UIMS: Toward the Next Generation

H. Rex Hartson
Deborah Hix

TR 86-41

UIMS:
Toward the Next Generation

H. Rex Hartson
Deborah Hix

1. THREE GENERATIONS OF UIMS

“This is the year of the UIMS.» [Card, 1986]

And indeed these words rang true at the CHI ’86 conference. User snterface manageQ-
ment systems — UIMS — were a major focus of many of the technical presentatioﬁs, live
demonstrations, and special interest sessions. But what does the future hold for IjIMS?
Will they be a passing fad or a viable tool? We believe they are here to stay. In fact, we

envision at least three generations of UIMS:

First generation: UIMS as they are now, with run time support and ever-increasing
design time and rapid prototyping tools.

Second generation: UIMS extended into early phases of the system development life
cycle that they currently do not support, such as task analysis, re-
quirements specification, and conceptual interface design, result-
ing in more powerful and more extensively usable UIMS.

Third generation: UIMS pervaded by artificial intelligence, such as expert systems
for aiding interface development, and natural language processing

(both in the UIMS themselves and in their product systems).
First generation UIMS have established themselves both in the research and commer-
cial arenas. Possibly not since the emergence of database management in the early 1970’s
has an area of computer science received so much attention as interface management.
Early UIMS research focused on support for interface execution [Guedj, ten Hagen, Hop-
good, Tucker, and Duce, 1980; GIIT, 1983], with little emphasis on the end-user, human
factors, or interface design. Early UIMS-produced interfaces were typically specified by
BNF-style languages or, more often, by coding the interface in 2 programming language.
Thus, early first generation UIMS were tools for programmers. More recently, the UIMS
view has broadened [Tanner and Buxton, 1984; Olsen, Buxton, Ehrich, Kasik, Rhyne,
and Sibert, 1984; Hartson and Hix, 1987] to include emphasis on the end-user and the _

1

hon-programming interface designer. First generation experimental UIMS vary greatly
in their capabilities le.g., Wasserman, 1981; Kasik, 1982; Buxton, Lamb, Sherman, and
Smith, 1983; Olsen, 1983; Hartson, Hix, and Ehrich, 1984; Green, 1985; Hayes, 1085;
Sibert, 1987]. Some systems for prototyping the human interface are closely related to
UIMS le.g., Hanau and Lenorovitz, 1980; Mason and Carey, 1981; Wong and Reid, 1982;
Flanagan, Lenorovitz, Stamke, and Stocker, 1985]. First. generation UIMS are now com-
mercially available [e.g., Rubel, 1982; Schulert, Rogers, and Ha.miltoﬁ, 1985]. Despite this
Prevalence, UIMS evaluations are scarce. There seems to be, however, a genér#lly accepted
premise that UIMS are viable, despite their sometimes limited scope and difficulty of usge.
We envision the improvement of UIMS usability and the extension of UIMS to include a
broader whole system development life cycle as the basis for evolution of a second gener-
ation of UIMS. Most previous research has addressed end-users; now it is time to address
interface designers (as end-users of UIMS). Othel_'s who have begun work in this direction
include Mantei [1986], with empirical foundations for improving UIMS usability, and Carey
[1987], concerned ﬁrith matching tools such as UIMS to their users and environment,

The remainder of this paper presents some problems of first generation UIMS in more
 detail, some informal empirical work that is leading toward an interface development life

cycle and new UIMS to support it, and future directions for the anticipated evolution.

2. PROBLEMS WITH FIRST GENERATION UIMS

cepted as necessary for successfi] development of interactive computer systems with quality
human interfaces [Hartson, 1985]. However, there is a gap caused by differences between
the methods used by behaviora] scientists to design and analyze interfaces and those used
by computer scientists to design and implement software. That gap inhibits communica-
tion between these designer roles. The gap is manifest in the lack of, first, an sntegrated
holistsc methodology for the complete system life cycle, and, second, snteractive tools for

2

supporting design activities of this broader life cycle.

