

An important part of bridging the gap in the interface development
process is communication. The key to this communication is recording
techniques --- unambiguous, casy-to-produce mechanisms to convey
specification and design of the evolving interface to all developer roles. Two

relevant results are discussed below:

. Based on our observations, we know Something about the
rature of the interface recording problem (what 1o record).

. We are developing recording techniques to address those
aspects of interfaces we know must be recorded (how 1o record).

Nature of the Recording Problem. At least three issues are involved
in assessing the nature of the recording process. First, our observations showed
that different interface developer roles need a common representation for
communicating, but have different needs for representation in their own
development work. One solution is techniques that allow a common view, but to
which filters can be applied to produce different working views for each role.
Maintaining multiple views manually (e.g., pencil and paper) is difficult, but
computer-based tools such as UIMS can maintain a single representation from

which various views are derived on demand.

The second issue relates to the need for matching mental and physical
activities of interface developers. Producing representations of the interface is a
physical task that is necessarily preceded by a corresponding mental task to
create the design. This sequence of mental and physical activity is illustrated by
the boxes labelled respectively "conceptual design" and "formal design" in Figure
1. With current UIMS, the mental and physical tasks tend to be quite separate,
causing discontinuity in an interface developer's work. Thus, another result of
our observations is that mental and physical interface development tasks must be
brought closer together by providing interactive recording tools (UIMS) that
closely match the mental processes they physically support.

The third issue is the magnitude of the unsolved problem of providing a
complete, consistent, and readable record of an interface design. Complete
description of an interface requires massive amounts of complex details,
including behavioral and structural, visible and non-visible aspects that UIMS

must be able to capture.

A Set of Recording Techniques. Based on our observations, we are
developing recording techniques to support our alternating waves approach. The
techniques are called augmented scenarios, which support the bottom-up,
behavioral, end-user-oriented mode of development; and augmented supervised
flow diagrams, which support the top-down, structuring, system-oriented mode of
development and provide filters for different views of the design [Hartson, Hix,
and Kraly, 1987]. Both techniques are variations of the formal concept of a state
machine, giving our approach a firm theoretical basis. We are also producing
formal methods for mapping from one technique to another. Space does not
permit further elaboration here; see [Hartson, Hix, and Kraly, 1987] for details and

examples.

4.3. Interactive Tools 1o Support Interface Development: The Next
Generation of UIMS

Another key to bridging the interface development gap are UIMS that
support the life cycle and recording techniques of the holistic methodology. Two

relevant results are discussed below:

. Based on our observations, tools should support both bottom-
up and top-down activities.

. Tools should be empirically derived, formally evaluated, and
iteratively refined.

Support for Alternating Waves. Tt is evident from our observations
that next generation UIMS must support all activities of the life cycle and allow
interactive recording of interface designs. In particular, UIMS to support the
altcrnating waves approach must allow scenarios as a starting point for
development. They must allow the developer immediately to observe any part of
interface form, content, and sequencing behavior already defined, without being

hindered by incomplete and missing parts (a severe problem with most existing

9

computer-based tools). UIMS must make visible an end-user-oriented view of

interface behavior and provide rapid modifiability throughout the life cycle.

Evolution of Next Generation UIMS. To improve UIMS usability, the
interface to the UIMS itself must be given considerable attention, so that it
provides the best possible support for an interface developer. This is achievable
only through empirical evaluation and iterative refinement of existing UIMS, a
much neglected aspect of UIMS development thus far. Approaches for

empirically-based tool development are suggested in Section 5.
5. FUTURE DIRECTIONS IN UIMS RESEARCH

Our work reported here, although preliminary, is some of the first in
which experimental studies and their qualitative results have been used to drive
the development of methodology and tools for human-computer interface
management. We see the need for longer term, formal observations in “real
world"” software engineering project environments, alternating with tool
development driven by these observations. Within our DMS project we are
continuing this initial work, including plans for extensive protocol-gathering
from interface developers, with emphasis on early life cycle activities. Analysis
of these observations will increase our understanding of recording needs and

allow us to refine our corresponding methodological and tool support.