First, consider the methodology problem. Despite existing methods for some interface
design steps, such as task analysis and user modeling, ahc'i._guidelines for designing indj-
vidual displays, there is no methodology which organizes-.a.ll these steps and guides the
designer in assembling the complex structure of an interface. The gap is further manifest
by the lack of connection of these interface development methods to methods for software
development. Wasserman’s User Software Engineering (USE) methodology [Wasserman,
1981] and our own Dialogue Management System (DMS) methodofogy [Yunten and Hart-
gon, 1985] come the closest to providing the connection. OQur research experience indicates
that interface development and software development have different kinds of life cycles (see
Section 3.3) and correspondingly different methodological needs. These life cycles can be
integrated to form a single comprehensive approach to whole system development, but our

studies suggest that a unified holistic methodology to embrace activities of both designer

roles cannot be achieved simply by extending existing software engineering methodologios.

Second, consider the tool problem. First generation UIMS provide an exanip_le-of
how the few existing tools fail to support activities of the whole life cycle. Early UIMS
emphasized run time support over design time tools, emerging from a computer science
perspective in which dialogue was programmed, with little initial consideration for sup-
porting the needs of 3 non-programming interface developer in a natural, effective way.
As with the methodology, most UIMS (exceptions again include USE and DMS}) do not
make any connection with the software engineering life cycle. UIMS support interface
development activities, but only during later phases of the interface life cycle, including
design specificationt profotyping, implementation, execution, and modification. We know

of no UIMS that supports the early phases such as tagk analysis and requirement speci-

1 Design specification, as used here, is the process of capturing a representation of a conceptual design

(see Figure 2).

fication, and few that effectively support early, creative interface design activities — that
tight ﬁentd loop of synthesis and analysis involving dialogue scenariost, experimentation
with ideas, “creative doodling,” and visualization of results. Without this support, the
interfaces produced with UIMS will not necessarilj'bé better than those produced without
UIMS. In fact, first generation UIMS may serve only as a means for faster production of

bad interfaces.

3. TOWARD SECOND GENERATION UIMS

8.1 Bridging the Gap

Although behavioral scientists and computer scientists have begun reaching toward
each other, a gap still exists between their worlds. The move toward second generation
UIMS must bridge this gap by developing an integrated holistic approach involving a more

extensive life cycle concept, with correspondmg tools, to support activities of both designer

roles. In an eﬁ‘ort to begm bridging this gap, we conducted three studles the purpose of

which was to investigate natural and effective ways in which quahty mterfaces are devel-
oped by human interface designers. By “natural® we mean without a priori bias from
specific approaches, notations, and tools. Qur experiment was not intended to study the
cognitive processes of interface designers or of end-users. However, our observations indj-
rectly captured information about thejr cognitive processes by capturing their observable
representation techniques. The key to these studies was representation — spe.ciﬁcation
techniques and procedures that interface designers naturally use to capture products of
early life cycle activities (i.e., requirements specification, task analysis, conceptual inter-
face design). Based on results of these initial studies, which concenfrated on interface
design activity, we have concluded that interface development does not “naturally” follow

the top-down, step-wise refinement paradigm of traditiona] software engineering.

t One exception is ACT/1, more a prototyper than a UIMS [Mason and Carey, 1981].

4

3.2 Observational Datg Gathering

The three informal studiest invol\(ed a small number of interface designer subjects
developing different interactive systems. In the most extensive of these, three subjects
developed. (including full impIementationj a document retrieval system over a period of a
year. The subjects were selected outstanding computer science students who performed
this as project work for course c_redit.\ They were giveﬁ a written functional description
of applica.tion system semantics, with no information about the interface and no specific
methodological instruction about” how to approach }:he interféce design. The three subjects
used similar approaches, a composite of which is described here. Their development started
with bottom-up, detailed pencil and paper scenarios of what the end-user does, sees, and
hears (e.g., pressing keys, entering commands, using a mouse, viewing displays). They
initially represented the design with a set of numbered sketches of screen displays, pencilling
in beside each item that corresponded to an end-user input (e.g., menu choice, PF-key
deﬁnitioﬁ, prompt for a keyword) the number of the corresponding successor screen sketch.
They developed a large, flat state diagram to show transitions a.-miong display sketches.
The rééult was detailed and concrete, yet large and complex. This early paper and pencil
prototype was tested manually and many important changes were immediately fed back

to requirements specifications.

Next, moving upward, the subjects reduced complexity by abstracting displays into
related .groups, forming intermediate and higher levels of abstraction. Simple graph prop-
erties were used on the state diagram to reduce or expand detail in subgraphs, The subjects
then moved back downward through the representation, analyzing, organizing, structur-
ing, and modifying the design. It was also at this point that the subjects faced issues

such as hierarchical language structuring, consistency of keywords and naming, handling

} We do not wish to give the impression that these stndies were controlled, m x n factorial experiments
with statistical results, Rather, they were protocol gathering observations with qualitative results.

5

of modes (loops back to non-initial dialogue states), consistent definitions for *quit” and
“exit” commands, and structura) consistency [Reisner, 1981] of the interaction language,
Our subjects had no model or mechanism for organizing and structuring these interface
problems, We observed that the DMS dialogue transaction model [Hix and Hartson, 1986]
would be especially helpful at this point because of its ability to guide design downward

through levels of abstraction, analyzing and refining the interface’s linguistic structure.

A first version was implemented, and the j;-ext step of development was to alternate
back to a bottom-up step of testing with end-users to iteratively refine the interface.
Observations here focused primarily on details of the interface and how the user perceives
them at the lowest level of abstraction. Here many of the detailed design decisions (e.g.,
screen layout, menu format and content, graphics, consistency of wording) were made
and/or.changed, ones that could not be addressed at higher levels of abstraction. Before
end-users (including us) were reasonably satisfied with the quality and functionality, the
_designer subjects had gone through three complete revision cycles, some af_fecti_ng the deep

structure, and many iterations for fine-tuning interface details.

We conducted two other less extensive, but nonetheless informative development stud-
ies. -One involved a dataEase of student information for corporate recruiters developed by
a group of 15 computer science senjors (also implemented and tested with users); the other
involved a emall accounting system developed by four computer science graduate students
(not implemented). All three of our subject groups arrived independently at some form of

scenarios and state diagrams as a starting point for development.

Two other independent occurrences give added credence to our observations. First,
for the last year and a half, we have been working with IBM Federal Systems Division on
extendihg their approach to interface development, Delving into their current approach,
we found that much of thejr development work js scenario-driven. Often, the customer

: providés these scenarios; on other occasions, the interface developers produce them as

6

the first step in the development process. Second, Carey [1987] relates observations of
numerous independent design teams; all produced Paper and pencil versions of the screen

sequences early in the development process.
3.8 Result: A Dialogue Development Life Cycle

It is probably imppssible to determ_ine empirically (or otherwise) the “best” way to
develop interfaces. But our research yielded some indications of what some interface de-
velopers want for representation, speeiﬁéafion, design,_and implementation techniques and
tools to support their own person;alized approaches to the early, creative phases of in-
terface development. Based on our observations, we hypothesize that the typical initial
approach is bottom-up, based on “story-board” dialogue scenarios and often augmented
with state-diagram-like representations of sequencing. There are later parts of the develop-
ment process however, that benefit from a process of top-down, step-wise decomposition
and structuring, Despite claims to the contrary [Draper and Norman, 1985], our obser-
vations have led us to hypothesme that the life cycle activity for interface development
is necessarily different from that of the traditional software development life cycle, with
its top-down linear sequence of requirements, design, lmplementatlon and testingt; and
that the overall system development life cycle is actually made up of alternating “waves”
of what we have come to call “Type A” and “Type B” activities, summarized in Figure
1. Type A activities are top-down, analytic, and structuring. They involve modelmg and
reflect a system view. Type B activities are bottom-up, empirical, synthetic, and reflect
the end-user’s view.

Although task analysis and requirements specification were not the focus of our obser-

t However, others [Swartout and Balzer, 1982; Ramamoorthy, Prakish, Tsai, and Usuda, 1984] say that
this linear cycle is not the most appropriate for software either. Given that view of software engineering, the
arguments of [Draper and Norman, 1983] for treating interface design analogously to software engineering

are more compelling.