We believe that such an empirical approach to “designing for designers”
constitutes a profitable avenue for all researchers in this area of human-
computer interface management. For far too long, the need for specialized life
cycles and recording techmiques tailored to interface development has been

ignored, and tools have been produced based solely on their creators' intuition

and best guesses. It is time to go to the source --- the interface developers
themselves --- to gather empirical cvidence about their needs for building
interfaces. Such activities will result in interface development techniques and

tools that are empirically, rather than blindly, derived. This will help bridge the
gap among all interface developer roles, bringing them together into the same
interactive system development process. Building such bridges will take us to the

next generation of UIMS and ultimately help us to build better interfaces.

10

ACKNOWLEDGMENTS

We wish to acknowledge the participation in our Dialogue Management
Project research by our colleague and friend, Dr. Roger W. Ehrich, as well as
research assistants Eric Smith, Antonio Siochi, Matt Humphrey, and Jeff
Brandenburg. Mr. Tom Kraly of IBM FSD contributed to the interface recording
techniques research. JoAnne Lee Bogner's speedy typing was invaluable. This
rescarch is funded by the National Science Foundation, Dr. H. E. Bramford, Jr.,
Program Director; IBM Federal Systems Division; the Software Productivity
Consortium; and the Virginia Center for Innovative Technology.

REFERENCES

Buxton, W.A., Lamb, M.R., Sherman, D., and Smith, K.C. 1983. Towards a Comprehensive User
Interface Management System. Computer Graphics, 17 3 (July), 35-42.

Carey, T. The Gift of Good Design Tools. 1987. To appear in Advances in Human-Computer
Interaction, Volume 2. (HR. Hartson and D. Hix, eds.) Ablex Publishing Corp.

Draper, S.W. and Norman, D.A. 1985. Software Engineering for User Interfaces. IEEE
Transactions on Software Engineering, SE-11. 252-258.

(GUT) Graphical Input Interaction Technique Workshop Summary. 1983. Computer Graphics,
17 1 (January), 5-30.

Gould, J.D. ,and Lewis, C. 1985. Designing for Usability: Key Principles and What Designers
Think. Communications of the ACM, 28 3, 300-311.

Granor, T.E.,, and Badler, N.I. 1986. GUIDE: Graphical User Interface Development
Environment. In Proceedings of Trends and Applications. Silver Spring, MD, 37-41,

Green, M. 1985. The University of Alberta User Interface Management System. Computer
Graphics, 193 (July), 205-213.

Guedj, R.A., ten Hagen, P.J.W,, Hopgood, FR.A., Tucker, H.A., and Duce, D.A., eds. 1980.
Methodology of Interaction: Seillac H. Seillac, France, 1979. North-Holland.

Hammond, N., Jorgensen, A., MacLean, A., Barnard, P. and Long, J. 1983. Design Practice and
Interface Usability: Evidence from Interviews with Designers. In Proceedings of CHI
‘83 Conference. Boston (December), 40-44.

Hanau, P.R., and Lenorovitz, D.R. 1980. Prototyping and Simulation Tools for User/Computer
Dialogue Design. Computer Graphics, 14 3 (July), 271-278.

Hartson, H.R., ed. 1985. Advanrces in Human-Computer Interaction, Volume 1. Ablex
Publishing Co.

Hartson, H.R., and Hix, D. Human-Computer Interface Development: Concepts and Systems for
Its Management. To appear in ACM Computing Surveys in 1987.

Hartson, H.R., (Johnson), D. Hix, and Ehrich, R.W. 1984. A Human-Computer Dialogue
Management System. In Proceedings of INTERACT ‘84, First IFIP Conference on Human-
Computer Interaction. London (September), 57-61.

Hartson, H.R., Hix, D., and Kraly, TM. 1987. Dialogue Management as an Integral Part of
Software Engineering: Final Report. Virginia Tech Department of Computer Science
Technical Report Number 8§7-22, (June).

Hayes, P. 1985. Executable Interface Definitions Using Form-Based Interface Abstractions.
In Advances in Human-Computer Interaction, Volume |. (H. Rex Hartson, ed.) Ablex
FPublishing Corp., 161-190,

Holt, R.W., Boehm-Davis, D.A., and Schultz, A.C. 1987. Mental Representations of Programs
for Student and Professional Programmers. George Mason University Department of
Psychology Technical Report.