Type A Type B

Top-down Bottom-up
Analytic Synthetic
%Stop® “Go”
Organizing Free-thinking
Judicial Creative
Structural Behavioral
General Detailed
Modeling, formal Ad hoc or empirical
‘Reflect system view and Reflect user’s view and
works toward user works toward system
Language orientation Dialogue flow orientation

Figure 1. Summary of Type A and Type B Activities

vations, it appears that our theory of alternating up and down Wwaves continues to apply.
Task analysis is top-down and analytic. It starts with the whole system and breaks it down,
often hierarchically, into functions, tasks, and subtasks, Also probing earlier in time, we
see that task analysis could be driven by a bottom-up process of early and incomplete

requirements specification.

To summarize, the development process seems to be comprised (althougil not in a

strict linear time sequence) of;

Bottom-up: early incomplete requirements specifications

Top-down: hierarchical task analysis

Bottom-up: scenario-driven interface design ,
Top-down: interaction-language-driven abstraction and structuring
Bottom-up: empirical user tests to improve interface

Top-down: modeling and abstraction to reorganize and restructure

We have extrapolated our observations into a tentative model of the interface/system
development life cycle, shown in Figure 2. This js the kind of life cycle we foresee being
supported by second generation UIMS, There are obviously some similarities between this
figure and other system life cycles. However, only a few other researchers include interface
design (e.g., [Wasserman, Pircher, Shewmake, and Kersten, 1986]). The life cycle in Figure

8

8{0J 8 Aq pewicued uapRWID) A1/

(anpoid 8 ‘mimonas & ‘uBwep » ‘eBpeymou)
Bupnewos jo TETSTIYEIIN

‘2ol afvy uowidopaaa(y sovfaayur uy -z amdng

'
._ |
| ——SWIN woneIomsy jeaty ——m |
! ' !
i i
_] L™
o
ssuregind -:..un_u_"..:“!_
uDiewn pus 1oH rdin
: sofdisup ‘
10 [epow saIniee)
ot WS “uwuny || 1eimonas (] - wiaiesod
* o Awouoxw
! fepow
n e)
saufog srfpeun
s I
- Y Yy : yYey Bupnianas T]
wesss ‘uthise,]
ase004d ubisep .. ubigep [LLL]
At rrreme——— o ad o
tiesn-pue pur 10811 Buian sdhiala pelELIGIng 1wi9g wmdesuod [LLILLETIT] ry
13nposd wian teep
gsew ey ot %)] Y jo amdes Y R 2
EMlO8 sApIRRLD
sepms ‘Alawe P
ffauved speay jo
pur iwdad uoneyenidesuvon
#1887 i8s%n | : Auns
uGIEIAN 'symAleur g5 LTS
Meu 1oy ‘ugnenieas pPESRQ-TINIDNIIS
ATRGEER) sbun !
pUE Jeyiew “u > »

MsWIBLS) AANNBIAL|

2 focuses more on the early conceptual phases and has more feedback loops for iteration.
Because of the highly cyclic nature of the diagram, almost any place is appropriate to
enter this life cycle. Thus, a later entry point into the cycle of Figure 2 (e.g., “playing with
séeﬁarios,” a conceptual design activity) may be followed by feedback to earlier points
(e.g., formulation of requirements specifications) in the life cycle. Such an occurrence
- Tuns counter to traditional, linear top-down paradigms, but gupports our hypothesis of

alternating waves of development,

In Figure 2, specification of requirements is a functjonal description of application
semantics of the whole system and serves as 3 problem statement for the development
process. Early specifications are usually quite incomplete and rarely reflect the function-
ality of the final product. The cognitive user mode} explains how the user thinks about
tasks performed with the application system. Task analysis produces a model of uger and
system activities and behavior, based on expected system funct__iona,lity. Early design work
involves some of the most crea;;ive- activity and rapidly changing result_s. The represen-
tational products of this 'earl} design W(;rk (e.g., the conceptual design) might include
scribbles on an envelope, a. mental image in the designer’s mind, or a written sequence of
8creen scenarios. The conceptual design is often incomplete, linear, unstrucfured, and not
computer-stored. The design Process now increases its pace, as a first generation UIMS
enters the life cycle, The design is now captured in computer form; it is refined, alter-
natives weighed, and detajls added. Major changes often occur from conceptual design,
and, depending on UIMS functionality, considerable structuring is added. Representation
of the formal design can take many forms [Hartson and Hix, 1987], such as BNF, state
transition diagrams, hierarchical interaction languages, and WYSIWYGQ screen layouts,
Many UIMS can, at this point, produce an executable prototype, for evaluation and jter-
ative refinement. Some can add realism by merging the functionality of any implemented

computational software into the prototype.