Kamran, A. and Feldman, M.B. 1983. Graphics Programming Independent of Interaction
Techniques and Styles. Computer Graphics, 17 1 (January), 58-66.

Kasik, D.J. 1982. A User Interface Management System. Computer Graphics, 16 3 (July), 99-
106,

Lammers, S. 1986. Programmers at Work. Microsoft Press.
Mantei, Marilyn. 1986. Private communication with authors.

Mason, R.E.A., and Carey, T.T. 1981. Productivity Experiences with a Scenario Tool. In
Proceedings of the IEEE COMPCON. Washington, D.C. (September), 106-111.

Myers, B. 1987. Creating Dynamic Interaction Techniques by Demonstration. In Proceedings
of CHI + GI ‘87 Conference. Toronto (April), 271-277.

Olsen, D.R., Jr. 1983. Automatic Generation of Interactive Systems. Computer Graphics, 17 1
(January), 53-57.

Olsen, D.R., Jr., Buxton, W., Ehrich, R.W., Kasik, D.I., Rhyne, I.LR,, and Sibert, J. 1984. A
Context for User Interface Management. IEEE Computer (December), 33-42.

Piaget, 3. 1950. The Psychology of Intelligence. Harcourt, Brace.

Ramamoorthy, C.V., Prakish, A., Tsai, W.T., and Usuda, Y. 1984, Software Engineering:
Problems and Perspectives. JEEE Computer, 17 10 {October), 191-209.

Rosson, M.B,, Maass, 8., and Kellogg, W.A. 1987, Designing for Designers: An Analysis of
Design Practice in the Real World, In Proceedings of CHI + GI '87 Conference. Toronto
(April), 137-142.

Rubel, A. 1982. Graphic Based Applications --- Teols to Fill the Software Gap. Digital Design,
(Fuly).

Schulert, A.J., Rogers, G.T., and Hamilton, J.A. 1985. ADM --—- A Dialogue Manager., In
Proceedings of CHI '85 Ceonference. San Francisco (April), 177-183.

Shneiderman, B. and Mayer, R. 1979. Syntactic/Semantic Interactions in Programming
Behavior: A Model and Experimental Results. Infernational Journal of Computer and
Information Sciences, § 3, 219-239.

Sibert, J.L., Hurley, W.D., and Bleser, T.W. 1987. Design and Implementation of an Object-
Oriented User Interface Management System. To appear in Advances in Human-
Computer Interaction, Volume 2. (H.R. Hartson and D. Hix, eds.) Ablex Publishing
Corp.

Swartout, W., and Balzer, R. 1982. On the Inevitable Intertwining of Specification and
Implementation. Communications of the ACM, 25 17 (July), 438-445.

Tanner, P.P.,, and Buxton, W.A. 1984, Some Issues in Future User Interface Management
System (UIMS) Development. In Seeheim Workshop of User Interface Management
Systems. Eurograhics-Springer.

Wasserman, A.I. 1981. User Sofiware Engineering and the Design of Interactive Systems. In
Proceedings of the Fifth International Conference of Software Engineering. 387-393.

Wasserman, A.I. and Shewmake, D.T. 1985. The Role of Prototypes in the User Software
Engineering Methodology. In Advances in Human-Computer Interaction, Volume 1, (H.
Rex Hartson, ed.) Ablex Publishing Corp., 191-210.

Wasserman, A.l., Pircher, P.A., Shewmake, D.T., and Kersten, M.L. 1986. Developing
Interactive Information Systems with the User Software Engineering Methodology.
IEEE Transactions on Software Engineering, SE-12 2 (February), 326-345.

Wong, P.C.S., and Reid, E.R. 1982. FLAIR -- User Interface Dialog Design Tool. Computer
Graphics, 16 3 (July), 87-98.

Yunten, T., and Hartson, LR, 1985. A SUPERvisory Methodology And Notation (SUPERMAN)
for Human-Computer System Development. In Advances in Human-Compurer
Interaction, Volume 1. (H. Rex Hartson, ed.) Ablex Publishing Corp., 243-281.