3.4 The Importance of Representation

The most important key to bridging the g3p between behavioral scientists and com-
puter scientists in interface development is communication, The key to this communication
is representation — a clear, unambiguous, easy-to-visualize mechanism to convey the spec-
ification and design of the evolving interface to both roles, Our observations showed that
the two different designer roles need a common representation for communicating but have
different needs for representation in their own separate design and development work. A
solut:on lies in the proper kinds of abstraction, one that allows a common view for sharing,

~but one to which filters can be applied to produce different working views for each role. It
is difficult to maintain multiple views with manual (e.g., paper and pencil) means, but is
achievable with computer-based tools such as UIMS. A single representation is maintained

internally from which various views are derived on demand.,

In software engineering, textual specifications, design documentation, and implemen-
tation code are aH varlous kinds of representations of the target system. Production of
such representations i 13 a physical task, rega.rdless of whether interactive tools or man-
ual methods (e.g., pencil and paper) are used., A corresponding mental task to create the
specification, design, or implementation necessarily precedes and accompanies the physical
task of representing it. This sequence of mental and physical activity is illustrated by the
boxes labelled “conceptual design” and “formal design” in Figure 2. With first generation
UIMS, the mental and physical tasks tend $o be quite separate, causing discontinuity in the
interface developer’s work. The second generation of UIMS should bring the mental and
physical tasks closer together by providing effective interactive tools that closely match

the mental Processes they physically support.
4. FUTURE DIRECTIONS

Existing limited representational techniques (e.g., Backus-Naur Form grammars, state

10

transition diagrams} and related tools were brought into the interface development process
primarily by computer scientists. To our knowledge, however, there is no empirical support
for their efficacy as a natural or 3 complete representational technique for a interface
developer in a real design environment, Oyr work reported here, although preliminary, js
some of the first in whic_:h experimental studies have been used to drive the development
-of support methodology and tools. It js our goal that the interface (and whole gystem)
‘development process will become a smooth, continuous, tool-supported process almost
| from the beginning, using a natural means of representation that makes jt easy to capture
the design, easy to experiment with it, easy to visual interface behavior, and easy o change
it.

This includes extensive protocol gathering of expert interface designers at work on bench-
mark interface tasks, with special emphasis on their task analysis, requirements specifi-
cations, and dé_sign representation. Analysis of these observations wil] increase our un-

derstanding of representétional needs in these early activities and, we hope, allow us to

beyond.

ACKNOWLEDGMENT

We wish to acknowledge the participation in our DMS research by our colleague and friend, Dr. Roger
W. Ebrich. We also wi h to thank Pat Cooper for her speedy typing, without which we would pever have
met the deadline. The DMS research is funded by the National Science Foundation, Dr. H. E. Bramford,
Jr., Program Director; IBM Federa) Systems Division; and the Virginia Center for Innovative Technology.

REFERENCES

Buxton, W.A., Lamb, M.R., Sherman, D., and Smith, K.C. 1083. Towards a Comprehensive User Interface
Management System, Computer Graphics, 17 3, 35-42.

Card, S. 1986. Opening remarks at CHI ’86 Conference. Bostop. {April).

Carey, T. The Gift of Good Design Tools. To appear in Advances in Human-Computer Interaction, Volume
2. (H.R. Hartson and D. Hix, eds.) Ablex Publishing Corp., 1987.

Draper, S.W. and Norman, D.A. 1985. Software Engineering for User Interfaces, IEEE Transactions on
Software Engineering, SE-11. 252-258, :

11

Flanagan, D., Lenorovitz, D., Stanke, E., and Stocker, F. 1985. RIPL Concept of Operations and System
Architecture. Internal document. Computer Technology Associates, Inc., Englewood, Col. (May 1).

(GIIT) Graphical Input Interaction Technique Workshop Summary. 1983, Computer Graphics, 17 1

Green, M. 1085, The University of Alberts User Interface Management System. Computer Graphics, 19 3
(July), 205-213, i

Guedj, R.A., ten Hagen, P.JW., Hopgood, F.R.A., Tucker, H.A., and Duce, D.A., eds. 1980; Methodology
of Interaction: Seillac JI Seillac, France, 1979. North-Holland.

Hapau, P.R., and Lenorovitz, D.R. 1980. Prototyping and Simulation Tools for User/Computer Dialogne
Design. Compauter Graphics, 14, 3 (July), 271-278.

Hartson, H.R., ed. 1985. Advances in Human-Computer Interaction, Volume }, Ablex Publishing Co.. ,

Hartson, H.R., and Hix, D. Human-Computer Interface Development: Concepts and Systems for Its Man-
agement, To appearin ACM Computing Surveys in 1087, ' ,

Hartson, HR., (Johnsou), D. Hix, and Ehrich, R.W. 1084. A Human-Computer Dialogue Management
System. In Proceedings of IN TERACT '84, First IFIP Conference on Human-Computer Interaction.
London (September), 57-61. ” :

Hayes, P. 1985, Executable Interface Definitions Using Form-Based Interface Abstractions. In Advances in
Human-Computer Interaction, Volume 1. (H. Rex Hartson, ed.) Ablex Publishing Corp., 161-190.

Hix, D., and Hartson, H.R. 1986, An Interactive Environment for Dialogue Development: Its Design, Use
and Evaluation. In Proceedings of CHI '8¢ Conference, Boston. (April), 228-234.

Kasik, D.J. 1982, A User Interface Management System. Computer Graphics, 16 3, 95-106.

Mantei, Marilyn. 1986. (To be obtained.)

Mason, R.E.A., and Carey, T.T. 1081, Productivity Experiences with a Scenario Tool. In Proceedings of
the IEEE COMPCON. Washington, D.C. (September), 106-111.

Olsen, D.R., Jr. 1983. Automatic Generation of Interactive Systems. Computer Graphics, 17 1 {January),
53-57.

Olsen, D.R., Jr., Buxton, W., Ehrich, R.W., Kasik, D.J., Rhyne, J.R., and Sibert, J. 1984. A Context for
User Interface Manragement. IEEE Computer,; (December), 33-42, .

Ramamoorthy, C.V.,, Prakish, A., Tsai, W.T., and Usuda, Y. 1984, Software Engineering: Problems and
Perspectives. IEEE Computer, 17 10 {October), 191-200.

Reisner, P, 1981. Formal Grammar and Human Factors Desigu of an Interactive Grapbhics System. IEEE
Transactions on Software Eagineering, SE-7 2 (March), 229-240. :

Rubel, A. 1982, Graphic Based Applications — Tools to Fill the Software Gap. Digital Design, (July).

Schulert, A.J., Rogers, G.T., and Hamilton, J.A. 1985. ADM — A Dialogue Mansager. In Proceedings of
CHI ’85 Conference. San Francisco. (April), 177-183.

Sibert, J.L., Hurley, W.D., and Bleser, T.W, Design and Implemertation of an Object-Oriented User Interface
Management System. To appear in Advances in Human-Computer Interaction, Volume 2. (HR.
Hartson and D. Hix, eds.) Ablex Publishing Corp., 1087,

Swartout, W., and Balzer, R. 1982, On the Inevitable Intertwining of Specification and Implementation.
Communications of the ACM, 25 7 (July), 438-445.

Tanner, P.P., and Buxton, W.A.S. 1984. Some Issues in Future User Interface Management System (UIMS)

Wasserman, AL 1081, User Software Engineering and the Design of Interactive Systems. In Proceedings
of the Fifth International Conference of Sofiware Engineering. 387-393.

Wasserman, A.lL, Pircher, P.A., Shewmake, D.T., and Kersten, M.L. 1986. Developing Interactive Infor-
mation Systems with the User Software Engineering Methodology. IEEE Transactions on Software
Engineering, SE-12 2 {February), 326-345.

Wong, P.C.S., and Reid, E.R. 1982. FLAIR - User Interface Dialog Design Tool. Computer Graphics, 16
38 (July), 87-98.

Yunten, T., and Hartson, HR. 1085. A SUPERvisory Methodology And Notation (SUPERMAN) for
Human-Computer System Development. In Advances in Human-Computer Interaction, Volume 1.
(H. Rex Hartson, ed.) Ablex Publishing Corp., 243-28].

12

